

Biological Assessment of

City of Sarasota WWTP

Sarasota County NPDES #FL0040771 Sampled December 1998

October 1999

Biology Section Division of Administrative and Technical Services Bureau of Laboratories

Comprehensive Quality Assurance Plan No. 870346G

Department of Environmental Protection

Results of Fifth Year Inspections

Discharger:

City of Sarasota WWTP

County: NPDES Number:

Sarasota FL0040771 1/31/2004

Permit Expiration Date:

Toxics Sampling Inspection (XSI)

Date Sampled:

1 December 1998

Results:

Aluminum, copper, iron, lead, silver, and zinc were detected in the effluent sample at levels that complied with Class III marine water quality standards. Atrazine was detected at the control site at levels below the practical quantitation limit.

Compliance Biomonitoring Inspection (CBI)

Date Sampled:

1 December 1998

Results:

The effluent sample was not toxic to the invertebrate,

Ceriodaphnia dubia, or to the fish, Cyprinella leedsi.

Impact Bioassessment Inspection (IBI)

Date Sampled:

1 December 1998

Results: The macroinvertebrate community health was extremely degraded at all three study sites. Taxa richness and Shannon-Weaver diversity were 80%-95% lower than other typical Florida estuaries at all three study areas. Test site 2 contained three polychaete taxa, one of which was the somewhat sensitive polychaete. Prionospio heterobranchia. Test site 1 and the control site had only one pollution-tolerant polychaete taxon. Pelecypods, normally "good water quality" indicators, were absent from both the control site and test site 2, and a single species, Crassostrea virginica, made up 8% of the community at test site 1. In general, phytoplankton community health was better at the test sites compared to the control site. The one exception was chlorophyll a, for which levels at test site 1 and 2 were greater than 95% and 70% of other Florida estuaries, respectively.

Water Quality Inspection (WQI)

Date Sampled: 1 December 1998

Results: The effluent nutrients complied with the facility's permit limits. Several of the nutrients at the test sites far exceeded levels found in other Florida estuaries. For example, nitrate+nitrite at the test sites was higher than 95% of levels normally found in other estuaries in Florida. The algal growth potential was below the 10 mg/L "problem threshold" at the control site, yet exceeded this level at both test sites. Effluent AGP was 24.6 mg dry wt/L.

This biological assessment was prepared by DEP staff to provide information to be used in reviewing an NPDES permit renewal application for the subject facility. This assessment will be used in conjunction with other information concerning the facility and its receiving water body to determine appropriate final permit conditions.

Introduction

The City of Sarasota Wastewater Treatment Plant is located in Sarasota County, Florida (see maps in the Appendix). This domestic waste facility provides advanced treatment by a "modified" Bardenpho process. Reclaimed water is used for irrigation of golf courses and agricultural lands. The facility has a submerged outfall located in the southwest corner of Whitaker Bayou under the Tamiami Trail Bridge. The design flow of the wastewater system is 10.2 MGD, while the mean flow was 8.0 MGD.

State permit limits for the City of Sarasota Wastewater Treatment Plant are listed in Table 1. According to the facility's monthly operating reports, the plant had a raw sewage spill in March, 1998, which was due to a break in the pipe system caused by corrosive gas entrapped in the line. As a result, 20 million gallons of raw sewage were discharged across plant grounds and ultimately into Sarasota Bay (see Facility Summary Sheet in Appendix). This Fifth Year Inspection report is part of a basin-wide study of Sarasota Bay and is available upon request.

Methods

The focus of this investigation was to determine the discharger's effects on the receiving waters. A comparison of biological community health was made between a control site (located within Bowlees Creek) and two test sites bracketing the discharge (both located within Whitaker Bayou) (see map in the Appendix). A habitat assess-

ment was performed in situ to establish comparability between sites, and supplemental physical/chemical data were collected on the effluent and study sites on December 1, 1998, during an outgoing tide. The effluent and study sites were analyzed for nutrients, metals, and for organic constituents (base neutral and acid extractables, and pesticide extractables). Methods used for all chemical analyses are on file at the DEP Central Chemistry Laboratory in Tallahassee.

Acute screening toxicity bioassays, using the invertebrate, Ceriodaphnia dubia, and the fish, Cyprinella leedsi, as test organisms, were performed on an effluent sample. Sediments from control and test sites were analyzed for grain size and percent organic matter.

Phytoplankton were sampled at both control and test sites via subsurface grabs. Chlorophyll a was also determined for phytoplankton communities. Algal Growth Potential (AGP) tests were performed using Selenastrum capricornutum as the test organism for the freshwater effluent and Dunaliella tertiolecta for the marine receiving-water sites.

Benthic macroinvertebrate communities were evaluated at control and test sites using three replicate petite Ponar grabs. Several different measures of macroinvertebrate and algal community health have been employed to determine the effects of the discharge. These measurements include: taxa richness, Shannon-Weaver Diversity Index, community composition, functional feeding groups, and algal biomass. For discussion of each of these measures see the Explanation of Measurements of Community Health in the Appendix. All field and laboratory biological methods

followed Biology Section Standard Operating Procedures (SOP's). The SOP's can be viewed on the website < www.dep.state.fl.us/labs/sops.htm>.

The following personnel were involved in this investigation: Andrea Grainger and Charles Kovach (DEP Southwest District), and Julie Baughman, Ken Espy, Marshall Faircloth, Russel Frydenborg, Joy Jackson, Michael Heyn, Elizabeth Miller, Urania Quintana, Johnny Richardson, Lisa Homann, Amy Weaver, Steve Wolfe, David Whiting, and Vicki McGee (DEP Central Biology Laboratory in Tallahassee). The report was reviewed by the Point Source Studies Review Committee, consisting of Wayne Magley, Chuck Ziegmont, and Michael Tanski, as well as District representatives.

Results

The test sites were situated within Whitaker Bayou, a heavily urbanized and channelized tidal creek, with shorelines that consisted mostly of vertical seawalls and some rip rap. At the control site in Bowlees Creek, the shoreline was mostly vertical seawalls. A marina and boatyard are present on the north side of Bowlees Creek (see Habitat Assessment Field Data Sheets in Appendix). Commercial, residential, and industrial landuses dominated at all three sites. Only one productive community type was observed at the three study sites; mangroves made up the southern edge of test site 1, and were patchy at the control site and test site 2. Habitat scores were in the "fair" category at all three study sites, ranging from 42 points at test site 1, to 31 and 35 points at the

Table 1. Effluent limits and summary of chemistry data.

City of Sarasota WWTP	Effluent	Effluent	Control	Test Site	Test Site
City of Sarasota WWTP	Limits	Samples	Site	1	2
Organic Constituents (µg	/L)			<u> </u>	
Atrazine	T -	0.06 1			
Metals (μg/L)	- 44 to 1	• ·	·	<u> </u>	
Aliuminum	1500 **	166 I	500 U	500 U	500 U
Arsenic	50 **	20 U	50 K	30 K	20 U
Cadmium	9.3 **	0.05 U	0.5 U	0.5 U	0.5 U
Chromium	50 **	10 U	20 U	20 U	20 U
Copper	2.9 **	2.6 A	1.9 1	2.5	2.34
Iron	300 **	39 1	150 U	150 U	150 U
Lead	5.6 **	0.31	1 U	1 U	1 D
Mercury	0.025 **	0.1 U	0.1 U	0.1 ป	0.1 U
Nickel	8.3 **	6 U	20 K	20 K	6.0
Selenium	71 **	40 U	400 U	400 U	400 U
Silver	2.3 **	0.11	0.4 U	0.4 U	0.4 U
Zinc	86 **	21 1	60 U	60 U	60 U
Nutrients (mg/L)					
Ortho-phosphate	- "	0.02	0.04 I	0.03 I	0.021 I
Total phosphorus	1.0 *	0.07 A	0.13 A	0.19	0.021 1
Ammonia		0.04	0.01 U	0.02 I	0.04
Nitrate+Nitrite		0.13	0.02 U	0.021	0.5
TKN	 	0.62 [0.76 A	1,2	0.75
Örganic Nitrogen		0.58	0.75	1.18	0.71
Total Nitrogen	3.0 a	0.75	0.78	1.47	1.25
General Phys-Chem Parar	neters		•		•
Habitat Assessment			31	42	35
D.O. (mg/L) surface		7.2	6.1	7.3	7.1
D.O. (mg/L) mid-depth	6.0 *		5.9	7.3	7.3
D.O. (mg/L) bottom			5.9	7.8	6.8
pH (SU) surface		7.8	7.8	7.6	7.7
pH (SU) mid-depth	6,0-8,5 *	-	7.7	7.8	7.8
pH (SU) bottom	-	_	7,5	7.7	7.7
Conductivity (umhos/cm)surface	-	165	36,015	27,221	30,547
Conductivity (µmhos/cm) mid			46,137	34,909	37,382
Conductivity (µmhos/cm) bottom	-	-	47,907	47,377	46,209
Salinity (ppt) surface	-	≤ 1	23	17	19
Salinity (ppt) mid-depth		-	31	22	24
Satinity (ppt) bottom	- 1	-	33	32	31
Temperature (°C) surface	-	24.1	23.9	25	25.2
l'emperature (°C) mid-depth			23.1	24.4	24.8
Temperature (°C) bottom	- 1	-	23.2	23.8	24,1
FRC (mg/L) after dechlorination	0.01 *	≤ 0.03			-
AGP (mg dry wt/L)		24.6	1.9	15.1	13.0
Toxicity (48-hour static, so	reening bi	oassay)	1,830,53	: Ki	
Bioassay - Fish		Not Toxic			
Bioassay - Invertebrate	- 1	Not Toxic	-	-	-
Microbiology (# counts/16)()m1)		rgragikesa.	21. ST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ecal Coliforms	25 *				

- $\boldsymbol{\Lambda}$ Value reported is the mean of two or more determinations
- I Value reported is less than the minimum quantitation limit, and ≥ the minimum detection limit
- K Actual value is known to be less than the value given
- U Material analyzed for but not detected; value reported is the minimum detection limit

control site and test site 2, respectively. The substrate at the study sites consisted mainly of anaerobic mud and fine sand. Approximately 85% of all the sediment particles at the study sites were between 0.125 - 2.0 mm in diameter. The results of the sediment chemistry analysis are in Table 3.

The remaining chemical and biological results are in Tables 1 and 2.

Discussion

Physical/chemical parameters varied between the receiving water

stations. The surface layer dissolved oxygen ranged from 6.1 mg/L at the control site to 7.3 mg/L at test site 1. The bottom layer dissolved oxygen ranged between 5.9 mg/L at the control site and 7.8 mg/L at test site 1. The surface salinity ranged from 23 ppt at the control site to 17 ppt at test site 1. The bottom salinities were higher at all three study sites — around 32 ppt at all three sites (Table 1). The pH was slightly above neutral at all sites and all depths.

Aluminum, copper, iron, lead, silver, and zinc were detected in the effluent sample at levels that complied with Class III marine water quality standards (Table 1). Due to matrix interference, the values reported for arsenic and nickel at the control site and test site 1 are known to be less than the values given (Table 1). Atrazine was detected in the control sample at a level below the practical quantitation limit (Table 1).

The effluent sample was not toxic to the fish, Cyprinella leedsi, or to the invertebrate, Ceriodaphnia dubia, during the 48-hour bioassay (Appendix).

Several of the nutrients at the test sites were greater than the control site and the elevation appears to be due to the effluent (Table 1). For example, TKN at test site 1 was 85% higher and test site 2 was 60% higher than other Florida estuaries (see Typical Values for Selected Parameters in Florida Waters in the Appendix). Exceptionally high levels of nitrate+nitrite were found at test sites 1 and 2. These levels were 95% higher than other typical Florida estuaries. Total phosphorus values at test sites 1 and 2 were greater than 70% and 50% of other Florida estuaries, respectively.

Table 2. Community structure of control and test sites.

City of Sarasota	Control	Test Site	Test Site					
WWTP	Site	1	2					
Macroinvertebrate Qua	ıntitative							
Number of Taxa	3	. 3	5					
Shannon-Weaver diversity	1.4	1	2					
No. Polychaete Taxa	1	1	3					
Community Composition								
% Cirripedia	0	77	14					
% Gastropoda	56	0	0					
% Pelecypoda	0	8	0					
% Polychaeta	11	15	72					
% Tubificidae	33	0	14					
Functional Feeding Groups								
% Burrowing Deposit Feeders	33	15	60					
% Predators/Carnivores	11	0	0					
% Scrapers	56	0	0					
% Surface Deposit Feeders	0	0	13					
% Suspension Feeders	0	85	27					
Phytoplankton Algae								
Number of Taxa	9	• 17	12					
Shannon-Weaver diversity	1.3	3	2.4					
Chlorophyll a (µg/L)	8.7	27.4	10.3 A					
Algal Density (#/mL)	9,327	1,196	1,561					
% Blue-green	0	0	1					
% Cryptophytes	1	8	5					
% Diatoms	93	46	46					
% Dinoflagellates	4	41	47					
% Green	1	1	2					
AGP (mg dry wt/L)	1.9	15	13					

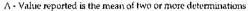
U - Analyzed for but not detected; value is the minimum detection limit

Many of the indicators of phytoplankton community health were better at the test sites compared to the control site (Figure 1). For example, although the algal density at the study sites was relatively low, the control site level was significantly higher than either test site (Table 2). Diversity was 130% higher at test site 1 and 85% higher at test site 2 compared to the control site. Likewise, taxa richness was 89% and 33% higher at test site 1 and 2 compared to the control site. Exceptions to this trend were the

chlorophyll a and AGP values. At test site 1 and 2, the chlorophyll a values were 215% and 18% higher than the control site, respectively (Figure 1). Likewise, the AGP values were much higher at the test sites than the control site. The AGP was below the 10 mg dry wt/L "problem threshold" at control site but exceeded this level at both test sites (Ron Raschke, U.S. EPA, pers. comm.).

Although the macroinvertebrate communities were improved over the last Fifth Year In-

spection of Sarasota WWTP (FDEP 1997) when no organisms were recovered from the Ponar grabs, the community health is still considered very poor at all three study areas. Taxa richness at all three sites was less than nearly 95% of all other estuaries in Florida. Similarly, Shannon-Weaver diversity was low at all three study sites (Table 2). The diversity was highest at test site 2, however, 70% of typical Florida estuaries have higher values. Nearly 95% of all estuaries in Florida have higher diversity values than the control site and test site 1. Test site 2 contained only 3 polychaete taxa; one of which was the somewhat pollution-sensitive polychaete, Prionospio heterobranchia. Test site 1 and the control site had only one polychaete taxon, a pollution-tolerant species (see Macroinvertebrate Taxa Lists in the Appendix). Pelecypods, normally indicators of "good water quality", were absent from both the control site and test site 2. Although pelecypods made up 8% of test site 1, there was only one species, Crassostrea virginica. Few pollutionsensitive organisms were found at the three study sites.


These results suggest that although the study area has recovered since the last Fifth Year Inspection, there is still severe degradation of the biological communities in the study area.

Literature Cited

EA Engineering, Science, and Technology and Tetra Tech, Inc. 1994. Bioassessment for the nonpoint source program (draft). Prepared for the Fla.

Table 3. Summary of sediment chemistry data.

City of Sarasota WWTP	Control Site	Test Site	Test Site	
Organic Constituents (µg/kg)				
Total Organic Carbon (mg/kg)	33,000	27,000	34,000	
TRPH (mg/kg)	70	100	150	
Benzo(b)anthracene	540 U	500 U	1100 1	
Benzo(b)pyrene	540 U	500 U	1300 I	
Benzo(b)fluoranthene	1100 [500 U	2700 I	
Chrysene	540 U	500 U	1500 I	
Fluoranthene	1 088	500 U	3100 I	
Phenanthrene	540 U	500 U	1100 I	
Pyrene	750 I	500 U	2500 I	
Metals (mg/kg)	1, 4, 4	: .		
Ahminum_308	2240 J	6490]	2240 J	
Arsenic	3.15 A	4.36	2.2	
Cidmium	0.271	0.392	0.32	
Chromium	12	17	13	
Copper	21.4 A	8.28	32.6	
fron_271	2480 A	5980	3110	
l.ead	15.4 A	13.3	233	
Mercury	0.050	0.037	0.060	
Nickel	2.4 I	4.2 1	5.1	
Selenium	0.5 U	0.5D	0.8 1	
Silver	0.07 A	0.279	0.239	
Zinc	58.7	32.7	86.8	
Percent Organic Matter (%)	6.99	6.6	6.47	

- I Value is < the minimum quantitation limit, and ≥ the minimum detection limit
- J Estimated value
- U Aanalyzed for but not detected; value is the minimum detection limit

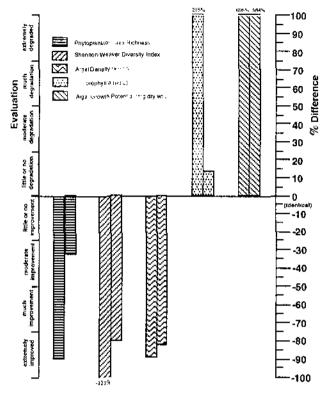


Figure 1. Effect of discharge on the phytoplankton community.

Dept. Environ, Protection. Unpaginated.

Miller, W. E., T. E. Maloney, and J. C. Greene. 1978. The Selenastrum capricornutum Printz algal assay bottle test. U. S. Environ. Prot. Agency, EPA-600/9-78-018. 126 p.

Raschke, R. L. and D. A. Schultz. 1987. The use of the algal growth potential test for data assessment. J. Wat. Poll. Cont. Fed. 59(4): 222-227.

Ross, L. T. 1990. Methods for aquatic biology. Fla. Dept. Environ. Reg. Tech. Ser. 10(1): 1-47.

Weber, C. I. 1993. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. 4th edition. EPA/600/4-90/027. U. S. EPA, Cincinnati, Ohio. 216pp.

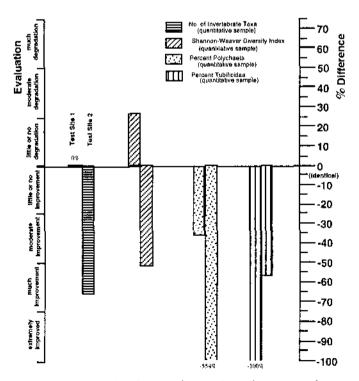
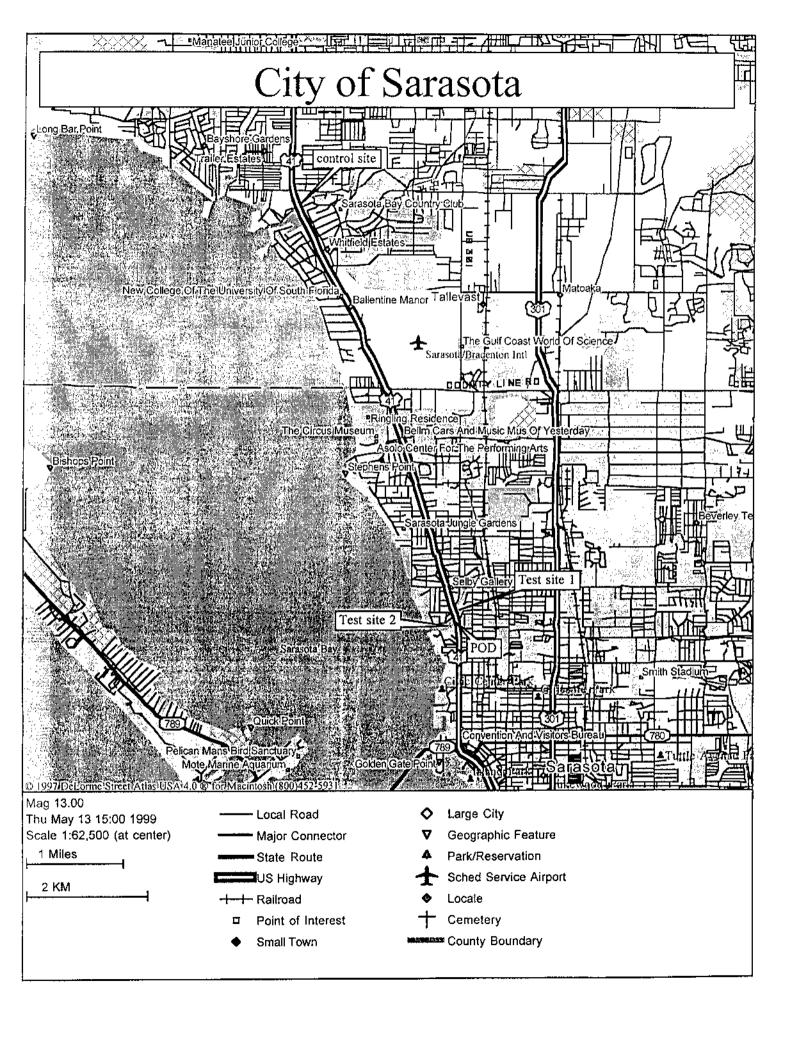


Figure 2. Effect of discharge on the macroinvertebrate community.


Typical Values for Selected Parameters in Florida Waters Adapted from Joe Hand, FDER, personal communication, 1991 (data was collected between 1980 and 1989)

Th	4.27	W 1	. * *	
Perce	ntile	DIST	rını	ition

Percentile Distribution											
Parameter	5 %	10%	20%	30%	40%	50%	60%	70 %	80%	90%	95%
STREAMS								•••			
(1617 stations)											
Phytoplankton	i						F				
Chlorophyll a	0.22	0.52	0.94	1.60	3.02	4.63	6.72	9.87	14.68	27.35	48.70
Periphyton				•							
Chlorophyll a	0.31	0.43	0.77	1.04	2.16	2.94	6.45	10.51	17.00	39.51	60.85
H-D Diversity	0.84	2.12	2.48	2.74	2.88	3.09	3.25	3.40	3.52	3.76	3.90
Qualitative Taxa					·						
Richness	9.00	12.00	17.00	20.00	22.00	24.50	26.00	28.00	31.00	37.00	53.00
H-D Taxa											· l
Richness	6.00	6.50	9.00	11.50	13.00	15.00	17.00	21.50	26.00	29.00	32.00
TKN	0.30	0.39	0.56	0.73	0.87	1.00	1.11	1.26	1,49	1.93	2.80
Ammonia	0.02	0.02	0.04	0.05	0.06	0.08	0.11	0.14	0.20	0.34	0.60
NO2-NO3	0.01	0.01	0.03	0.05	0.07	0.10	0.14	0.20	0.32	0.64	1.05
Total Phosphorus	0.02	0.03	0.05	0.06	0.10	0.13	0.18	0.25	0.39	0.74	1.51
Ortho Phosphate	0.01	0.01	0.03	0.04	0.05	80.0	0.11	0.17	0.27	0.59	1.37
Turbidity	0.60	0.90	1.20	1.45	2.10	2.80	3.60	4.50	6.65	10.45	16.30
LAKES							•				
(477 stations)											
Phytoplankton		1			T			I			····
Chlorophyll a	0.80	1.71	2.88	4.28	10.06	13.40	20.00	30.10	47.20	65.44	113.90
Dredge Diversity	0,71	0.97	1.43	1.74	1.98	2.12	2.21	2.59	2.85	3.15	3,17
Dredge Taxa											
Richness	3.00	5.00	6.50	7.00	9.00	10.00	11.00	13.00	15.00	17.00	21.00
TKN	0.36	0.49	0.67	0.83	1.08	1.26	1.40	1.51	1.68	2.11	3.46
NH3+NH4	0.01	0.02	0.02	0.03	0.04	0.06	0.08	0.12	0.15	0.21	0.28
NO2-NO3	0.00	0.00	0.01	0.01	0.01	0.02	0.04	0.05	0.10	0.14	0.23
Total Phosphorus	0.01	0.02	0.02	0.03	0.05	0.07	0.09	0.11	0.14	0.23	0.42
Ortho-Phosphate	0.00	0.01	0.01	0.02	0.03	0.04	0.05	0.06	0.08	0.21	0.32
Turbidity	1.00	1.25	1.55	2.05	2.75	4.50	6.45	9.60	14.10	26.00	40.00
ESTUARIES										,	
(690 stations)											
Phytoplankton	····]		· · · · · · · · · · · · · · · · · · ·	i	Ī						
Chlorophyll a	2.14	3.28	4.49	5.13	6.00	6.93	7.94	9.60	12.40	17.60	22.20
Dredge Diversity	1.34	1.53	1.91	2.28	2.56	2.90	3.15	3.59	4.01	4.53	4.98
Dredge Taxa						***************************************		†			
Richness	4.00	6.00	9.00	11.00	15.00	18.50	25.00	35.00	41.00	62.00	90.00
TKN	0.26	0.34	0.42	0.50	0.59	0.69	0.76	0.82	0.95	1.30	1.49
NH3+NH4	0.01	0.02	0.03	0.04	0.05	0.06	0.08	0.09	0.13	0.22	0.28
NO2-NO3	0.00	0.00	0.01	0.01	0.01	0.02	0.03	0.05	0.08	0.17	0.23
Total Phosphorus	0.01	0.02	0.06	0.07	0.10	0.11	0.14	0.17	0.23	0.43	0.59
Ortho-Phosphate	0.01	0.02	0.03	0.04	0.04	0.05	0.07	0.09	0.12	0.21	0.44
Turbidity	3.50	4.00	4.50	5.05	5.40	5.60	6.30	6.80	8.00	11.40	11.75

Units:

Phytoplankton Chlorophyll a (ug/L), Periphyton Chlorophyll a (mg/m²), Nutrients (mg/L), Turbidity (NTU), Taxa richness and diversity values are for macroinvertebrates

FACILITY SHEET FOR FYI-5

Facility Name: City of Sarasota WWTP Date Summary Prepared: 12/3/98

Location: 1750 12th Street North Sarasota County; Sarasota District; SW District

Function of Facility: Treatment of Domestic Wastewater

Description of Treatment Process: Advanced waste treatment by "modified" Bardenpho process with the reuse of reclaimed water for irrigation of urban access areas including golf courses and agricultural land used for pasture or joitrus crops.

Receiving Waters: Whitaker Bayou Water Classification: Class III Marine

Design Flow: 10.2 MGD (Annual Average) and 13.0 MGD (Max. Monthly) Mean Flow: approx. 8.0 MGD

The Discharge is Continuous

If facility has a mixing zone, please give details (size, parameters, etc.): No mixing zone

List Effluent Limits:

Parameter Limits

Flow 10.2 MGD AA* 13.0 MMax

CBOD5 5.0 mg/L AA 3.0 mg/L (\ge 3.0 cfs)**

2.0 mg/L (< 3.0 cfs)**

TSS 5.0 mg/L AA 6.25 mg/L MA 7.25 mg/L WA 10.0 mg/L Max
Total Nitrogen 3.0 mg/L AA 3.75 mg/L MA 4.5 mg/L WA 6.0 mg/L

 Total Nitrogen
 3.0 mg/L AA
 3.75 mg/L MA 4.5 mg/L WA
 6.0 mg/L Max

 Total Phosphorus
 1.0 mg/L AA
 1,25 mg/L MA 1.5 mg/L WA
 2.0 mg/L Max

Dissolved Oxygen 6.0 mg/L Min

pH 6.0 - 8.5 Range
TRC (for disinfection) 1.0 mg/L Min
TRC (after dechlorination) 0.01 mg/L Max

Fecal Coliform 25 cfu/100 mL Max 75% nondetectable

* AA=Annual Average MMax= Maximum Monthly MA=Monthly Average WA=Weekly Average Max=Maximum single sample Min=Minimum single sample

** Flow stream rate of Whitaker Bayou at time of sampling

Description of permitted outfall: Outfall 001 discharges to Whitaker Bayou, in the southwest corner under the Tamiami Trail bridge (Hwy 41). The outfall is submerged.

List permit violations and plant upsets that occurred within past 3 years: On March 20, 1998, the facility experienced a spill of raw sewage due to a break in the 36 inch line between the headworks and the equalization tank. Approximately 20 million gallons of raw sewage was discharged across plant grounds and ultimately into Sarasota Bay. The spill was due to a catastrophic failure of the piping material of the 36 inch line, caused by corrosive gas entrapment within the line.

Describe previous impact bioassessments, WQBELs, and previous and current enforcement actions: A FYI-5 was conducted at this facility on October 28, 1998, which indicated that the macroinvertebrate and algal communities in Whitaker Bayou and Bowlees Creek were disturbed. It was due to those results that this study was conducted.

Staff contributing to this review:

Andrea Grainger (Biologist) Michele Duggan (Inspector)

RQ-11-30-04 City of Sarasola STATE OF FLORIDA

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Control Site

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET (5-10-96)

		CHEMICAL CHAR	 ,		•		
SUBMITTING AGENCY CODE SUBMITTING AGENCY NAME		24010046	1 7 4		Bowlee	~ .	
REMARKS: Tide going	COUNTY:	a (5w-4)	atyo	f Savasdo	FIELD ID/NAN 2 4 88	ue: Silve SW 4-> 248)-4)86
RIPARIAN ZONE/INST	TREAM FEATURES)					
Predominant Land	-Use in Watershe	d (specify relative p	ercent in eac	h category):		G	mlf/our
Forest/Natural Sil	Iviculture Field/	Pasture Agricult	tural Res	idential Con	nmercial Ir	ndustrial Othe	
15		0		+5	5		25
Local Watershed Er	rosion (check box)	: None	Slight	M	oderale 🔽	Heavy [
Local Watershed Ni	PS Pollution (ched	k box): No evidenc	L.	- - .	rate potential	—	
Width of riparian veg on least buffered sig		ist & map domin. vegetation on bac		ical Width (m)/D	epth (m) /Veloc	city (m/sec) Tran	m wide
Artificially Channeliz				m/s ↑			m/s
Artificially Impounde	recent se	evere some recovery mostly	recovered s sinuous	1	\		
High Water Mark:	0.2 +		·2	m deep	 \ \ m	n deep	m deep
Canopy Cover %:	<u></u>	ghtly Shaded (11-4		Moderately Sha	ded (46-80%):	Heavily S	haded:
SEDIMENT/SUBSTRA	ATE			-			
Sediment Odors:	Normal: S	Sewage: Petrol	eum: C	hemical: Ar	naerobic: 🕞 🤇	Other:	
Sediment Oils:	Absent: 1	Slight: Mode	erate:	Profuse:			
Sediment Depositio	n: Sludge: 🔽 S	and smothering: s	one modera light sever	ate Silt smother	ing: none mod	derate Other:	HT
Substrate Types	% coverage	# times sampled				# times sampled	method
Woody Debris (Sna	ıgs)		Sa	ınd			
Leaf Packs or Mats	s		M	ud/Muck/Silt			
Aquatic Vegetation	1		·	her:			
Rock or Shell Rubb				her:			1
Undercut banks/Ro	ots,		Dr.	aw aerial view s	ketch of habita	its found in 100	m section
WATER QUALITY De	epth (m): Temp.	(°C): pH (SU):	D.O. (mg/l):	Cond. (µmho/o or Salinity (ppt)	em) :	:	Secchi (m):
Top 🖸	23.9	7.81	6.06	36.015			
Mid-depth 1	·6 23·	12 7.74	5.86	46, 137			1.0
Bottom	230	15 7.52	5.87	47,907			
System Type: Stream	am: $ (1st - 2nd c) $ $ (3rd - 4th c) $	order 5th 6th ord order 7th order or g		e: Wetland	Estuary:	Other:	
Water Odors (check	box); Norma	l: Sewage:	Pet	roleum:	Chemical:	Other:	i
Water Surface Oils	(check box): None	e: Sheen:		Globs:	Slick:]	
Clarity (check box):	Clear	r: Slightly tu	urbid: 🔃	Turbid: ⊬	Opaque:]	
Color (check box):	Tannic	; Green (al	gae): 🔀	Clear:	Other:]	
Weather Conditions	e ba onsu	ral reference	م ہ	Abundance: eriphyton	Absent F	Rare Common	Abundant
site Cor	City of Sa	vasoba in 1	996. ∣ _F	ish			
There 15	a moving	~/boat 4a	1	quatic Macroph	•		
	side of c	reet		on/sulfur Bacte	ria 🔃	<u> </u>	
SAMPLING TEAM:	5 / Kova	(Cla	SIGNA	TURE:	Ara	^ Γ	12/13/

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION MARINE BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET

SUBMITTING AGENCY CODE:	STORET STATION NUM	IBER: OATE (M/OM): REC	EIVING DODY OF WATER:	·	
SUBMITTING AGENCY NAMES	2401004	'	Sowless Che	& - ·	
Tide is going	LOCATION: SW-4	/ amof Sa	FIELD IDNAME:	USITÉ .	
Habitat Parameter	Excellent	Good	Fair	Poor	
Littoral Alterations	None—Unaltered shoreline. 9-10 points	Mostly natural shoreline, but with occasional riprap. 6-8 points	Shoreline consisting mostly of riprap and vertical seawalls. 3-5 points	Shoreline consisting almost entirely of vertical seawalls. 0-2 points	
Community Types Observed	At least four communities observed from the following list: mangrove swamp, marsh, oyster bar, grass bed, reef, saltern, natural beach, or tidal creek. 38-50 points	Two or three communities observed from those listed. 26-37 points	One community observed from those listed. 13-25 points mangrat part	No communities observed from those listed. 0-12 points	
Tidal Fluctuation	>0.75 m. 4-5 points	0.5 - 0.75 m. 3 points (0.25 - 0.5 m. 2 points	<0.25 m. 0-1 point	
Freshwater Discharges/ Alterations	Only natural runoff 9-10 points	Mostly natural runoff, but with a few, small stormwater sources. 6-8 points	Considerable stormwater discharge from local roads, parking lots, etc. 3-5 points	Extensive manmade discharges, especially from canals draining large tracts of land. 0-2 points	
Flow and Wave Action	Light to moderate wave action present except under the harshest weather conditions. Flow unrestricted by manmade structures. 9-10 points			Heavy wave action sometimes present even during average weather conditions, of flow restricted by manmade structures so that velocities are very high. 0-2 points	
Sediment Type	Combination of sand, gravel, and shell. 12-15 points	Primarily sand, with small areas of mud. 8-11 points	Mixture of sand and mud, or well-aerated mud only. 4-7 points	Anaerobic mud. O-3 points	
	TOTAL	SCORE 31			
comments: ther was	warm, sun	aux.			
ANALYSIS DATE:	analyst: Grainger	SIGNATURE:	veatra	~	

RQ - 1998 - 11 - 30 - 09 STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET 15-10-961

SUBMITTING AGENCY (•		STORET STATION NUMB	1	07): TIME 1330	RECEIVING BODY		ou
REMARKS: TI de goi		COUNTY: Savasale	LOPATION: SW-5	/ Cety of	Savasola	l l	ame: SIPQ BU 37 -7 24	
RIPARIAN ZONE/I								
			(specify relative	·····				
Forest/Natural	Silviculture	Field/F	Pasture Agricu			mmercial i	Industrial Oth	ner (Specify)
Local Watershed	Erosion (c	heck box):	None	Slight	N	loderate	- Heavy	
Local Watershed	NPS Pollu	tion (check	box): No evider	ice Si	ight Mod	erate potential	Obvious	sources [
Width of riparian on least buffered Artificially Chann	side:			ack -	pical Width (m)/[m/s ∱	 	city (m/sec) Tra	
Artificially Impou	nded 🔲 ye	S recent, sevi	ere some recovery most	re sinuous	ં			,
High Water Mark	n above present wa	+ [nter level) (presi		8	m deep	-	n deep	m deep
Canopy Cover %	: Open	Ligi	htly Shaded (11-	45%): 🔽	Moderately Sha	aded (46-80%)	: Heavily S	Shaded:
SEDIMENT/SUBS	TRATE	····		•				
Sediment Odors	Norm	ıal: 🔲 Se	ewage: Petro	oleum: C	hemical: A	naerobic: 🔽 🕆	Other:	
Sediment Oils:	Abse	ent: 🔂	Slight: Mod	erate: 🔲	Profuse:			
Sediment Depos			no smothering:	none moder slight sever	^{ate} Silt smothe	ring: none mo	oderate Other:	
Substrate Type		coverage #	times sampled		Substrate Type	s % coverage	# times sample	d method
Woody Debris (S	· · · · · · · · 				and			
Leaf Packs or M	يمجد				ud/Muck/Silt ther:			
Aquatic Vegetat Rock or Shell R					ther:			
Undercut banks						sketch of habit	ats found in 100	m section
WATER QUALITY	Depth (m):	Temp. (°	C): pH (SU):	D.O. (mg/l):	Cond. (µmho/or Salinity (ppt)			Secchi (m):
Тор	0.1	24.9	7 7.75	7.34	27,221	<u> </u>		
Mid-depth	0.8	24.4		7.30	34.909			11.0
Bottom	1.5	23.8	0 7.67	7.82	47, 377			
System Type: S	tream:[[](1st - 2nd or 3rd - 4th or	der 5th - 6th or der 7th order or	der) Lal	ke: Wetland	: Estuary:	Other:	J
Water Odors (ch	eck box):	Normal:	Sewage	: Pe	troleum:	Chemical:	Other:]
Water Surface O	ils (check bo	x): None:	Sheer	::	Globs:	Slick:		
Clarity (check box	c):	Clear:	Slightly t	urbid:	Turbid:	Opaque:		
Color (check box)	:	Tannic:	Green (a	lgae): 🕡	Clear:	Other:		
Sut wa	eethur, louds. p. ups	17 de	ler will Joingout of owfall	This F	Abundance: Periphyton Fish Aquatic Macroph ron/sulfur Bacte	☐ ☐ hytes ☐	Rare Common	Abundant
SAMPLING TEAM:	/ <u>* 0 - *1</u>)	····	ATURE:	<u></u>	<u></u>	DATE:
Gram	1	Vans	4	. <i>c</i>	معلصريك			12/14/7

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION MARINE BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET

SUBMITTING AGENCY CODE:	240 1005	1.20	CEIVING BODY OF WATER:	in	
REMARKS: Located east of Hwy 41	SW-5	/ City of Sas	asola FIELD IDNAME:	SITE!	
Habitat Parameter	Excellent	Good	Fair	Poor	
Littoral Alterations	None—Unaltered shoreline. 9-10 points	Mostly natural shoreline, but with occasional riprap. 6-8 points	Shoreline consisting mostly of riprap and vertical seawalls, 3-5 points	Shoreline consisting almost entirely of vertical seawalls. 0-2 points	
Community Types Observed	At least four communities observed from the following list: mangrove swamp, marsh, oyster bar, grass bed, reef, saltern, natural beach, or tidal creek. 38-50 points	from those listed. 26-37 points	One community observed from those listed, 13-25 points manyers on South	No communities observed from those listed. 0-12 points	
Tidal Fluctuation	>0.75 m. 4-5 points	0.5 - 0.75 m. 3 points	0.25 - 0.5 m. 2 points	<0.25 m. 0-1 point	
Freshwater Discharges/ Alterations	Only natural runoff 9-10 points	Mostly natural runoff, but with a few, small stormwater sources. 6-8 points	Considerable stormwater discharge from local roads, parking lots, etc. 3-5 points	Extensive manmade discharges, especially from canals draining large tracts of land. 0-2 points	
Flow and Wave Action	Light to moderate wave action present except under the harshest weather conditions. Flow unrestricted by manmade structures. 9-10 points			Heavy wave action sometimes present even during average weather conditions, a flow restricted by manmade structures so that velocities are very high. 0-2 points	
Sediment Type	Combination of sand, gravel, and shell. 12-15 points	Primarily sand, with small areas of mud. 8-11 points	Mixture of sand and mud, or well-aerated mud only. 4-7 points	Anaerobic mud. 0-3 points	
		SCORE 42			
COMMENTS: This site the	few docts.	marine/boar	repor backy	. 0 244	
ANALYSIS DAYE: 12/14/18	ANALYST: Gran gu	SIGNATURE:	nestra	~	

RQ - 11- 30 - 04 STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

PHYSICAL/CHEMICAL CHARACTERIZATION FIELD DATA SHEET 15-10-961

SUBMITTING AGENCY CODE: STORET STATION NUMBER: DATE (MDN): TIME RECEIVING BODY OF WATER: 24010052 12/1/98 1430 Whitaker Bayon
REMARKS: LOCATION: LOCATION: SW-G / Cuty of Savasota 24870-7 24892
RIPARIAN ZONE/INSTREAM FEATURES
Predominant Land-Use in Watershed (specify relative percent in each category):
Forest/Natural Silviculture Field/Pasture Agricultural Residential Commercial Industrial Other (Spe
Local Watershed Erosion (check box): None Slight Moderate Heavy
Local Watershed NPS Pollution (check box): No evidence Slight Moderate potential Obvious sources
Width of riparian vegetation (m) List & map dominant on least buffered side: C vegetation on back
Artificially Channelized no mo m/s m/s to m/s
Artificially Impounded yes more shuous
High Water Mark: O:3 + 1:0 = 1:3 -m deep m d
Canopy Cover %: Open: L Lightly Shaded (11-45%): Moderately Shaded (46-80%): Heavily Shaded
SEDIMENT/SUBSTRATE vey
Sediment Odors: Normal: Sewage: Petroleum: Chemical: Anaerobic: Other:
Sediment Oils: Absent: Slight: Moderate: Profuse:
Sediment Deposition: Sludge: Sand smothering: none slight swothering: none slight severe Other:
Substrate Types % coverage # times sampled method Substrate Types % coverage # times sampled met
Woody Debris (Snags) Sand Leaf Packs or Mats Mud/Muck/Silt
Aquatic Vegetation Other: Other:
Undefout banks/Roots Draw aerial view sketch of habitats found in 100 m sect
WATER QUALITY Depth (m): Temp. (°C): pH (SU): D.O. (mg/l): Cond. (μmho/cm) or Salinity (ppt): Secch
Top O· 1 25·18 7·70 7·/3 30,547
Mid-depth 0.5 24.78 7.75 7.30 37,387 0.5 Bottom 1.0 24.14 7.66 6.83 46.209
Suctom Type: Stream: 11st - 2nd order 5th - 6th order 1 ake: Wetland: Estuary: 11th Other:
Water Odors (check box): Normal: Sewage: Petroleum: Chemical: Other:
Water Surface Oils (check box): None: Sheen: Globs: Slick:
Clarity (check box): Clear: Slightly turbid: Turbid: Opaque:
Color (check box): Tannic: Green (algae): Clear: Other:
Weather Conditions/Notes: At the time of sampling this site Abundance: Absent Rare Common Abundance Was down & ream of outfall, There Fish
facility on south side + residences welf-tron/sulfur Bacteria
SAMPLING TEAM. Kovaca (Granfy (didne) DA

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION MARINE BENTHIC HABITAT ASSESSMENT FIELD DATA SHEET

SUBMITTING AGENCY CODE:	STORET STATION NUM	MUEN: DATE (M/DAT): REC	EIVING DODY OF WATER:		
SUDMITTING AGENCY NAMES	2401005	1100	Intate Baro	ч`~·	
REMARKS:	LOCATION: SW-6	city of	FIELD IDWAME:	SITE Z	
Habitat Parameter	Excellent	Good	Fair	Poor	
Littoral Alterations	None—Unaltered shoreline. 9-10 points	Mostly natural shoreline, but with occasional riprap. 6-8 points	Shoreline consisting mostly of riprap and vertical seawalls. 3-5 points	Shoreline consisting almost entirely of vertical seawalls. 0-2 points	
Community Types Observed	At least four communities observed from the following list: mangrove swamp, marsh, oyster bar, grass bed, reef, saltern, natural beach, or tidal creek. 38-50 points	Two or three communities observed from those listed. 26-37 points	One community observed from those listed. 13-25 points	No communities observed from those listed. 0-12 points	
Tidal Fluctuation	>0.75 m. 4-5 points	0.5 - 0.75 m. 3 points	0.25 - 0.5 m. 2 points	<0.25 m. 0-1 point	
Freshwater Discharges/ Alterations	Only natural runoff. 9-10 points	Mostly natural runoff, but with a few, small stormwater sources. 6-8 points	Considerable stormwater discharge from local roads, parking lots, etc. 3-5 points	Extensive manmade discharges, especial from canals drainin large tracts of land. 0-2 points	
Flow and Wave Action	Light to moderate wave action present except under the harshest weather conditions. Flow unrestricted by manmade structures. 9-10 points			Heavy wave action sometimes present even during average weather conditions, flow restricted by manmade structure so that velocities ar very high. 0-2 points	
Sediment Type	Combination of sand, gravel, and shell. 12-15 points	Primarily sand, with small areas of mud. 8-11 points	Mixture of sand and mud, or well-aerated mud only. 4-7 points	Anaerobic mud. 0-3 points	
	TOTAL	SCORE A			
	at repair fac	- 1 / /	th side of &	ayan.	
ANALYSIS DATE:	heats moone	SIGNATURE:	rescuences.		

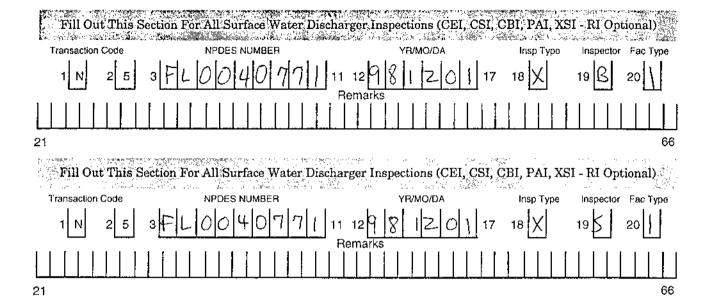
FDEP Biology Section — Acute Bioassay Bench Sheet

S	ample Sou Cou	rice: Cr inty: So rict: And it #: FL0	ty.	if.	Sar	~50to	<u>~</u>		— s	Sample Toet	Collec	ction:	Date <u>//</u> Date <u>//</u> Date <u>//</u> 52	130	<u>-98</u> т	me	245
Со	ntact / Dist	rict: and	hea	Gain	ser/s	South	pat			T	est En	ding:	Date <u>#2</u>	13/99	T	me KKI	5
NE	PDES Perm	it#: <u>FL0</u> (040	774			~			organi: Ord	sm Bat anism	ch #: Age:	<u>52</u> <24/40	_ Dile do-≶ c	ent Ba	itch #:_ icant	60
L	IMS Sampl	e#: <u>3582</u>	<u>33</u> 1	.IMS Jo	b#: 7	72H-19	198-1	1-0H	27_						bat	ch #:	NA
	sample	log -7-7-77	7 000				emarks			Tes	st orgai	nism: "	Certo	dap	<u>ain</u>	dus:	<u> </u>
	S tati	creening i D	newal I	Elow-th	rough		emarks	٠.						′			
r (J	st Number	: _/ 01 2 parature Ra 1-230-250'c	- 25	x9 -26	rar										LINC	ORREC	TED
bon time	18 centura Ranz	penature Ru L-230-250°C	1 AL	umber L			ρН		Τ	erature	. (0C)		O (mg)	A 1	Cond	(mmhc	s/cm)
. г			ļ`		·····		·	1 40 4			,	!	.O. (mg/	,		. (µmho	
-	Conc.	Chamber #	0 hr	24 h		0 hr	24 h	48 h	0 hr			0 hr	24 h	48 h	<u> </u>	 	48 h
-	CTL CTL CTL	4	5	410	5	7.8		7.5	•	ļ	25,3	7, 2_		<u> 77</u>	165		185
<u> </u> -	CT2		5	5	5	 		3.0		<u>-</u>	52'V			<u> </u>		-	185
 -	CTL.	D	5	5	5	 		7.9	<u> </u>	 -	24.9		╁──	7.7			180
 -	100%	4	.5	5	5	7. 2_	ļ		24.5	<u> </u>		7.5	-	7.8	1074E		180
}-		-2-		5	5	/			<i>.</i>		25.1	7.5	 	7.7	ATU		1/55
	100%		5	5 5	410	 		53 53	 	ļ <u> </u>	350			7.7	Deur	Hen;	1250
i-	100%	7	5	410	4			\$.3		· · · · · · · · · · · · · · · · · · ·	24,9			7.7		p place	1290
-	/ 00 /6	2,7	٠	7	7	 -	 				- / (' ' '	ı	14177	12/0
}-			[<u> </u>						-			ļ <u> </u>	
-		****		i .				:								<u> </u>	
}_																<u> </u>	
}-																	
-						<u> </u>								·			
-		·															
<u> </u> -	-																
-																	
⊢																	
-		·					<u>.</u>										
-											\dashv		 			<u> </u>	
			-	· ·													
}-		·											1				<u> </u>
-												····	· · · · · ·			<u> </u>	
-																	
-																	
_	measured		FW.	FW		C#-	•	<u> </u>	$\subseteq \mathcal{H}$		C#			CH	C#		<u>⊂#</u>
<u> </u>	recorded	by:	DAW	FM	ru I	DAW.		<u>ςμ</u>	20U		CH-	174W		(41	Dow		togu !
	Invactičator	rs' Signature:	c													Ç Q	ا ج
,	9 77	3 Signature.						Sa	lt Water		16/040	- Ouel	ity Dor	-mata		ë	~
<i>A</i>	pau /C	1 Migus	-fit								wate Min W		ity Para Sample			Measured by	Verified by
	mille	7 tt Da					_	-	ell Wate	40%	IVILL VV	AIC:		<u></u>			ارتيها
	Jan.	week	<i>1</i>			sidual (A/0		easu.		M
•	marke	4 direct	<u>4</u>			sidual (0,03		LO ₁ 03 148		100	CH	m-
						(mg/L a					5		<u></u>	Hn	-; - -	CH.	Mf
-				Har	dness	(mg/L as	s CaCO	3 ⁾ :			16	_	<u> 177</u>	<u> 141</u>		H	m£
7	<i>7</i>	///5	H.	Tot	al amn	nonia (n	_			1 40	.017		10,0			MF.	ME
		form undated !	A COUNTY				Salin	ity:			<u> </u>		41	140	1 1	>>~/n√	mr

Page | 03 of 200

FDEP Biology Section — Acute Bioassay Bench Sheet

Sample Sou Cou Contact / Dist			st to			to		\$	Sample Test	Collec Begin	ction: I	Date_/ Date_/ Date_/	//-30 2/1/9	-98 T	ime/. ime/4: ime[3	245
NPDES Perm	ատ։ ԵՐԾՈ	190,	//L						Organi: Org	sm a! an⊦m	lch #: _ Aae:	Noan	_ Dile	uent Ba	itch #:4	vel to
LIMS Sample	e#: 358'2	33 1	IMS Jo	ob #:]	144-1	998~	12-01	1-07								
sample	log /2/4/	78 DW							Tes	st orgal	nism: 🕳	Cyp	cincl	/a /a	ich#: _2 ~e_d{s_i	
Test Type: Staff	creening I D L I Static Red 2- of	elinitivi newal l 2	Flow-th			emarks	3:		, =-			71				
Transation #3	3 Temperatur	Ragie	258°C	2.82										•	ORREC	
Room Proceeding Ronge Number Live			рН			Temperature (°C)			D.O. (mg/L)				: (mmhe I. (µmho			
Conc.	Chamber #	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr	24 h	48 h	0 hr		
CXLA	119	5 (5	5	7.6	8,0	0.8	25.2	-23.7	25.2	7. 7	1,3	٦٥	253	522	250
CTZ B	010	1	410	9	7.5	8.0		25,0				7,5	7.5	250) 52c	
ctc	011	3	5	5	7.10	8.1	8.0	24.9	24.0	52 5	75	7.5		250	520	260
CTZ D	012	5	5	-5	7.6	81	6.5	25.1	23.7	25.3	75	7,6	1,5	250	250	265
100 %A	013	5	1.5	5	123	7.9	1.2		23.6	25.3	8.2	174	75	1/20	1060	1245
150 % B	D14	15	5	IJ	7.3	7.9	8.1	247	236	25,5	8.3	7.3	7.5	1205	1190	1315
100% C	215	5	5	\$	73	14	8.1	241	23.9	52.1	8,3	<u> ገ.</u>	7.5	1230	1220	1310
100 % D	016	5	-5	λŋ	7,3	7,5	8.1	24.6	23.9	25.0	8.3	1,1	7,6	1245	1235	130d
														l		
(}		
									_					<u> </u>		
									-							
						· ·										
													[
													ĺ			
	,	·	Ì													
[· · · · · · · · · · · · · · · · · · ·			
														·	 	
}		Ì	 -		<u>-</u>	·							<u> </u>		 	
-						-							<u> </u>			
										-						
measured	by:	D40	CH.	45	c#	#1		CH	111	<u> </u>	CH	74	CI	CH	144	ZH
recorded			24	12	129w	115	ZH	174	一位	C4 1	DAW	7#7	4	Daw	CH	24
' <u></u>	by: s' Signatures	1	C#]	CAL)	DQV	<u>C</u> H]	Sa	It Water	~ ∫	Ċ∰ I Wate	r Quali	-			Measured by	Verified by
March	ff Auch		Field To	tal Re	sidual C	12 (ma	/L):					NOT	me	9540	~ /	N
Frank.	intel or	7			sidual C			0,02	1/			200			CH.	m
		_			(mg/La	_						148	HA	· ·-	cH	m
-	·				(mg/L as					/		ነ ጋጋ	HA	,	сĦ	MA
	7		1		nonia (n					_/		0.017		` ┈ ╵	n F	MF
	1/2	Æ.	- (OU -	ai ainn	iona (n	ng/Las Salin		0 -	- -			41		CT	DDW/MF	1
reviewer	form updated 5	V22/98				- 41111		<u> </u>		·······		<u>'</u>	/		22-7-11	ليئيز


Page/04 of 700

Phytoplankton taxa list and densities (#/mL) for City of Sarasota WWTP, collected via subsurface grabs in Whitaker Bayou on 1 December, 1998.

	Control Site	Test Site 1	Test Site 2
Bacillariophyceae			
Amphora sp.		5	-
Asterionella sp.	_	5	
Centrales sp.	_	_	21
Chaetoceros sp.	206	112	14
Cyclotella sp.	7317	63	14
Cylindrotheca sp.	206	-	-
Cymbella sp.	-	5 5	7
Entomoneis sp.		5	21
Leptocylindrus sp.	-	15	_
Navicula sp.	-	24	21
Nitzschia sp.	206	127	207
Pennales sp.	_	59	100
Rhizosolenia sp.	52	29	93
Skeletonema sp.	721	103	221
Chlorophyceae			
Pyramimonas sp.	_	29	_
Tetraselmis sp.	_	10	_
Cryptophyceae			
Chroomonas sp.	_	73	78
Cryptomonas sp.	103	24	
Cyanophyceae			
Oscillatoria sp.	-	_	7
Dinophyceae			
Prorocentrum sp.	309		7
Undetermined dinophyceae	103	493	720
Euglenophyceae			
Euglena sp.	103	_	29
Eutreptia sp.	****	15	_

Benthic macroinvertebrate taxa list for City of Sarasota WWTP, collected via Ponar grab samples in Whitaker Bayou, on 1 December, 1998. Densities, in number/m², represent the mean of three replicates.

	Control Site	Test Site 1	Test Site 2
Gastropoda			
Pyrogophorus platyrachis	69		
Maxillopoda			
Balanus sp.	-	139	125
Oligochaeta			
Tubificidae	42	_	125
Pelecypoda			
Crassostrea virginica	_	14	_
Polychaeta			
Prionospio heterobranchia			69
Streblospio benedicti	- -	_	153
Arabellidae	14		_
Capitellidae	_	28	403

