

ELLIGRAW BAYOU

BASIN MASTER PLAN

FINAL REPORT

Prepared for:

SARASOTA COUNTY STORMWATER ENVIRONMENTAL UTILITY

Prepared by:

KIMLEY-HORN AND ASSOCIATES, INC. 7202 Beneva Road South Sarasota, Florida 34238

CONSERVATION CONSULTANTS, INC. P. Q. Box 35 ERVATION CONSULTANES, INC. P. O. Box 35 Paimetto, Florida 34220

August, 1994

Project No. 6739.06

TABLE OF CONTENTS

Page

SECTION 1	EXECL	JTIVE SUMMARY	
	1.1	Overview	1
	1.2	Background	1 - 2
	1.3	Assessment	2 - 3
		1.3.1 Flood Protection Deficiencies	4 - 5
		1.3.2 Water Quality Deficiencies	5 - 6
	1.4	Alternative Analysis	6
		1.4.1 Flood Protection Alternatives	6 - 8
		1.4.2 Water Quality Alternative	9
	1.5	Conclusions and Recommendations	9 -10
SECTION 2	INTRO	DUCTION	
	2.1	Purpose	11
	2.2	Authorization	11
	2.3	Coordination with Federal, State & Local Agencies	11
SECTION 3	BACK	GROUND	
	3.1	Historic Flooding	12-13
	3.2	Prior Studies	14-17
	3.3	Previous Improvements	18-19
SECTION 4	INVES	TIGATION METHODS	
	4.1	Data Sources	20
	1.1	4.1.1 Flood Protection	20
		4.1.2 Water Quality	20
	4.2	Computer Modeling	21
		4.2.1 Flood Analysis	21
		4.2.1.1 Methodology	21-22
		4.2.1.2 Results	22-28
		4.2.2 Pollutant Loading Analysis	29
		4.2.2.1 Methodology	29
		4.2.2.2 Results	30-38
SECTION 5	LEVEI	OF SERVICE	
	5.1	Level of Service Objectives	39
	0.11	5.1.1 Flood Protection Level of Service Objectives	39
		5.1.1.1 Federal Emergency Management Agency (FEMA)	39
		5.1.1.2 State of Florida	39-41
		5.1.2 Water Quality Level of Service Objectives	42
		5.1.2.1 Sarasota County's National Pollution Discharge	
		Elimination System (NPDES)	42-43
		5.1.2.2 National Estuary Program for Sarasota Bay	43-44
		5.1.2.3 Florida State Water Policy	44-46
		5.1.2.4 Florida Nonpoint Source Assessment	46-47
			112.01

TABLE OF CONTENTS CONTINUED

	5.2	Level c	f Service Deficiencies	48
		5.2.1	Flood Protection Level of Service Deficiencies	48
			5.2.1.1 Lower Elligraw Bayou Subbasin	48
			5.2.1.2 Upper Elligraw Bayou Subbasin	48
			5.2.1.3 Gulf Gate Lateral Subbasin	49-52
		5.2.2	Water Quality Level of Service Deficiencies	53-54
SECTION 6	ALTEF	NATIVE	SOLUTIONS TO UPGRADING LEVEL OF SERVICE	
	6.1	Conce	ptual Alternatives Investigated	55
		6.1.1	Lower Elligraw Bayou Subbasin	55
			6.1.1.a Flood Protection	55
			6.1.1.b Water Quality	55-56
		6.1.2	Upper Elligraw Bayou Subdivision	56
			6.1.2.a Flood Protection	56
			6.1.2.b Water Quality	56
		6.1.3	Gulf Gate Lateral Subbasin	56
			6.1.3.a Flood Protection	56
			6.1.3.b Water Quality	56
	6.2	Alterna	tives Selected for Detailed Hydrologic and	
		Hydrau	ulic Investigation	57
		6.2.1	Flood Protection	57
			6.2.1.1 Alternative 1	57
			6.2.1.2 Alternative 2	57-58
			6.2.1.3 Alternative 3	58-68
		6.2.2	Water Quality	69-73
SECTION 7	CONC	LUSION	S	74
BIBLIOGRAPH	IY			75-76
LIST OF EXHI	BITS			iv

iv

LIST OF APPENDICES

LIST OF EXHIBITS

- EXHIBIT 1 AERIAL LOCATION MAP
- EXHIBIT 2 BASIN/SUBBASIN MAP
- EXHIBIT 3 EXISTING LAND USE MAP
- EXHIBIT 4 SOILS MAP
- EXHIBIT 5 100-YEAR FLOODPLAIN MAP

LIST OF APPENDICES

- APPENDIX A BASIN/SUB-BASIN INVENTORY
- APPENDIX B HYDROLOGIC/HYDRAULIC MODELING
- APPENDIX C WATER QUALITY MODELING
- APPENDIX D PHOTOGRAPHS

1.0 EXECUTIVE SUMMARY

1.1 OVERVIEW

The Elligraw Bayou basin contains 460 acres which ultimately empty into Little Sarasota Bay. The study area generally extends from the tidal confluence of the Elligraw Bayou Main at U.S. 41, east to the entrance to Marbella Subdivision. The Elligraw Bayou basin is bordered by the Matheny Creek basin to the north, the Catfish Creek basin to the east, and the Holiday Bayou basin to the south.

Drainage from the basin is serviced by two major conveyance systems referenced herein as the Elligraw Bayou Main which extends easterly to the headwaters of the basin from U.S. 41, and the Gulf Gate Lateral which extends north from its confluence with the Elligraw Bayou Main south of Curtiss Avenue to Gulf Gate Drive. Three water level control structures (EB-1, EB-2 and EB-3) are located in the Elligraw Bayou Main and one water level control structure (GGL-1) is located in the Gulf Gate Lateral.

At present, the Elligraw Bayou basin is essentially 100% developed. Existing land uses within the basin include 242.52 acres of medium density residential (53%), 88.48 acres of high density residential (19%), 82.88 acres of open spaces (18%), 12.95 acres of commercial (3%), 16.50 acres of office (4%), and 16.33 acres of major public roads with closed drainage (4%). Of the total basin area, approximately 198.36 acres (43.2%) are impervious and 122.89 acres (26.7%) are directly connected impervious.

The surface waters within the Elligraw Bayou basin are classified as Class III waters (i.e. recreation and the propagation and management of fish and wildlife). Under existing conditions, an estimated 36% of the Elligraw Bayou basin is effectively serviced by stormwater treatment best management practices, BMPs.

1.2 BACKGROUND

Historically, the basin was frequented by numerous isolated wetlands. The extent of these wetlands contracted and expanded throughout the year in response to rainfall. During periods of heavy rainfall, many of these wetlands extended well into upland areas where they may have become hydraulically connected to similarly extended wetlands. Over the years, dredge and fill activities drained and altered most of the wetlands within the basin.

The Sarasota Board of County Commissioners authorized a flood control plan for the basin in 1969. This study was adopted by the County in 1970 pursuant to Resolution No. 70-110. Right-of-way and cross-sectional area requirements for the Elligraw Bayou Main were established as part of this study. The adopted improvements were primarily implemented by subsequent developments located along these drainage courses with public drainage right-of-ways and/or easements being dedicated upon their completion. However, the actual improvements in the lower Elligraw Bayou subbasin are somewhat less than those specified in the adopted study.

1.3 ASSESSMENT

As an initial activity of this study, extensive research was conducted relative to flood protection and water quality in the Elligraw Bayou basin. This research included: (1) the review of all development drainage plans and correspondence available from the Sarasota County Transportation Department; (2) the review of previous authoritative studies relative to the Elligraw Bayou drainage basin; (3) the review of information from the June, 1992 flood; (4) review of field survey data and field reconnaissances; (5) review of citizen's complaints; (6) interviews with residents in the Elligraw Bayou drainage basin; (7) interviews with Sarasota County Stormwater Maintenance personnel; and (8) coordination with other agencies.

One-foot contours aerials, field surveying, and development plan information were used to define the hydrologic and hydraulic characteristics of the Elligraw Bayou basin. In all, 34 subbasin areas were delineated for the analyses. A listing of the hydrologic characteristics for all 34 subbasin areas is provided within APPENDIX A. However, for the sake of simplicity and evaluation, these subbasin areas were aggregated into one of three (3) primary subbasins as summarized in TABLE 1.3.

SUBBASIN NAME	AREA (acres)	Directly Connected Impervious Area (acres/%)	Total Impervious Area (acres/%)
LOWER ELLIGRAW BAYOU	177.82	17.6%	43.2%
UPPER ELLIGRAW BAYOU	204.77	31.3%	41.4%
GULF GATE LATERAL	77.07	35.8%	47.7%
TOTAL	459.66	26.7%	43.2%

SUBBASIN SUMMARY

TABLE 1.3

An inventory of structures located within the study reaches is also presented in APPENDIX A.

Land use designations and best management practices (BMP) type and coverage were determined for each of the 34 subbasin areas as required to conduct the pollutant loading analysis. A listing of these land use and BMP quantities for all 34 subbasin areas is provided within APPENDIX C. An overview of three primary subbasins is provided below:

Lower Elligraw Bayou Subbasin

The lower Elligraw Bayou subbasin encompasses 177.82 acres and is defined by the area which drains directly to that portion of the Elligraw Bayou Main located upstream of U.S. 41 and downstream of Beneva Road. This subbasin contains approximately 31.28 acres of directly connected impervious areas (17.6%) and 76.79 acres of total impervious coverage (43.2%). This subbasin is essentially built-out and consists of an estimated 164.61 acres of medium density residential (93%), 11.66 acres commercial (7%), and 1.55 acres of high density residential (1%). Approximately 5.17 acres (3%) are presently serviced by stormwater best management practices (BMP's).

Upper Elligraw Bayou Subbasin

The upper Elligraw Bayou subbasin is defined by the area which drains directly to that portion of the Elligraw Bayou Main located upstream of, and including Beneva Road. It contains 204.77 acres. Directly connected and total impervious coverage within this subbasin are 64.00 acres (31.3%) and 84.84 acres (41.4%), respectively. Existing land uses within the subbasin include 45.95 acres of medium density residential (22%), 1.58 acres of office/light industrial (1%), 14.56 acres of major public roadways with closed drainage systems (7%), 77.75 acres of high density residential (38%), and 64.93 acres of open spaces (32%). An estimated 161.83 acres (79%) are presently serviced by stormwater best management practices (BMP's).

Gulf Gate Lateral Subbasin

The Guiff Gate Lateral Subbasin is defined by that area which drains directly to the Guiff Gate Lateral. This area constitutes 77.07 acres. The directly connected and total impervious coverages for the 77.07 acre basin total 27.61 acres (35.8%) and 36.73 acres (47.7%), respectively. This subbasin area is made up of 31.96 acres of medium density residential (41%), 9.18 acres of high density residential (12%), 14.92 acres of office/light industrial (19%), 1.29 acres of commercial (2%), 17.95 acres of open space (23%), and 1.77 acres of major public roadways with closed drainage systems (2%). Although the majority, if not all of this subbasin drains through a system of interconnected lakes and ditches, the pollutant removal efficiency is suspect with respect to both design and maintenance. Therefore, it was assumed that this basin is not effectively serviced by stormwater best management practices.

1.3.1 FLOOD PROTECTION DEFICIENCIES

The existing conditions assessment identified numerous floodprone areas within the Elligraw Bayou drainage basin. In order to evaluate and prioritize these problem areas, Flood Protection Level of Service (FPLOS) objective criteria recently adopted by Sarasota County pursuant to Comprehensive Plan Amendment RU-24 was utilized. This FPLOS objective criteria is also consistent with that conceptually developed by the five Florida Water Management Districts and the Florida Department of Environmental Protection in 1993 for possible Statewide application. Specifically, the FPLOS objective criteria considers both structural and roadway flood protection for flood events up to and including the 100-year frequency.

With respect to structural flooding, an estimated 8, 22, 26, and 50 habitable structures are susceptible to flooding from the 5, 10, 25, and 100 year floods, respectively. One (1) employment/service center structure was identified to be flood prone during the 10, 25, and 100 year floods. Based upon the analysis, areas identified as most susceptible to flooding from the 100 year storm include portions of Pinehurst Park, Gulf Gate Woods and Captiva Gardens. These areas are all located in the Lower Elligraw Bayou subbasin. The estimated number of habitual structures susceptible to flooding by subbasin are inventoried in TABLE 1.3.1.a.

SUBBASIN NAME	2-YR	5-YR	10-YA	25-YR	100-YR
LOWER ELLIGRAW BAYOU	0	8	22	· 26	50
UPPER ELLIGRAW BAYOU	0	0	0	0	0
GULF GATE LATERAL	0	0	0	0	0
TOTAL	0	8	22	26	50

HABITABLE STRUCTURES SUBJECT TO FLOODING BY SUBBASIN

TABLE 1.3.1.a.

Since the susceptibility of structure flooding was estimated from interpretation of 1" = 200' and 1" = 30' scale, 1 foot contour aerials, the final determination of structural susceptibility to flooding should be based on actual survey measurements of finished floor elevations.

With respect to roadways, designated arterials within the basin include U.S. 41 and Beneva Road. Segments of Gulf Gate Drive and Palmer Ranch Parkway are located within the Elligraw Bayou basin and are designated collector roads.

Under existing conditions, portions of U.S. 41, Doud Street, Pinehurst Street, Kai Drive, Pine View Circle, Marianna Drive, Biltmore Way, Coventry Way, Biltmore Drive, Hardee Drive, Tuckerstown Drive, Curtiss Avenue, and Antiqua Way were determined to be susceptible to flooding to the extent that they do not meet the adopted FPLOS. The frequency and depth of this flooding for these roads are identified in TABLE 1.3.1.b.

ROAD	2-YR	5-YR	10-YR	25-YR	100-YR
U.S. 41	-	-	1.6'	2.0'	2.4'
Doud Street	-	-	1.4'	1.8'	2.2'
Pinehurst Street	0.4'	0.6'	1.6'	2.2'	3.2'
Kai Drive	-	-	0.6'	1.3'	2.3'
Pine View Circle	-	1.2'	1.4'	1.5'	1.6'
Marianna Drive	0.7'	1.9'	2.1'	2.2'	2.3'
Biltmore Way	-	1.9'	2.1'	2.2'	2.3'
Coventry Way	0.8'	2.0'	2.2'	2.3'	2.4'
Biltmore Drive	_	0.5'	0.7'	0.8'	0.9'
Hardee Drive	0.3'	1.1'	1.3'	1.5'	1.8'
Tuckerstown Drive	0.5'	1.3'	1.5'	1.7'	2.0'
Curtiss Avenue	-	0.2'	0.5'	0.8'	1.3'
Antiqua Place	-	-	0.3'	0.7'	1.3'

EVACUATION/ARTERIAL/COLLECTOR ROAD FPLOS DEFICIENCIES

TABLE 1.3.1.b

1.3.2 WATER QUALITY DEFICIENCIES

Although not finalized, the Sarasota Bay National Estuary Program (SBNEP) has indicated that baywide, the contributions of nutrients and toxins from existing stormwater discharges should be reduced 7% and 27%, respectively.

Since the Elligraw Bayou drainage basin lies within the SBNEP watershed, these baywide pollutant load reduction goals (PLRG's) were utilized as a baseline standard in determining water quality deficiencies. For the parameters of interest to the SBNEP, TABLE 1.3.2

identifies the existing and PLRGs' for the Elligraw Bayou Basin. Existing pollutant loads were determined by applying the Sarasota County Pollutant Loading Model to the Elligraw Bayou.

PARAMETER	POLLUTANT LOAD (in Ibs/yr)				
	Existing	PLRG			
TKN	2,873	2,670			
$NO_2 + NO_3$	558	519			
TSS	251,980	183,945			
Lead	158	115			
Copper	80	58			
Zinc	134	98			
Cadmium	3.8	2.8			

TABLE 1.3.2

1.4 ALTERNATIVE ANALYSES

1.4.1 FLOOD PROTECTION ALTERNATIVES

Three alternative solutions were evaluated to address the existing flood protection level of service deficiencies.

Alternative 1 involved only those conveyance improvements necessary to address downstream restrictions at the Pinehurst Street outfall and at Biltmore Drive to the extent that FPLOS deficiencies could be resolved.

Alternative 2 addressed the same FPLOS deficiencies but took advantage of the reduction in downstream conveyance improvements resulting from the enhancement of available storage capacity in the upper portions of the drainage basin.

Alternative 3 improvements are identical as those proposed under Alternative 2 with addition of a low-flow bleeder at the basin outfall to divert stormwater associated with the 'first-flush' of runoff to the historical Elligraw Bayou swale.

TABLE 1.4.1.a compares the associated 100-year flood elevations for the three (3)

alternatives with those under existing conditions. Similarly, TABLE 1.4.1.b compares the 100-year peak discharge rates of the three (3) alternatives with those under existing conditions. With respect to cost, it is estimated that Alternatives 2 and 3 would be approximately one-third more cost effective than Alternative 1.

Location	Existing Conditions	Alternative No. 1	Alternative No. 2	Alternative No. 3
Upstream of U.S. 41	2.12	2.92	2.38	2.35
Downstream end of Elligraw Bayou Swale	12.69	9.23	9.25	9.40
Upstream of Pinehurst Street	14.24	11.71	11.69	11.74
Upstream end of Elligraw Bayou Swale	14.59	11.84	12.04	12.13
Downstream of Biltmore Drive	14.72	13.28	13.28	13.45
Upstream of Biltmore Drive	15.51	14.12	14.05	14.18
Downstream of Beneva Road	15.5 9	14.63	14.30	14.40
Upstream of Beneva Road	15.66	14.81	16.00	16.00
Upstream of Ballantrae Drive	15.77	15.01	16.03	16.05
Upstream of Palmer Ranch Parkway	15.87	15.37	16.07	16.09
Upstream of S. Curtiss Avenue	16.19	15.63	15.60	15.65
Upstream of N. Curtiss Avenue	16.53	16.16	16.14	16.16

COMPARISON OF 100-YEAR WATER SURFACE ELEVATION (NGVD)

TABLE 1.4.1.a

Location	Existing Conditions	Alternative No. 1	Alternative No. 2	Alternative No. 3
Upstream of U.S. 41	341	528	407	400
Downstream end of Elligraw Bayou Swale	338	85	86	93
Upstream Pinehurst Street	285	52	51	58
Upstream end of Elligraw Bayou Swale	297	53	51	58
Downstream of Biltmore Drive	326	445	321	315
Upstream of Biltmore Drive	247	337	213	209
Downstream of Beneva Road	229	310	190	187
Upstream of Beneva Road	151	202	156	153
Upstream of Ballantrae Drive	118	157	77	80
Upstream of Palmer Ranch Parkway	19	22	19	19
Upstream of S. Curtiss Avenue	47	64	64	62
Upstream of N. Curtiss Avenue	37	48	48	47

COMPARISON OF 100-YEAR DISCHARGE RATES (CFS)

TABLE 1.4.1.b

1.4.2 WATER QUALITY ALTERNATIVES

Opportunities to improve water quality through both improved maintenance and stormwater retrofit were quantified and assessed through application of the Sarasota County Pollutant Loading Model to the Elligraw Bayou drainage basin. Together these proposed water quality improvements constitute a water quality capital improvement program (WQCIP) for the Elligraw Bayou drainage basin. The effectiveness of the WQCIP was evaluated by comparison to the previously identified PLRG's in TABLE 1.3.2. TABLE 1.4.2 compares the pollutant loads resulting from the alternative analyses to the PLRG's for the parameters of interest.

PARAMETER	POLLUTANT LOAD (in Ibs/yr)				
	PLRG	Proposed WQCIP			
TKN	2,670	2,650			
$NO_2 + NO_3$	519	436			
TSS	183,945	198,809			
Lead	115	101			
Copper	58	62			
Zinc	98	112			
Cadmium	2.8	3.3			

TABLE 1.4.2

As indicated in TABLE 1.4.2, with the exception of total suspended solids, TSS, the proposed WQCIP will be effective in meeting the SBNEP baywide PLRGs. However, it is anticipated that the non-quantifiable water quality benefits proposed in association with Alternative 3 of the FPCIP will be effective in further reducing TSS.

1.5 CONCLUSIONS AND RECOMMENDATIONS

With respect to flood protection, significant level of service deficiencies exist within the Lower Elligraw Bayou basin. These level of service deficiencies were fully realized in late June of 1992 when over 18 inches of rainfall fell in a three day period. As such, an immediate need exists to implement a FPCIP to resolve these FPLOS deficiencies.

State Water Policy requires that the Southwest Florida Water Management District establish pollutant load reduction goals for Elligraw Bayou. In addition, the National Estuary Program for Sarasota Bay is expected to reveal specific stormwater pollutant load reduction goals (PLRG's) by the end of the year. Preliminary discussions with the SBNEP have revealed that baywide PLRG's for nitrogen and toxins of 7% and 27%, respectively, are to be proposed for stormwater. It is anticipated that these PLRG's will establish a baseline WQLOS standard for the entire SBNEP watershed which contains the Elligraw Bayou Drainage basin. However, it may be prudent to wait for adoption and implementation of a WQCIP until such PLRG's are formally proposed by SBNEP, adopted by SWFWMD, and assessed within the context of the entire SBNEP Watershed by the Sarasota County Pollutant Loading Model.

Therefore, it is recommended that Sarasota County proceed with the implementation of the FPCIP identified under Alternative No. 3 but wait for final adoption of the PLRG's before proceeding with modification and/or implementation of the proposed WQCIP. Discussions with the Sarasota County Stormwater Environmental Utility and the Southwest Florida Water Management District has yielded a consensus that FPCIP Alternative No. 3 is preferred because it also contains the most significant provisions to enhance water quality. Implementation of this proposed FPCIP and its interim water quality enhancement components are expected to compliment the development and implementation of the subsequent WQCIP. Alternative No. 3 is also considered as cost effective as Alternative 2 and more cost effective than Alternative 1.

2.0 INTRODUCTION

2.1 PURPOSE

The purpose of the Elligraw Bayou Basin Master Plan is to identify Level of Service Deficiencies with respect to flood protection and water quality for the purpose of establishing a Capital Improvement Program and/or basin specific design criteria.

2.2 <u>AUTHORIZATION</u>

This basin Master Plan for Elligraw Bayou was authorized by the Sarasota Board of County Commissioners on 10/22/93 pursuant to purchase order no. 582062. This Basin Master Plan is specifically required pursuant to the Public Facilities Chapter (Stormwater Component) of the Sarasota County Comprehensive Plan.

2.3 COORDINATION WITH FEDERAL, STATE AND LOCAL AGENCIES

This study has been coordinated with the Soil Conservation Service, the Southwest Florida Water Management District (SWFWMD), the Florida Department of Transportation (FDOT), the Florida Department of Environmental Protection (FDEP), the National Estuary Program for Sarasota Bay, the Environmental Protection Agency (EPA) National Pollutant Discharge Elimination System (NPDES) Federal Stormwater Permitting Program, and the Sarasota County Stormwater Environmental Utility.

3.0 BACKGROUND

3.1 HISTORIC FLOODING

EXHIBIT 4 identifies those areas which have historically been susceptible to flooding. Identification of these areas is based upon Depressional and Frequently Flooded SCS soils. Once inundated for significant durations throughout the year (i.e. wet season), these areas have to varying degrees been dredged and filled over the years. However, many of these areas are relatively low and are still susceptible to flooding following heavy rainfall. In all, some fifteen (15) historic flood prone areas are identified on EXHIBIT 4. A brief description and location of these fifteen (15) sites are provided below and a summary of these areas are provided on TABLE 3.1.

- Portion of County drainage/park area north and west of Biltmore Drive and segment of Biltmore Drive from Coventry Drive to Tuckerstown Drive.
- 2. Developed area centered on Pinehurst Street between Nixon Avenue and Wright Avenue.
- Large developed area in Gulf Gate Woods, Unit No. 3 containing northeast segment of Biltmore Drive, southeast segment of Antiqua Drive and portion of Gulf Gate Golf Course with Lake L11-15.
- 4. Excavated pond (L11-17) and surrounding area located in Gulf Gate Woods, Unit No. 3.
- 5. Developed area south of Gulf Gate Drive and Curtiss Avenue intersection, extending southeast to Beneva Road and west to include Gulf Gate Library area.
- 6. Small undeveloped area located east of Beneva Road, north of Palmer Ranch Parkway within Parcel F of Palmer Ranch, AIDA II.
- 7. Developed area in Mira Lago subdivision.
- Large area extending from eastern end of Tuckerstown Drive across Beneva Road into Ballantrae Condominium including forested areas located on north and south sides of Ballantrae Drive.
- 9. Developed area in the northwest portion of the Country Club of Sarasota subdivision.
- 10. Developed area in Mira Lago subdivision.
- 11. Small area north of, and including Palmer Ranch Parkway.
- 12. Small area contained within stormwater lake servicing the Estates of Prestancia (Parcel B).
- Small area at the headwaters of Elligraw Bayou containing existing ditch between entrances
 to Mira Lago and Marbella subdivision.
- 14. Small developed area in the Estates of Prestancia (Parcel B).
- 15. Large area located in present Prestancia Golf Course.

Historical Flood Prone Area	Area (In acres)	Dredged	Filled (i.e. developed)	Maintained	Existing Flood Prone Area
1	6.09		X	х	х
2	3.96		x		
3	13.68	х	×		X
4	4.37	х	x		x
5	10.64	х	x		
6	2.57		x		
7	5.41		X		
8	22.79	X	X	x	X
9	2.65		X		
10	1.86		X		
11	3.15	x	x	x	x
12	1.97	x			Х
13	4.13	X		X	Х
14	2.17		X		
15	7.54		x		

SUMMARY OF HISTORICAL FLOOD PRONE AREAS

TABLE 3.1

3.2 PRIOR STUDIES

The Elligraw Bayou drainage basin has been the subject of several authoritative studies. While most of these studies have dealt primarily with flood protection issues such as drainage and flood control, the most recent emphasis has been on water quality.

With respect to flood protection, the most authoritative studies include the 1969 Flood Control Study prepared by Smally, Wellford and Nalven, Inc. which was adopted by the Sarasota Board of County Commissioners pursuant to Resolution No. 70-110 and the 1993 Flood Plain Management Study performed by the United States Department of Agriculture Soil Conservation Service.

Recent water quality studies which considered the Elligraw Bayou basin include those provided as part of the 1992 Sarasota Bay - *Framework for Action* prepared by the National Estuary Program and Sarasota County's National Pollution Discharge Elimination System (NPDES) permit application.

A list of the prior studies which were obtained and reviewed for the Elligraw Bayou Basin Master Plan are provided below:

May 1959 - State of Florida, State Road Department Drainage Map

Elligraw Bayou drained 556 acres (upstream of 41) (3) 36" Concrete Pipes at U.S. 41

September 1961 - Engineering Report

Basin Status: undeveloped with $\pm 1/6$ in planning stage Structure at U.S. 41 was reportedly undersized Main drainage way was reportedly inadequate and almost invisible at U.S. 41

<u>August 1969 - Elligraw Bayou Basin Flood Control Study</u> Elligraw Bayou drained 675 acres (1.05 SM) at U.S. 41 Design Discharge = 472 cfs

June 1973 - Flood Plain Report

Elligraw Bayou drained 1,152 acres (1.80 SM) IRF Discharge = 220 cfs SPF Discharge = 300 cfs IRF Elevation @ U.S. 41 = 1.3/1.6 NGVD SPF Elevation @ U.S. 41 = 1.3/1.9 NGVD Low Chord Elevation = 6.6 NGVD Low Bridge Approach Elevation = 10.5 NGVD

March 1987 Sarasota County - Stormwater Master Plan

Elligraw Bayou contained as part of Gulf Gate Canal drainage subbasin 0502 of 659 acres (1.03 SM). Subbasin 0502 actually contains both the Elligraw Bayou basin and the Holiday Bayou basin.

Flooding reported in the area of its headwaters.

Modeling of 25-year design storm indicated that flooding does not pose a threat to the welfare of the public.

Design Discharge = 168 cfs

2 - 12' x 10' Boxes @ U.S. 41

3 - 8' x 8' boxes at Beneva Road

50% developed (50% residential, and 50% undeveloped)

August 1988 - Florida Non-point Source Assessment

Elligraw Bayou given a MODERATE water quality rating by FDEP. Primary poor water quality source identified as urbanization. Associated pollutants suspected is habitat alteration.

April 1993 - Flood Plain Management Study

Elligraw Bayou Drained 640 acres (1.00 SM)					
Design Flows:	Q_2	=	243 cfs	Q ₂₅	= 536 cfs
	Q_5	=	369 cfs	Q ₅₀	= 621 cfs
	Q ₁₀	=	452 cfs	Q ₁₀₀	= 706 cfs

1992 - Framework for Action - Sarasota Bay National Estuary Program

*Elligraw Bayou Drainage Area = 3,800 acres

Existing Loadings

Total Runoff = 36.96 inches Total Phosphorus = 11,390 lb Total Nitrogen = 57,290 lb Lead = 2,040 lb Zinc = 2,100 lb

Future Loadings

Total Runoff = 44.41 inches Total Phosphorus = 15,560 lb Total Nitrogen = 74,830 lb Lead = 3,290 lb Zinc = 3,010 lb * Study delineation of encompasses Elligraw Bayou drainage basin, Holiday Bayou drainage basin, Clower Creek drainage basin, Matheny Creek drainage basin, and headwaters of Catfish Creek drainage basin.

<u>1993 - National Pollution Discharge Elimination System (NPDES) Permit Application for Sarasota</u> <u>County</u>

*Clower Creek Drainage Area = 1,004 acres (1.57 SM)

Existing Statistics

1990 Population - 3,958

Dwelling Units - 2,336

EXISTING LAND USE ALLOCATIONS						
Land Use Category	Area (in acres)	BMP Coverage (%)				
Forest/Open	326	0%				
LDSF Residential	33	0%				
MDSF Residential/Instit.	256	25%				
HDSF/MF Residential	200	1%				
Commercial CBD	152	75%				
Office/Light Industrial	10	0%				
Water	27	0%				

FUTURE LAND USE ALLOCATIONS								
Land Use Category	Area (in acres)	BMP Coverage (%)						
Forest/Open	179	0%						
LDSF Residential	40	0%						
MDSF Residential/Instit.	314	38%						
HDSF/MF Residential	245	19%						
Commercial/CBD	186	79%						
Office/Light Industrial	12	18%						
Water	27	0%						

Pollutant Loading Parameter	Loading For Stormwater/BF (Ib/yr)	Annual Yield Rate (Ibs/acre/yr)	Annual EMC's (Runoff = 23") (mg/L)
BOD	48,900	50	9.1
COD	318,500	320	60
TSS	583,500	580	110
TDS	860,800	860	100
ТР	1,500	1.5	0.3
DP	690	0.7	0.1
TKN	6,600	6.6	1.1
NO2 & NO3	1,400	1.4	0.2
PB	330	0.3	0.06
CU	150	0.1	0.03
ZN	340	0.3	0.06
CD	10	0.007	0.001

* Study delineation encompasses Elligraw Bayou, Clower Creek, and Holiday Bayou drainage basins.

.

3.3 PREVIOUS IMPROVEMENTS

Two primary conveyance facilities exist within the Elligraw Bayou basin. These facilities are the Elligraw Bayou Main and the Gulf Gate Lateral.

The Elligraw Bayou Main consists of $\pm 1,120^{\circ}$ of an underground pipe at its downstream end and a man-made canal and ditch in it mid and upper reaches, respectively. In all, this system extends from U.S. 41 to the entrance of Marbella subdivision located at the easterly headwaters of the basin. Three water level control weirs are located in the Elligraw Bayou main. The first weir is located approximately 1,120 feet upstream of U.S. 41. The second weir is located approximately 500 feet upstream of Biltmore Drive. These two weirs were constructed in the early 1970's by the developer of the Gulf Gate Woods subdivision. The third weir was installed immediately downstream of Beneva Road in 1981 as part of the of Beneva Road widening project.

The Gulf Gate Lateral is a system of man-made lakes and ditches which extends from its confluence with Elligraw Bayou Main to Gulf Gate Drive. This lateral has one water level control weir located approximately 500' upstream of it's confluence with the Elligraw Bayou main.

A chronology of previous improvements within the Elligraw Bayou basin is provided below:

<u>Date</u>

5/59 At this time FDOT identified the following on drainage maps prepared in association with U.S. 41:

- 3 36" RCP at Elligraw Bayou Main U.S. 41 (HW = 6.3 NGVD)
- At future Beneva Road Crossing (HW = 15.3 NGVD)
- At future Marbella Entrance (HW = 16.3 NGVD)
- 8/69 By August of 1969, SWN study identified the following in their Flood Control Study for the Elligraw Bayou basin:
 - 2 12' x 8' Box Culverts at U.S. 41
 - 3 8' x 8' Box Culverts at Beneva Road
- 07/03/70 Lower Elligraw Bayou Main constructed to present configuration from Pinehurst Street to Curtiss Avenue by Gulf Gate Woods development. Gulf Gate Lateral constructed to present configuration from Curtiss Avenue to Gulf Gate Drive by Gulf Gate Woods development. (Master Drainage Layout Plan for Gulf Gate Woods prepared by Bennett and Bishop, Inc. for First Development Corporation of America).

- 03/7140" x 65" CMP outfall culvert constructed from U.S. 41 to Dale Avenue by Gulf GateWoods development.(Construction Plans for Gulf Gate Woods prepared by
Bennett and Bishop, Inc. for First Development Corporation of America).
- 01/80 Upper EllIgraw Bayou Main constructed to present configuration between Beneva Road and Ballantrae Drive by Ballantrae Development. (Preliminary Drainage Plan for Ballantrae Condominium, Phase 1 prepared by Smally, Wellford and Nalven, inc.)
- 06/81 Upper Elligraw Bayou Main constructed to present configuration between Ballantrae Drive and Palmer Ranch. (Plans for Ballantrae, a Condominium, Phase 2 prepared by Smally, Wellford and Nalven, Inc.)
- 11/81 Existing Beneva Road 8' x 8' Box Culverts extended. Water level control structure constructed just downstream of Beneva Road in Elligraw Bayou Main (Control Water Elevation = 12.0 NGVD). (Beneva Road Construction Plans prepared by Glace & Radcliffe, Inc. for the Sarasota Board of County Commissioners.)
- 03/89 Upper Elligraw Bayou Main constructed to present configuration from Ballantrae Condominium to Marbella subdivision entrance. (Plans for Elligraw Bayou Improvements prepared by Smally, Wellford and Nalven, Inc. for Palmer Venture, Inc.)

4.0 INVESTIGATION METHODS

4.1 DATA SOURCES

4.1.1 FLOOD PROTECTION

In addition to the prior studies previously inventoried, numerous data sources were reviewed in the initial phases of the Elligraw Bayou Basin Master Plan. These other data sources included a review of Sarasota County's files for developments located within the study area. A complete list of the development plans and correspondence which were reviewed is provided in the bibliography. Other data sources include pictures of flooded areas (refer to APPENDIX D), SWFWMD 1-foot contour aerials, interviews with residents and County maintenance personnel, and review of Sarasota County citizen's drainage complaint forms.

4.1.2 WATER QUALITY

In addition to the prior studies previously inventoried in Section 3.2, a detailed pollutant loading analysis for the Elligraw Bayou drainage basin was conducted using the Watershed Management Model developed for the Sarasota County NPDES permit application by Camp, Dresser and McKee. The land use maps developed in association with the NPDES permit application were reviewed in addition to 1990 aerials, plat maps and zoning maps.

4.2 COMPUTER MODELING

4.2.1 FLOOD ANALYSIS

In order to accurately and economically assess the implications of basin modifications or improvements, it is first necessary to develop a computer model which can predict the effects of actual or observed flood events with a reasonable degree of accuracy.

4.2.1.1 METHODOLOGY

Initial computer simulations where performed using the Advanced Interconnected Pond Routing (AdICPR) program. This program utilizes the SCS unit hydrograph methodology and a hydrodynamic routing method for the hydrologic and hydraulic components of the analyses, respectively. The AdICPR program is well suited to complex coastal watersheds such as Elligraw Bayou and was used to conduct a detailed assessment of the basin. An overview of the modeling methodology is provided below.

- <u>Depression Storage:</u> The effects of depression storage and the relationship of contributing area to time were accounted for by routing hydrograph flows through existing stormwater lakes and major depressions (wetlands). As such, a unit hydrograph peak rate factor of 256 was used.
- Watershed Retention:Rainfall losses were determined by computing a weighted
CN for the pervious and non-directly connected
impervious areas. The portion of the basin area which is
directly connected impervious was specified and is
considered independently by the model. The retention
storage, S was computed by the following relationship:

$$S = 1000 - 10$$
 Eq. 1

Initial abstraction, la were computed as 20% of the watershed retention storage, S:

Employing Eq. 1 and Eq. 2, rainfall volumes (P) were converted to runoff volumes (R) by the following standard SCS equation:

$$R = \frac{(P-0.2S)^2}{P + 0.8S}$$
 Eq. 3

<u>Time of Concentration</u>: The time of concentration was computed using the Kinematic Wave Formula, consistent with the guidelines prescribed by the SCS in Technical Release No. 55.

<u>Design Storm Event(s)</u>: Consistent with the Rules of the Southwest Florida Water Management District, the following design 24-hour duration rainfall volumes were used:

Frequency	<u>Volume</u>	
2-year	4	.25"
5-year	6	.00"
10-year	7.00"	
25-year	8.00*	
100-year	10.00*	

The SCS - TYPE II MODIFIED 24-hour, dimensionless rainfall distribution was used.

Initial simulations were conducted utilizing only the largest design storm (i.e. 100year, 24-hour) to assure that the model input adequately accounted for both watershed storage and their attenuation effects on discharge rates. Numerous trial and error simulations were required to accomplish this objective. Simulations were then completed for the 2-year, 5-year, 10-years, and 25-year design storms.

4.2.1.2 <u>RESULTS</u>

The subbasin hydrologic inventory is provided in APPENDIX A along with the node (or junction)/reach (or link) schematic developed for the AdICPR model. The computer modeling input/output results are contained in APPENDIX B. A Summary of Existing Discharges for the study reaches is provided herein as TABLE 4.2.1.2. A Summary of Existing Surface Water Elevations for the study reaches are provided in TABLES 4.2.1.2.a through 4.2.1.2.c. These surface water profiles are also presented graphically on EXHIBITS 4.2.1.2.a through 4.2.1.2.c.

The results of the 1993 Flood Plain Management Study (FPMS) for Elligraw Bayou are compared with those of the Basin Master Plan (BMP) in TABLE 4.2.1.2.d. This comparison reveals that significant discrepancies exist with respect to discharge

rates and water surface elevations throughout the basin. Both the discharge rates and base flood elevations generated by the BMP analyses are lower than those established by the FPMS in the lower portions of the Elligraw Bayou watershed. However, this is attributable to the fact that the contributing area was over estimated by the FPMS.

The hydrologic analysis for the FPMS indicated a total basin area of 640 acres as opposed to 460 acres determined for the BMP. In general, the base flood elevations (BFEs) determined by the BMP are based upon more accurate information and more scientifically and technically correct hydrologic and hydraulic methodologies.

It is anticipated that the final base flood elevations determined by the BMP would provide the supporting data report for revisions to the effective base flood elevations for the Elligraw Bayou basin, as well as providing base flood elevations for un-numbered 'A' Zones and previously unstudied areas of watershed.

SUMMARY	OF	EXISTING	DISCHARGES	(in	cfs)
---------	----	----------	------------	-----	------

NODE I.D.	LOCATION	2-YR Q	5-YR Q	10-YR Q	25-YR Q	100-YR Q
LOWER ELL	LOWER ELLIGRAW BAYOU MAIN					
101	U.S. 41 (U.S.)	101	128	180	237	341
102	±200' Upstream of U.S. 41	98	127	179	235	338
104	Downstream End of Swale	27	67	143	201	305
106	Pinehurst Street (D.S.)	27	67	144	201	306
108	Pinehurst Street (U.S.)	17	59	137	189	285
110	Upstream End of Swale	17	59	140	195	297
120	WLCS EB-1 (U.S.)	77	115	171	222	326
130	Bispham Road (U.S.)	64	102	137	173	247
140	WLCS EB-2 (U.S.)	62	97	130	162	229
UPPER ELL	IGRAW BAYOU MAIN					
150	WLCS EB-3 (U.S.)	53	79	93	113	151
151	Beneva Road (U.S.)	89	127	141	144	151
157	Ballantrae Drive (D.S.)	61	84	102	115	147
158	Ballantrae Drive (U.S.)	44	60	78	93	118
159	631' Upstream of Ballantrae Drive	57	77	92	103	138
161	1,181' Upstream of Ballantrae Drive	82	131	148	168	184
162	Palmer Ranch Parkway (D.S.)	33	41	64	63	75
163	Palmer Ranch Parkway (U.S.)	6	13	17	19	19
164	Mira Lago Entrance (D.S.)	6	10	12	14	18
165	Mira Lago Entrance (U.S.)	1	2	2	3	5
GULF GAT						
200	GGL-1 (U.S.)	16	23	31	37	47
210	S. Curtiss Avenue (U.S.)	18	25	27	30	37
220	N. Curtiss Avenue (U.S.)	7	8	8	9	13

TABLE 4.2.1.2

w. 1910

LOWER ELLIGRAW BAYOU MAIN (CANAL 11-209 & L11-18)
SUMMARY OF EXISTING WATER SURFACE ELEVATIONS

NODE	LOCATION	2-YR	5-YR	10-YR	25-YR	100-YR	JUNE 1992
100	U.S. 41 (D.S.)	1.50	1.50	1.50	1.50	1.50	
101	U.S. 41 (U.S.)	1.56	1.59	1.68	1.80	2.12	5.69
102	±200 Upstream of U.S. 41	6.18	8.95	11.88	12.25	12.69	Photo
104	Downstream End of Swale	9.20	9.47	11.92	12.31	12.78	
106	Pinehurst Street (D.S.)	9.90	10.86	12.63	13.29	14.24	
108	Pinehurst Street (U.S.)	11.47	11.69	12.65	13.31	14.26	
110	Upstream End of Swale	11.49	11.86	12.91	13.59	14.59	
120	WLCS EB-1 (U.S.)	13.11	14.30	14.47	14.57	14.72	
130	Biltmore Road (U.S.)	13.98	14.81	15.02	15.20	15.51	
140	WLCS EB-2 (U.S.)	14.05	14.89	15.09	15.28	15.59	

TABLE 4.2.1.2.a

.

UPPER ELLIGRAW BAYOU MAIN (CANAL 11-208) SUMMARY OF EXISTING WATER SURFACE ELEVATIONS

NODE	LOCATION	2-YR	5-YR	10-YR	25-YR	100-YR	JUNE 1992
150	WLCS EL-3 (U.S.)	14.0 9	14.92	15.13	15.32	15.64	
151	Beneva Road (U.S.)	14.09	14.92	15.14	15.32	15.66	14.02
157	Bailantrae Drive (D.S.)	14.11	14.94	15.14	15.39	15.70	
158	Ballantrae Drive (U.S.)	14.11	14.96	15.19	15.40	15.77	
159	631 Ft. Upstream of Ballantrae Drive	14.11	14.95	15.19	15.42	15.77	
161	1181 Ft. Upstream of Ballantrae Drive	14.13	14.97	15.20	15.43	15.80	
162	Palmer Ranch Parkway (D.S.)	14.14	14.97	15.24	15.44	15.80	
163	Palmer Ranch Parkway (U.S.)	14.28	15.04	15.27	15.48	15.87	14.61
164	Mira Lago Entrance (D.S.)	15.63	15.78	15.90	16.01	16.17	
165	Mira Lago Entrance (U.S.)	15.63	15.79	15.91	16.02	16.18	

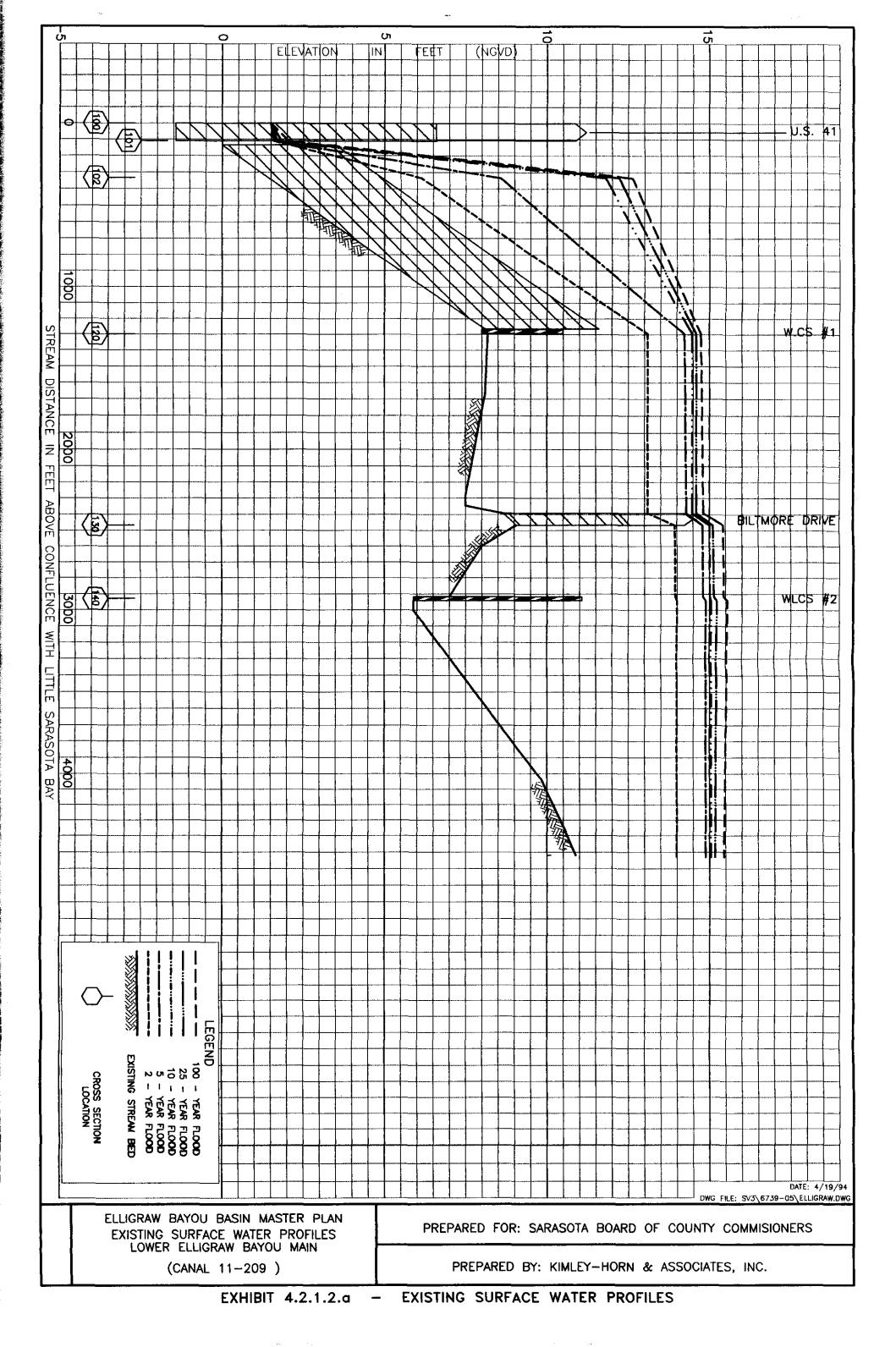
TABLE 4.2.1.2.b

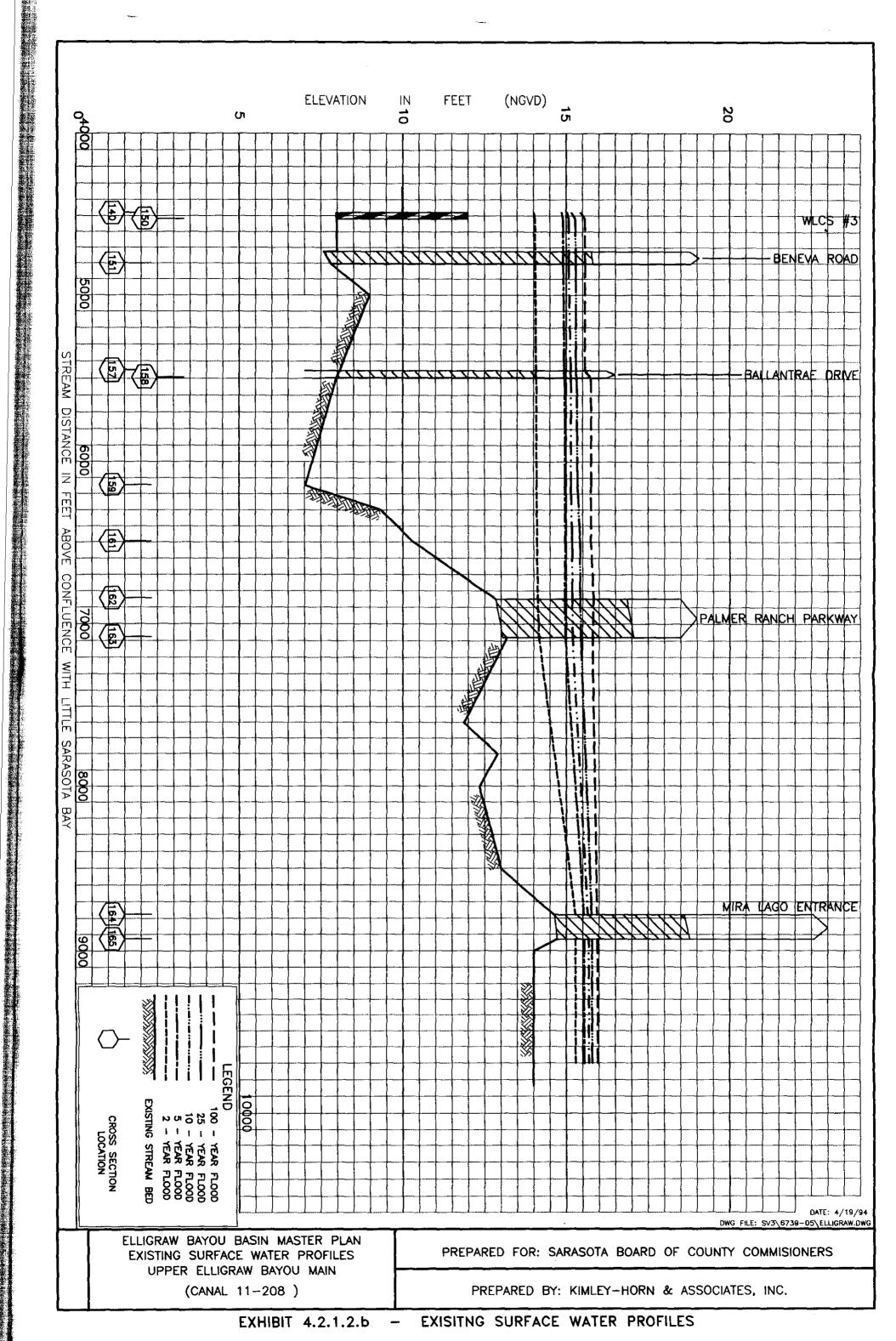
GULF GATE LATERAL (CANAL 11-210) SUMMARY OF EXISTING WATER SURFACE ELEVATIONS

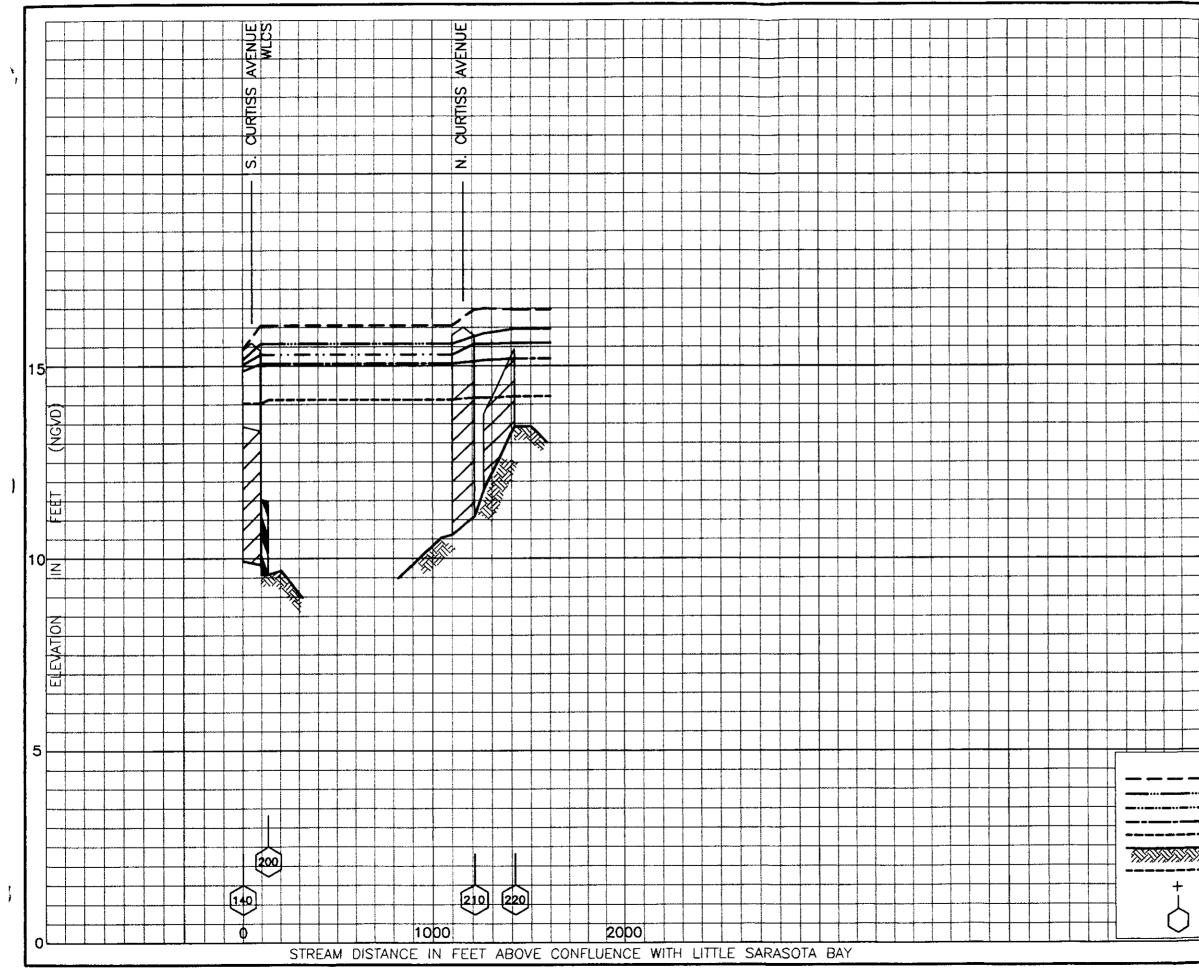
NODE	LOCATION	2-YR	5-YR	10-YR	25-YR	100-YR	JUNE 1992
140	WLCS GGL-1 (D.S.)	14.05	14.89	15.09	15.28	15.59	
200	WLCS GGL-1 (U.S.)	14.14	15.06	15.37	15.67	16.19	
210	Curtis Avenue (D.S.)	14.19	15.15	15.53	15.90	16.53	
220	Curtis Avenue (U.S.)	14.22	15.19	15.58	15.97	16.50	

TABLE 4.2.1.2.c

	2-YR		5-	5-YR 10-Y		YR 25-YR		YR	100-YR	
······	FPMS	ВМР	FPMS	BMP	FPMS	BMP	FPMS	BMP	FPMS	BMP
U.S. 41	7.1	6.2	7.3	9.0	7.4	11.9	7.7	12.3	8.2	12.7
WLCS EB-1	14.9	13.1	15.2	14.3	15.3	14.5	15.3	14.6	15.5	14.7
BILTMORE DRIVE	14.9	14.0	15.3	14.8	15.4	15.0	15.4	15.2	15.6	15.5
WLCS EB-2	15.0	14.1	15.4	14.9	15.5	15.1	15.5	15.3	15.7	15.6
WLCS EB-3	15.2	14.1	15.6	14.9	15.7	15.1	15.8	15.3	16.1	15.6
BENEVA ROAD	15.2	14.1	15.6	14.9	15.7	15.1	15.9	15.3	16.1	15.7
BALLANTRAE DRIVE	15.2	14.1	15.7	15.0	15.9	15.2	16.2	15.4	16.4	15.8
PALMER RANCH PARKWAY	15.4	14.3	16.0	15.0	16.3	15.3	16.7	15.5	17.4	15.9
MIRA LAGO DRIVE	16.8	15.6	17.4	15.8	17.7	15.9	18.1	16.0	18.8	16.2
CURTIS AVE. (SOUTH)	15.7	14.1	15.7	15.1	15.7	15.4	15.7	15.7	15.8	16.2
CURTIS AVE. (NORTH)	16.2	14.2	16.2	15.2	16.2	15.5	16.2	15.9	16.4	16.5
GOLF COURSE LAKE	16.3	14.2	16.3	15.2	16.3	15.6	16.4	16.0	16.7	16.5


COMPARISON OF WATER SURFACE ELEVATIONS (NGVD)


TABLE 4.2.1.2.d


.

FPMS - Floodplain Management Study

BMP - Basin Master Plan

an an a state in the state of the

DMC FILE: SV1\6739-05\00LFGATE.DWC	PREPARED FOR: SARASOTA BOARD OF COUNTY COMMISIONERS	PREPARED BY: KIMLEY-HORN & ASSOCIATES, INC.	
LEGEND 	ELLIGRAW BAYOU BASIN MASTER PLAN	GULF GATE LATERAL (CANAL 11-210)	

EXHIBIT 4.2.1.2.c

4.2.2 POLLUTANT LOADING ANALYSIS

4.2.2.1 METHODOLOGY

For consistency, the Watershed Management Model Version 3.10 (WMM) developed by Camp, Dresser & McKee (CDM) for the Sarasota County NPDES permit was used for the pollutant loading analyses. The WMM is a spreadsheet model which estimates seasonal and annual nonpoint source loads using direct runoff based upon event mean concentrations (EMC's) and runoff volumes (CDM, 1992). The model requires the identification and input of land use and best management practices information for each subbasin to be analyzed. This information is inventoried in APPENDIX C for all 34 existing subbasins.

The features of the WMM spreadsheet model are:

- Use of the Lotus 1-2-3 spreadsheet program.
- Estimates annual runoff pollutant load for nutrients, heavy metals, oxygen demand, and solids based upon EMC's, land use, percent impervious surface, and annual rainfall.
- Estimates of stormwater treatment or load reduction through partial or full scale implementation of on site or regional Best Management Practices (BMP's).

While the WMM projects the average annual pollutant loads in a watershed, it is limited in its ability to estimate these loads. It is not appropriate to use the model for analysis of short-term water quality impacts (CDM, 1992). In addition, pollutant loads resulting from incremental development of a watershed will not be appropriately determined by the model (CDM, 1992).

4.2.2.2 <u>RESULTS</u>

Using the WMM spreadsheet model, existing pollutant loads were determined for the Elligraw Bayou watershed. The model estimates pollutant loads in a watershed as the product of runoff and mean concentration in that runoff. For a given pollutant, both mean concentration and runoff will vary by land use.

A total of fifteen (15) land use categories can be used in the model (12 listed and

3 optional categories). The twelve listed categories are:

- Forest/Open
- Agricultural/Pasture

Residential

- Cropland •
- Medium Density Single
 Family (MDSF) Residential
- High Density Single Family/Multi-Family (HDSF/MF) Residential

Low Density Single Family (LDSF)

- Commercial/Central Business District (CBD)
- Office/Light Industrial
- Heavy Industrial
 Water
 - Wetlands •
- The Elligraw Bayou watershed covers an area of approximately 460 acres with three (3) major subbasins, as depicted on EXHIBIT 1. TABLE 4.2.2.2.a summarizes the total acreages for each land use type by basin in Elligraw Bayou. The modeling results for the three major subbasins are provided in APPENDIX C.

Roads

The most predominant land use in the Elligraw Bayou watershed is MDSF Residential which comprises approximately 53% of the total acreage as shown in FIGURE 4.2.2.2.a. All together, residential areas comprise approximately 72% of the land use in the Elligraw Bayou watershed. Open spaces (i.e. wetlands, water, and open/forest) comprise approximately 18% of the watershed.

Estimated gross pollutant loads for the Elligraw Bayou watershed are summarized by parameter in FIGURE 4.2.2.2.b. Gross pollutant loads and unit loading rates were determined by subbasin and parameter and are summarized in TABLE 4.2.2.2.b. In addition, results to the pollutant loading analyses for the three primary subbasins in the Elligraw Bayou basins are provided in APPENDIX C.

Unit loading rates determined for each parameter in the three major subbasins generally varied by less than 15% (TABLE 4.2.2.2.b). This relatively low variation in unit loading rates can be attributed to residential land use comprising greater than 50% of the total land use in each of the three basins. The unit loading rates for nutrients (total P and nitrate + nitrite) and total lead varied by greater than 15% in the Elligraw Bayou watershed. Unit loading rates for nutrients were relatively

higher in Subbasin 1 where residential land use is greater than 90% of the total area of that subbasin. The higher loading rates in nutrients are believed to result from fertilizer application as well as from landscape maintenance and decaying vegetation. Subbasin 3, which contains 21% commercial and industrial land use, had a greater unit loading rate of total lead. The total lead is believed to be attributed to runoff containing contributions from automobile emissions. Total suspended solids and total dissolved solids had the most uniform unit loading rates varying by $\leq 2\%$.

Overall, the highest gross pollutant loads were associated with the largest subbasins (TABLE 4.2.2.2.b). Subbasins 1 and 2 contributed to greater than 80% of the total pollutant load in the Elligraw Bayou watershed. Interestingly, residential land use for these two subbasins makes up approximately 63% of the area in the entire watershed.

As a result of existing mitigative features in the Eiligraw Bayou watershed, gross pollutant loadings are reduced prior to their introduction into the surface water (FIGURE 4.2.2.2.b). Approximately 36% of the Elligraw Bayou watershed is treated through Best Management Practices (BMP's) with an average efficiency of 20% (TABLE 4.2.2.2.c). The two BMP's utilized in the Elligraw Bayous watershed are retention and wet detention (TABLE 4.2.2.2.d). Subbasin 1 utilized only retention as a means of treating stormwater, while BMP's were assumed ineffective Subbasin 3. In subbasin 2, stormwater is treated using a combination of both retention and wet detention.

TABLE 4.2.2.2.d shows the removal of pollutants through the use of BMP's under existing conditions. In general, approximately 5% to 29% of the pollutant load is removed by the treatment systems presently in place in the Elligraw Bayou watershed. As expected, removal of the TDS load was the lowest for the watershed at approximately 5%.

Subbasin 3 had the lowest pollutant removal of the three basins because no effective BMP coverage was assumed. Subbasin 1 has a BMP coverage of only

3% resulting in a net removal of less than 5% of the pollutant load. The highest pollutant removal is estimated for subbasin 2 where 79% of the runoff is treated. The resulting loadings for this basin are reduced by an average of approximately 40%.

Pollutant load reductions for the Elligraw Bayou watershed are summarized in TABLE 4.2.2.2.d. In addition, net loadings are graphically depicted by parameter for the Elligraw Bayou watershed in FIGURE 4.2.2.2.b.

	1	Basin No. 2	3	Tota
Number of Sub-basins	7	24	3	34
Land Use Type (Acres):				
Forest/Open	0	37	18	55
Agricultural/Pasture	0	0	0	0
Cropland	0	0	0	0
LDSF Residential	0	0	0	0
MDSF Residential	165	46	32	243
HDSF/MF Residential	2	78	9	88
Commercial/CBD	12	0	1	13
Office/Light Industrial	0	2	15	17
Heavy Industrial	0	0	0	0
Water	0	3	0	3
Wetlands	0	25	0	25
Roads	0	15	2	16
Total	178	205	77	460

TABLE 4.2.2.2.a LAND USES IN ELLIGRAW BAYOU WATERSHED UNDER EXISTING CONDITIONS.

BASIN IN THE ELLIGRAW BAYOU WATERSHED.							
	1	Basin No. 2	3	Total			
Drainage Ar ea (acres) Runoff (ac re-ft/yr)	178 360	205 405	77 158	460 924			
Gross Poliutant Loads (ibs/yr)							
Biochemical Oxygen Demand Chemical Oxygen Demand Total Suspended Solids Total Dissolved Solids Total Phosphorus Dissolved Phosphorus Total Kjeldahl Nitrogen Nitrate + Nitrite Total Lead Total Lead Total Copper Total Zinc Total Cadmium	10,452 78,807 130,878 97,968 351 147 1,412 330 73 44 58 2.0	10,497 83,959 153,368 110,150 311 151 1,306 344 92 48 82 1.9	4,367 31,699 55,641 43,095 114 54 535 108 53 17 32 0.8	25,316 194,465 339,888 251,212 777 351 3,252 782 218 109 172 4.7			
Unit Loading Rates (Ibs/yr-acre) Biochemical Oxygen Demand Chemical Oxygen Demand Total Suspended Solids Total Dissolved Solids Total Phosphorus Dissolved Phosphorus Total Kjeldahl Nitrogen Nitrate + Nitrite Total Lead Total Copper Total Zinc Total Cadmium) 59 443 736 551 2.0 0.8 7.9 1.9 0.4 0.2 0.3 0.01	51 410 749 538 1.5 0.7 6.4 1.7 0.4 0.2 0.4 0.01	57 411 722 559 1.5 0.7 6.9 1.4 0.7 0.2 0.4 0.01	55 423 739 547 1.7 0.8 7.1 1.7 0.5 0.2 0.4 0.01			

TABLE 4.2.2.2.bGROSS POLLUTANT LOADS AND UNIT LOADING RATES PER
BASIN IN THE ELLIGRAW BAYOU WATERSHED.

ESTIMATED TOTAL POLLUTANT LOADING FOR SURFACE RUNOFF IN THE ELLIGRAW BAYOU WATERSHED FOR EXISTING CONDITION, SARASOTA COUNTY, FLORIDA.

Parameters	Gross Load	Removal	Net Lond
Drainage Area (acres)	460	~~~	460
Total Impervious Area (acres)	153		153
Runoff (acre-ft/yr)	924		924
Pollutant Loads (lbs/yr):			
Biochemical Oxygen Demand	25,316	3,054	22,262
Chemical Oxygen Demand	194,465	35,177	159,287
Total Suspended Solids	339,888	87,908	251,980
Total Dissolved Solids	251,212	11,344	239,868
Total Phosphorus	777	135	642
Dissolved Phosphorus	351	98	253
Fotal Kjeldahl Nitrogen	3,252	379	2,873
Nitrate + Nitrite	. 782	224	558
Fotal Lead	218	60	158
Total Copper	109	29	80
Fotal Zinc	172	38	134
Fotal Cadmium	5	. 1	4

.

TABLE 4.2.2.2.c

: · · · ·

.

		Basin No.		
Constituents (lbs/yr)	1	2	3	Total
Biochemical Oxygen Demand	493	2,560	0	3,054
Chemical Oxygen Demand	3,100	32,077	0	35,177
Total Suspended Solids	4,588	83,320	0	87,908
Total Dissolved Solids	5,067	6,278	0	11,344
Total Phosphorus	8	128	0	135
Orthophosphate	5	93	0	98
Total K jeldahl Nitrogen	54	326	0	379
Nitrate + Nitrite	6	218	0	224
Total Lead	12	48	0	60
Total Copper	2	27	0	29
Total Zinc	6	32	. 0	38
Total Cadmium	0.1	0.7	0.0	0.8
Mitigation Type	Retention	Retention Wet Detention	None	

TABLE 4.2.2.2.dPOLLUTANT LOADING REDUCTIONS PER BASIN UTILIZING EXISTING BMP's IN THE ELLIGRAW
BAYOU WATERSHED UNDER EXISTING CONDITIONS.

Removal Efficiencies (CDM, 1992):

Retention 90% efficiency for all constituents

.

Wet Detention

Blochemical Oxygen Demand = 30%; Chemical Oxygen Demand = 50%; Total Suspended Solids = 70%; Total Dissolved Solids = 0%; Total Phosphorus = 50%; Dissolved Phosphorus = 80%; Total Kjeldahl Nitrogen = 30%; Nitrate + Nitrite = 80%; Total Lead = 80%; Total Copper = 75%; Total Zinc = 50%; Total Cadmium = 50%.

.

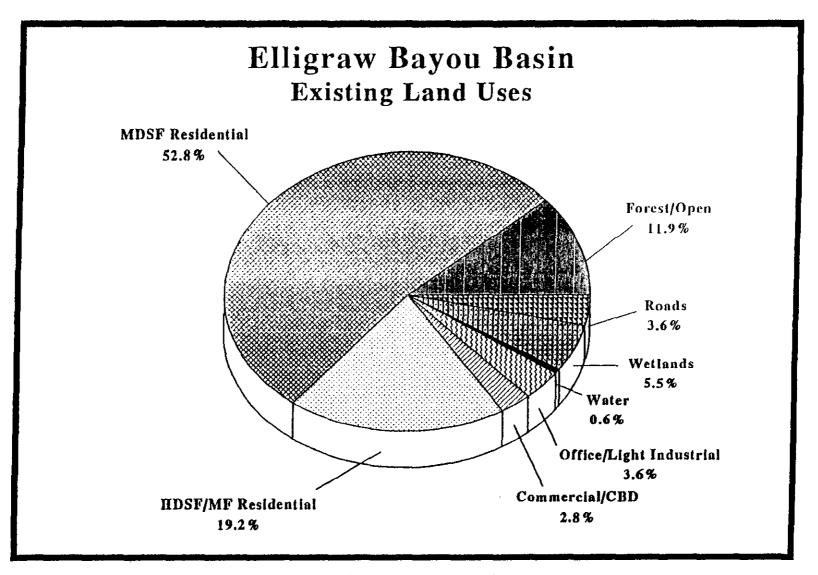


FIGURE 4.2.2.2.a Existing land uses in the Elligraw Bayou watershed.

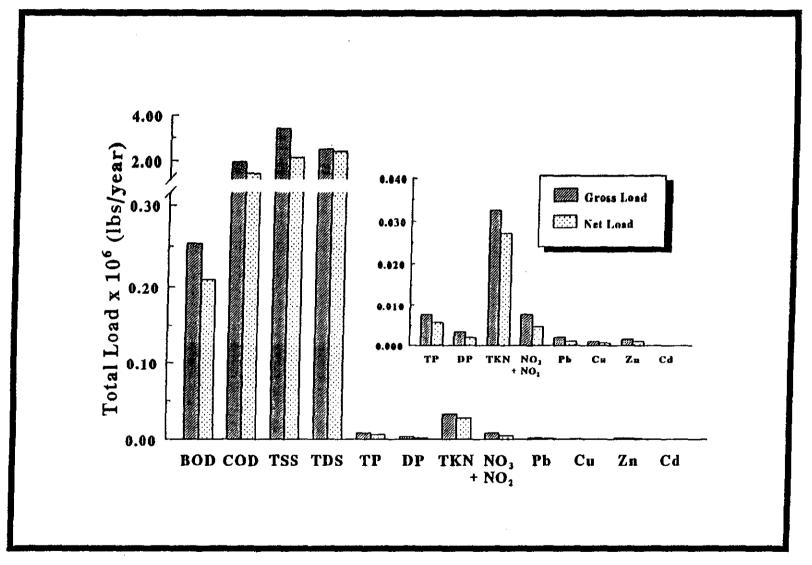


FIGURE 4.2.2.2.b Gross pollutant loading and net pollutant loading for the Elligraw Bayou watershed under existing conditions.

မ အ

5.0 LEVEL OF SERVICE

This section presents water quantity and water quality level of service objectives and deficiencies for the Elligraw Bayou basin.

5.1 LEVEL OF SERVICE OBJECTIVES

5.1.1 FLOOD PROTECTION LEVEL OF SERVICE OBJECTIVES

The flood protection level of service (FPLOS) objectives proposed for the Elligraw Bayou basin are based upon those adopted by Sarasota County Comprehensive Plan Amendment RU-24 and are consistent with that recently developed by the five Florida Water Management Districts and the Florida Department of Environmental Protection (FDEP) during workshops held in 1993 for application throughout the State of Florida.

TABLE 5.1.1 presents the proposed FPLOS for the Elligraw Bayou basin. Flood protection and floodplain management within the Elligraw Bayou basin are also subject to applicable Federal and State regulations as briefly discussed below:

5.1.1.1 FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA)

In September of 1992, the Sarasota Board of County Commissioners adopted regulatory requirements for unincorporated Sarasota County pursuant to Ordinance No. 92-055 relative to floodplain management and minimum finished floor elevations. This Ordinance as adopted qualifies unincorporated Sarasota County for the Federal Flood Insurance Program. The 1969 Elligraw Bayou Flood Study was also adopted by reference. The FEMA floodplain maps are based upon the 100-year storm.

5.1.1.2 STATE OF FLORIDA

The State of Florida is currently proposing amendments to Chapter 17-40, F.A.C., Water Policy requiring the State Water Management Districts to determine flood elevations for priority floodplains. At a minimum, this is to include the 100-year return flood levels.

With respect to flood protection design criteria, the Florida Department of Transportation currently requires control of the 100-year storm pursuant to Chapter 14-86, F.A.C. The Southwest Florida Water Management District currently utilizes the 25-year design storm for flood protection and control but requires compensation for encroachments and displacements of the 100-year floodplain pursuant to Chapters 40D-4 and 40D-40, F.A.C. As previously indicated, the Southwest Florida Water Management District, in cooperation with the other four

39

Florida Water Management Districts and the Florida Department of Environmental Protection, has developed conceptual Flood Protection Level of Service objectives based upon flooding frequency up to and including the 100-year event. This FPLOS was used as a basis for Sarasota County Comprehensive Plan Amendment RU-24 and the Eiligraw Bayou Basin Master Plan.

PROPOSED STORMWATER QUANTITY LEVEL OF SERVICE AND DESIGN CRITERIA

		FERENCE ROADS AND SITES)	LEVEL OF SERVICE (FLOOD INTERVALS ARE IN YEARS)			
I.	I. BUILDINGS: Pre-FIRM or Post-FIRM structures are at or above the flood water elevation.					
	Α.	Emergency shelters and essential services	>100			
	В.	Habitable	100			
	C.	Employment/Service Centers	100			
81.		ACCESS: roads shall be passable during flooding. e edge of pavement is considered passable.	Roadway flooding \leq 6" depth at the			
	Α.	Evacuation	>100			
	В.	Arterials	100			
	C.	Collectors	25			
	D.	Neighborhood	10			

III. The water quantity level of service can be adjusted to allow for greater amounts of flooding of roads and sites if the flooding does not adversely impact public health and safety, natural resources or property. The level of service for improvements to existing roadways may be adjusted based on existing conditions such as adjacent topography and economic impacts.

ACCEPTABLE FLOODING CRITERIA

ROADWAYS	10-YR	25-YR	100-YR
A. Evacuation	NONE	NONE	NONE
B. Arterials	NONE	NONE	6 inches
C. Collectors	NONE	6 inches	9 inches
D. Neighborhood	6 inches	9 inches	12 inches

TABLE 5.1.1

5.1.2 WATER QUALITY LEVEL OF SERVICE OBJECTIVES

Currently, water quality is presumed to satisfy level of service standards if the runoff from the first inch of rainfall is treated through stormwater retention or detention facilities designed and constructed in accordance with accepted criteria. This level of service criteria is only applicable to new development. In the case of the Elligraw Bayou basin, a significant portion of the watershed has previously been developed without implementation of any stormwater treatment methods. In addition, the entire basin is essentially developed. Therefore, different level of service objectives may be appropriate in order to improve or even maintain water quality.

For guidance in establishing more appropriate and site specific water quality level of service objectives for the Elligraw Bayou basin, four developing programs/policies were investigated. These include the Sarasota County National Pollution Discharge Elimination System (NPDES) permit program, the National Estuary Program for Sarasota Bay, the currently evolving Florida State Water Policy, and the Florida Department of Environmental Protection's Non-point Source Assessment. A brief description of each of these four water quality programs is provided below:

5.1.2.1 SARASOTA COUNTY'S NATIONAL POLLUTION DISCHARGE ELIMINATION SYSTEM (NPDES)

In 1987 the "Federal Water Pollution Control Act", U.S. Public Law 92-500, was amended to stipulate that the existing NPDES permit program also applies to stormwater runoff. In 1990 the Federal Environmental Protection Agency issued regulations for implementation of the amendment. These regulations generally require that the impact of urban development on water quality be reduced to the "maximum extent practical". Specifically, these regulations require the preparation of an extensive baseline inventory of water quality at certain stormwater discharge points including ditches, paved channels, and man-made canals that discharge into the Waters of the United States, as well as development of a water quality management plan that will meet federal standards.

Sarasota County is required to obtain a NPDES Permit for the discharge of stormwater into Waters of the United States. In July 1993, unincorporated Sarasota County in cooperation with the incorporated municipalities (i.e. City of Sarasota, City of Venice, City of North Port, City of Longboat Key) and the Florida Department of Transportation, submitted a comprehensive stormwater quality management program (permit application) to the U.S. Environmental Protection

Agency.

Sarasota County is scheduled to receive a NPDES permit from the Federal Environmental Protection Agency in July of 1994. This permit will stipulate what measures are to be implemented to provide reasonable assurance that impacts of existing and future urban development on water quality will be reduced to the "maximum extent possible". It is expected that the permit will stipulate specific pollutant load reduction goals.

5.1.2.2 NATIONAL ESTUARY PROGRAM FOR SARASOTA BAY

In July of 1988 Sarasota Bay was selected by the U.S. Environmental Protection Agency for inclusion in the National Estuary Program. The National Estuary Program brings together knowledge from citizen and technical advisory groups, governmental agencies and staff, and elected officials to promote bay protection and enhancement. On June 26, 1989 the Sarasota Bay Program was officially initiated with the signing of a five-year interagency agreement between local, state and federal government agencies. This agreement specified that the Program would produce three major documents: The *State of the Bay Report* in 1990, the *Framework for Action* in 1992 and the *Comprehensive Conservation and Management Plan* in 1994.

Goals identified as part of the Sarasota Bay Program which are relevant to the subject study include:

- Improve water transparency
- Reduce the quantity and improve the quality of stormwater runoff

The publication of the *Framework for Action* in 1992 identified water quality management strategies relative to stormwater which essentially proposed developing density restrictions/cluster development strategies to limit the amount of new impervious area, and thus runoff, in the watershed.

Other management strategies noted but not investigated by NEP included:

- Restoration of channelized areas.
- Retrofitting existing development with stormwater BMP's.

To date, the Sarasota Bay Program has not established a method for evaluating the effectiveness of watershed load reductions on the achievement of Sarasota Bay

Program goals. Therefore the *Framework for Action* does not provide "target" reductions or a basis for recommending one loading reduction alternative over another. However, based upon discussions with Sarasota County and the National Estuary Program technical staff, it is anticipated that the *Comprehensive Conservation and Management Plan* scheduled for publication in 1994 will recommend target watershed pollutant load reduction goals.

In a letter to the Sarasota County Stormwater Environmental Utility Advisory Committee from the Sarasota Bay National Estuary Program Director dated June 6, 1994, the following baywide Pollutant Load Reduction Goals for stormwater were identified for the contributing SBNEP watershed.

BAYWIDE POLLUTANT LOAD REDUCTION GOALS FOR SBNEP WATERSHED

Nutrient (nitrogen)	Toxins
7%	27%

TABLE 5.1.2

The Florida Yards and Neighborhoods program, currently being finalized in association with the Cooperative Extension Service is an example of a preventative program actively being supported by the Sarasota Bay Project. The Florida Yards and Neighborhood program is aimed at educating homeowners and residents of pollution prevention measures such as xeroscaping, lawn management, water conservation, etc.

5.1.2.3 FLORIDA STATE WATER POLICY

Florida State Water Policy is contained within Chapter 17-40, Florida Administrative Code. The Florida Department of Environmental Protection is currently proposing amendments for 1994 to Chapter 17-40. As part of the proposed amendments, the Southwest Florida Water Management District must develop water body specific pollutant reduction goals for non-SWIM bodies on a priority basis according to a schedule provided in the District's Water Management Plan. Priority consideration shall be given to water bodies that are required to obtain a NPDES municipal stormwater discharge permit. Sarasota County was required to obtain a NPDES permit. The Elligraw Bayou basin is included within the Sarasota County NPDES permit application which was submitted in July of 1993. The receiving water body

for the Elligraw Bayou basin is Little Sarasota Bay, a non-SWIM water body.

Pursuant to Section 403.0891, F.S. State Water Policy, the Florida Department of Environmental Protection, the Southwest Florida Water Management District, and Sarasota County are required to cooperatively implement on a watershed basis, a comprehensive stormwater management program designed to minimize the adverse effects of stormwater on land and water resources. Further, programs are to be implemented in a manner that will improve and restore the quality of waters that do not meet state water quality standards and maintain the quality of those waters which meet or exceed state water quality standards. To accomplish these objectives for the Elligraw Bayou drainage basin, pollutant load reduction goals (estimated numeric reductions in pollutant loadings as needed to preserve or restore designated uses of receiving waters and maintain water quality consistent with applicable state standards) are to be established by the Southwest Florida Water Management District. The Southwest Florida Water Management District has indicated that they are looking to the Sarasota Bay National Estuary Program to establish these Pollutant Load Reduction Goals for the Sarasota Bay watershed. The Elligraw Bayou drainage basin is a non-priority basin situated within the Sarasota Bay watershed.

In 1993, water quality level of service criteria (WQLOS) were developed during workshops for possible application throughout the State of Florida by the Florida Department of Environmental Protection and the five (5) Water Management Districts. This WQLOS is based upon a system which considers the effectiveness and extent of the BMPs within a watershed. Specifically, the adequacy of water quality treatment for each land parcel is denoted by a multiplier. The multiplier is a numerical measure between 0 and 5, with 5 corresponding to lands with native vegetation which are designated and protected as preservation areas.

A multiplier of 4 denotes areas with an advanced level of stormwater treatment (i.e. no less than 150% of the required stormwater quality treatment).

A multiplier of 3 comprises stormwater treatment systems which improves the quality of stormwater runoff to meet or exceed state water quality standards (i.e. no less than 100% of the required stormwater quality treatment).

A multiplier of 2 consists of a best management practices system which improves

45

the quality of stormwater runoff but may not meet state water quality standards (i.e. between 50% and 100% of the required stormwater quality treatment volume).

A multiplier of 1 also consists of a limited best management practices system which improves the quality of stormwater runoff but may not meet state water quality standards (i.e. between 25% and 50% of the required stormwater quality treatment volume).

A multiplier of 0 applies to areas with few if any stormwater best management practices (i.e. less than 25% of the required stormwater quality treatment volume).

A watershed water quality index (WQI) is computed as the area average of multipliers for all lands in the watershed. The watershed WQI is used to determine the water quality level of service (WQLOS) as illustrated in the following table.

WQLOS	Α	В	с	D	E	F
WQI	WQI = 5	5>WQI≥ 4	4>WQI≥ 3	3>WQI≥ 2	2>WQI≥ 1	WQI<1

A preliminary assessment of the Elligraw Bayou Watershed resulted in a WQI of 1.135 and a WQLOS of E based upon the following assumptions:

- 36% watershed BMP coverage provides stormwater quality treatment which meets or exceeds state water quality standards.
- Watershed contains 25.24 acres of designated preserve areas.
- WQI = .36(3) + .585(0) + .055(1) = 1.135

5.1.2.4 FLORIDA NONPOINT SOURCE ASSESSMENT

In 1988 the Florida Department of Environmental Protection (formerly the Department of Environmental Regulation) published the 'Florida Nonpoint Source Assessment'. This publication presented general assessments of water quality within Florida watersheds based upon a compilation of input from local, regional, state and federal sources. From the database, nonpoint sources, surface water symptoms, and pollutants were estimated for each watershed. A water quality rating system was also developed consisting of five categories: good, suspected, threatened, moderate, and severe. Each watershed was given a water quality rating. These five categories correspond to differing degrees of water quality impairment as identified below.

Water Quality Rating System

- <u>Good</u> No impairment of the water body's designated use throughout the water body.
- <u>Suspected</u> No known impairment from pollution of the water body's designated use, throughout the water body, but knowledge indicates that the water body may be experiencing impairment in part or in all of its aerial extent from non-point causes.
- <u>Threatened</u> No current impairment from pollution of the water body's designated use throughout the water body but knowledge indicates:
 - an existing or potential downward trend in water quality that, in the absence of additional management, will lead to use impairment in some or all portions of the water body within the next five (5) years, or
 - 2. will lead to degradation of an "Outstanding Florida Waters" or Florida Wild and Scenic River.
- <u>Moderate</u> Some interference with designated uses of the water body from pollution but impairment is not throughout the water body's entirety.
- <u>Severe</u> Designated use of water body is precluded for the entire water body.

With respect to the Elligraw Bayou basin, the 1988 Florida Nonpoint Source Assessment indicated the likely source of pollutants to be urbanization. Surface water symptoms identified were fish kills and turbidity/siltation. Pollutants identified were limited to habitat alteration. Elligraw Bayou was given a water quality rating of moderate.

With respect to WQLOS under this criteria, a moderate rating would warrant an objective of improving existing water quality while a threatened rating would warrant an objective of maintaining or improving existing water quality.

5.2 LEVEL OF SERVICE DEFICIENCIES

5.2.1 FLOOD PROTECTION LEVEL OF SERVICES DEFICIENCIES

Flood protection level of service deficiencies are identified for each of the major subbasins in the Elligraw Bayou basin in TABLES 5.2.1.a through 5.2.1.c. A brief discussion of these deficiencies for each subbasin is provided below:

5.2.1.1 LOWER ELLIGRAW BAYOU SUBBASIN

There are no emergency shelters/essential services located in this subbasin. However, one (1) employment/service centers is anticipated to be susceptible to flooding for events including and greater than the 10-year design storm. In addition, 8, 22, 26, and 50 habitable structures are estimated to be susceptible to flooding during the 5, 10, 25, and 100-year design storms, respectively. Flooding of habitable structures was estimated by comparing site computed flood elevations with SWFWMD 1" = 200' scale 1-ft. contour maps and 1" = 30' scale topographic aerials flown for the project. The final determination of flood susceptibility of structures should be subject to field survey measurements of finished floor elevations.

With respect to road access, one (1) designated arterial road and ten (10) designated neighborhood roads were determined to be deficient from the proposed level of service objectives for flood protection. These deficiencies are identified on TABLE 5.2.1.a.

Most of the flood protection level of service (FPLOS) deficiencies in this subbasin could generally be resolved by addressing inadequate conveyance at the downstream end of the basin (i.e. Pinehurst Street outfall culvert).

5.2.1.2 UPPER ELLIGRAW BAYOU SUBBASIN

There are no emergency shelters/essential services located in this subbasin. In addition, TABLE 5.2.1.b indicates that this subbasin does not contain any apparent level of service deficiencies with respect to structures. This subbasin contains portions of one (1) arterial roadway (Beneva Road) and one (1) collector roadway (Palmer Ranch Parkway). As indicated on TABLE 5.2.1.b, there are no existing FPLOS deficiencies in this subbasin with respect to road access.

5.2.1.3 GULF GATE LATERAL SUBBASIN

There are no emergency shelters/essential services located in this subbasin. In addition, no structure flooding was apparent within this subbasin. However, as indicated in TABLE 5.2.1.c, two (2) neighborhood roadways do not meet the FPLOS standards.

.

LOWER ELLIGRAW BAYOU SUBBASIN FLOOD PROTECTION LEVEL OF SERVICE DEFICIENCIES (EXISTING CONDITIONS)

I. BUILDINGS (No. of Structures below) A. Emergency Shelters/Essential Services (N/A)			2-YR	5-YR	10-YR	25-YR	100-YR
B. Habitable			0	8	22	26	50
C. Employment/Service Centers			0	0	1	1	1
II. ROAD ACCESS (Elevation)		E/P	2-YR	5-YR	10-YR	25-YR	100-YR
A. Evacuation (not applicable)							
B. Arterials							
• U.S. 41		10.3	6.2	9 .0	11.9	12.3	12.7
C. Collectors (not applicable)							
D. Neighborhood							
Doud Street		10.5	6.2	9.0	11.9	12.3	12.7
Pinehurst Street		11.1	11.5	11.7	12.7	13.3	14.3
● Kai Drive		12.3	11.5	11.9	12.9	13.6	14.6
Pine View Circle		13.1	13.1	14.3	14.5	14.6	14.7
Marianna Drive		12.4	13.1	14.3	14.5	14.6	14.7
Biltmore Way		12.4	13.1	14.3	14.5	14.6	14.7
Coventry Way		12.3	13.1	14.3	14.5	14.6	14.7
Biltmore Drive		13.8	13.1	14.3	14.5	14.6	14.7
Hardee Drive	West	13.9	14.0	14.8	15.0	15.2	15.5
	East	13.8	14.1	14.9	15.1	15.3	15.6
Tuckerstown Drive	West	13.5	14.0	14.8	15.0	15.2	15.5
	East	13.8	14.1	14.9	15.1	15.3	15.6

T521-A.F01(E-RPT)

TABLE 5.2.1.a

UPPER ELLIGRAW BAYOU SUBBASIN FLOOD PROTECTION LEVEL OF SERVICE DEFICIENCIES (EXISTING CONDITIONS)

I. BUILDINGS (No. of Structures below)	2-YR	5-YR	10-YR	25-YR	100-YR	
A. Emergency Shelters/Essential Service	es (N/A)					
B. Habitable		0	0	0	0	0
C. Employment/Service Centers	0	0	0	0	0	
II. ROAD ACCESS (Elevation)	E/P	2-YR	5-YR	10-YR	25-YR	100-YR
A. Evacuation (not applicable)						
B. Arterials		_				
 Beneva Road 	15.5	14.1	14.9	15.1	15.3	15.7
C. Collector						
Palmer Ranch Parkway	17.9	14.3	15.0	15.3	15.5	15.9
D. Neighborhood (not deficiencies)						

T521-B.F03(E-RPT)

TABLE 5.2.1.b

FPLOS Deficiency

.

GULF GATE LATERAL SUBBASIN FLOOD PROTECTION LEVEL OF SERVICE DEFICIENCIES (EXISTING CONDITIONS)

I. BUILDINGS (No. of Structures below	2-YA	5-YR	10-YR	25-YR	100-YR	
A. Emergency Shelters/Essential Serv	vices (N/A)					
Gulf Gate Elementary School						
B. Habitable		0	0	0	0	0
C. Employment/Service Centers	0	0	0	0	0	
II. ROAD ACCESS (Elevation)	E/P	2-YR	5-YR	10-YR	25-YR	100-YR
A. Evacuation (not applicable)						
B. Arterials (not applicable)						
C. Collectors						
Gulf Gate Drive	15.8	14.2	15.2	15.6	16.0	16.5
D. Neighborhood						
Curtiss Avenue	14.9	14.1	15.1	15.4	15.7	16.2
 Antiqua Place 	15.2	14.2	15.2	15.5	15.9	16.5

TABLE 5.2.1.c

FPLOS Deficiency

.

5.2.2 WATER QUALITY LEVEL OF SERVICE DEFICIENCIES

As of August, 1994, Stormwater Pollutant Load Reduction Goals (PLRGs) of 7% for nutrient (nitrogen) loads and 27% for toxin loads are to be proposed baywide by the Sarasota Bay National Estuary Program. Based upon the Pollutant Loading Analysis performed for existing conditions, the following pollutant load reduction goals would therefore be warranted for the Elligraw Bayou drainage basin:

PARAMETER	POLLUTANT LOAD (in Ibs/yr)					
	Existing	PLRG				
TKN	2,873	2,672				
NO ₂ + NO ₃	558	519				
TSS	251,980	183,945				
Lead	158	115				
Copper	80	58				
Zinc	134	98				
Cadmium	3.8	2.8				

POLLUTANT LOAD REDUCTION GOALS (WQLOS DEFICIENCIES)

TABLE 5.2.2.a

The results of the existing conditions pollutant loading analyses are summarized by parameter and basin/subbasin in TABLE 5.2.2.b.

POLLUTNAT LOADING ANALYSIS - SUMMARY OF RESULTS

EXISTING CONDITIONS USING A MEDIUM LOADING FACTOR

Basin		Runot	BOD	COD	TSS	TDS	Total-P	Dissolved P	TKN	NO2+NO3	Lead	Copper	Zinc	Cadmium
		(ac-ft/yr)						(ty/sch)						
Elligraw 1	Drainage Area (ac)	178	178	178	178	178	178	178	178	178	178	178	178	176
	Impervious Area (ac)	60	60	60	60	60	60	60	60	60	60	60	60	60
	% Impervious	33.7%	33.7%	33.7%	33,7%	33.7%	33.7%	33.7%	33.7%	33.7%	33.7%	33.7%	33.7%	33.7%
	Total Gross Load	360	10,452	78,807	130,878	97,968	351	147	1,412	330	73	44	58	2.0
	Total Net Load	360	9,959	75,707	126,290	92,901	343	142	1,358	324	61	42	52	1.9
	% Pollutant Removal		4.7%	3.9%	3.5%	5.2%	2.2%	3.4%	3.8%	1.8%	16.4%	4.3%	10.5%	5.2%
Elligraw 2	Drainage Area (ac)	205	205	205	205	205	205	205	205	205	205	205	205	205
	Impervious Area (ac)	66	66	66	66	66	66	66	66	66	66	66	66	66
	% Impervious	32.5%	32.5%	32.5%	32.5%	32.5%	32.5%	32.5%	32.5%	32.5%	32.5%	32.5%	32.5%	32.5%
	Total Gross Load	405	10,497	83,959	153,368	110,150	311	151	1,306	344	92	48	82	1.9
	Total Net Load	405	7,937	⁻ 51,881	70,048	103,872	184	57	980	126	44	21	50	1.2
	% Pollutant Removal		24.4%	38.2%	54.3%	5.7%	41.0%	62.0%	24.9%	63.3%	52.0%	56.4%	39.5%	38.8%
Elligraw 3	Drainage Area (ac)	77	77	77	77	77	77	π	77	77	77	77	77	77
	Impervious Area (ac)	27	27	27	27	27	27	27	27	27	27	27	27	27
	% Impervious	34.5%	34.5%	34.5%	34.5%	34.5%	34.5%	34.5%	34.5%	34.5%	34.5%	34.5%	34.5%	34.5%
	Total Gross Load	158	4,367	31,699	55,641	43,095	114	54	535	108	53	17	32	0.8
	Total Net Load	158	4,367	31,699	55,641	43,095	114	54	535	108	53	17	32	0.8
	% Pollutant Removal		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
iligraw	Total Gross Load	824	25,316	194,465	339,888	251,212	777	351	3,252	782	218	109	172	4.7
Bayou	Total Net Load	924	22,262	159,287	251,980	239,868	642	253	2,873	558	158	80	134	3.8
otals	Total Pollutant Removal		3,054	35,177	87,908	11,344	135	98	379	224	60	29	38	0.8
	% Pollutant Removal		12.1%	16.1%	25.9%	4.5%	17.4%	28.0%	11.7%	28.7%	27.4%	26,4%	22.3%	18.2%

TABLE 5.2.2.b

.

•

6.0 ALTERNATIVE SOLUTIONS TO UPGRADING LEVEL OF SERVICE

Conceptual alternatives intended to address both flood protection and water quality level of service deficiencies in each subbasin are presented herein for consideration. The following stormwater management strategies might be worthy of investigation from a basin-wide perspective.

- (1) Require all new public and private development within the study area to conform with the Level of Service objectives of the Elligraw Bayou Basin Master Plan. The effectiveness of this strategy may be somewhat limited due to the fact that this basin is essentially developed.
- (2) Encourage regional common-use stormwater management facilities over small single-use facilities wherever feasible.
- (3) Develop a basin-wide maintenance program. To this end, schedules for sediment removal and vegetation harvesting should be established for stormwater management facilities.
- (4) Pro-actively participate in the Florida Yards and Neighborhoods program.
- (5) Enhance the pollutant removal efficiencies of all existing, man-made stormwater storage and conveyance facilities to the extent practical.
- (6) Prohibit the perpetuation of open swale enclosures without both adequate conveyance provisions and water quality mitigation.

Specific capital improvement projects for each subbasin are identified below for consideration.

6.1 CONCEPTUAL ALTERNATIVES INVESTIGATED

6.1.1 LOWER ELLIGRAW BAYOU SUBBASIN

6.1.1.a FLOOD PROTECTION

- (1) Increase conveyance efficiency of Pinehurst Street outfall culvert.
- (2) Increase efficiency of Water Level Control Structure at Dale Avenue.
- (3) Increase conveyance at Biltmore Drive.

6.1.1.b WATER QUALITY

- (1) Provide bleeder diversion structure at downstream end of Elligraw Bayou Main to existing pond and swale outfall.
- (2) Modify County drainage and park area south of Biltmore Way to enhance habitat and pollutant removal efficiency.
- (3) Reconstruct/Modify Tuckerstown Water Level Control Structure to enhance upstream residence time.
- (4) Reshape and provide aquatic vegetation corridor in Elligraw Bayou

Main between Biltmore Drive and the Beneva Road water level control structure.

- (5) Open to the extent possible, Lower Elligraw Bayou Main within Dale Street right-of-way.
- (6) Provide a stormwater treatment facility in available open space located behind Robb & Stuckey Furniture Store and north of Kai Drive.
- (7) Test, remove, and properly dispose of sediment accumulation in upper Elligraw Bayou Main. Reshape canal banks to minimize erosion and scouring.

6.1.2 UPPER ELLIGRAW BAYOU SUBBASIN

6.1.2.a. FLOOD PROTECTION

None

6.1.2.b WATER QUALITY

- (1) Modify Beneva Road water level control structure to enhance upstream residence time.
- (2) Modify outfall structures in Ballantrae Condominium to enhance residence time.
- (3) Modify outfall structures in Mira Lago Subdivision to enhance upstream residence time.
- (4) Modify outfall control structures for Prestancia Subdivision to enhance upstream residence time.
- (5) Divert untreated areas from Ballantrae Condominium and Country Club of Sarasota subdivision to existing lakes in Ballantrae Condominium.

6.1.3 GULF GATE LATERAL SUBBASIN

6.1.3.a FLOOD PROTECTION

None

6.1.3.b WATER QUALITY

- (1) Modify/Reconstruct existing water level control structure at Curtiss Drive to enhance upstream residence time.
- (2) Test, remove, and properly dispose of sediment accumulation in Gulf Gate Lateral. Reshape canal banks to minimize erosion and scouring.

6.2 ALTERNATIVES SELECTED FOR DETAILED HYDROLOGIC AND HYDRAULIC INVESTIGATION

6.2.1 FLOOD PROTECTION

Three (3) alternatives to address flood protection level of service deficiencies were investigated as part of the detailed hydrologic and hydraulic analyses. These alternatives and their effectiveness in resolving level of service deficiencies are discussed herein.

6.2.1.1 ALTERNATIVE 1

This alternative considered the downstream conveyance improvements needed to address the FPLOS deficiencies in the basin. Specifically, these improvements include three (3) primary components:

- Replace existing 40" x 65" CMPA Pinehurst Street outfall with 3 4' x 11' reinforced concrete box culverts (or hydraulic equivalent).
- Replace existing water level control, structure upstream of Pinehurst Street
 culvert with more efficient structure, and
- Replace existing 40" x 65" CMPA at Biltmore Drive with 2 5' x 6' Concrete Box Culverts (or hydraulic equivalents).

Additional minor improvements considered include:

- Enlarge cuivert at downstream end Elligraw Bayou swale.
- Enlarge culvert at Pinehurst Street and Elligraw Bayou swale.

The detailed analyses for alternative 1 are provided in APPENDIX B. As summarized in TABLES 6.2.1.1.a, 6.2.1.1.b and 6.2.1.1.c, the detailed analyses indicate that the alternative 1 improvements would address all FPLOS deficiencies identified within the Elligraw Bayou basin.

6.2.1.2 ALTERNATIVE 2

Alternative 2 considered the corresponding reduction in downstream conveyance improvements which would result from the over-attenuation of flood flows in the Upper Elligraw Bayou subbasin and the Gulf Gate Lateral subbasin. The specific upstream activities considered are itemized below:

- 1. Modify Canal Weir (EB-3) downstream of Beneva Road (elevate top of weir/embankment to 16.0 NGVD, reduce weir opening to 4.0' width).
- 2. Modify Ballantrae lake (reach 171) control structure (reduce width to 1.0').
- Modify Ballantrae lake (reach 173) control structure (replace weir with 8" orifice).
- Modify Ballantrae lake (reach 175) control structure (replace weir with 8" orifice).
- 5. Modify Palmer Ranch Parkway lake (reach 180) control structure (reduce weir width to 2.0', elevate top of structure to 16.7 NGVD).

- Modify Mira Lago lake control structures (reduce width of structure 181B to 1.5'). Elevate both structures 181A and 181B to elevation 17.3 NGVD.
- Modify Mira Lago lake (reach 183) control structure (reduce weir width to 1.25', elevate top of structure to 18.5 NGVD).
- 8. Modify Prestancia, Parcel 'B' bermed marsh (reach 191) control structure (replace weir with 12" orifice, elevate top of structure to 17.2 NGVD).
- Modify Prestancia, Parcel 'B' lake (reach 192) control structure (replace weir with 15" orifice, elevate top of structure to 17.2 NGVD).
- Replace existing corrugated metal riser at Curtiss Avenue with an FDOT TYPE H inlet with 5.0' wide slot.

As a result of these upstream stormwater enhancement activities, the FPLOS deficiencies could be addressed with 2 - 4' x 7' reinforced concrete box culverts (or hydraulic equivalent) at the Pinehurst Street outfall and 2 - 4' x 5' concrete box culverts at Biltmore Drive. The detailed analyses for alternative 2 are provided in APPENDIX B. As summarized in TABLES 6.2.1.2.a, 6.2.1.2.b, and 6.2.1.2.c, the detailed analyses indicate that the Alternative 2 improvements would address all FPLOS deficiencies identified within the Elligraw Bayou basin.

6.2.1.3 ALTERNATIVE 3

This alternative considered all of the stormwater conveyance and enhancement activities included in Alternative 2 with the addition of a low-flow diversion to the historical open swale outfall for the Elligraw Bayou basin. Although this modification is proposed to enhance stormwater quality of stormwater in the Elligraw Bayou associated with the "first-flush" of runoff, it was analyzed for implications to FPLOS. This proposed low-flow diversion would be effectuated by the placement of a riser structure upstream of the Plnehurst Street weir at elevation ± 10.5 NGVD with an 18" RCP culvert to convey flows to the west to a man-made pond located at the upstream of the Elligraw Bayou swale. In addition, the water level control structure upstream of Plnehurst Street would need to be proposed with an overflow elevation of 11.0 NGVD. Since this pond and the Elligraw Bayou swale are located on private property, a pubic easement would need to be obtained from the effected property owners.

The detailed analyses for Alternative 3 are contained in APPENDIX B. As summarized in TABLES 6.2.1.3.a, 6.2.1.3.b, and 6.2.1.3.c, the detailed analyses indicate the Alternative 3 improvements would address all FPLOS deficiencies

identified within the Elligraw Bayou Basin with the exception of Marianna Drive and Biltmore Way which will both be subject to 1.1 feet of flooding in their lower portions during a 100-year flood and Coventry Way which will be subject to 1.2 feet of flooding in its lower portion during a 100-year flood. Water surface profiles for this proposed Alternative are presented in EXHIBITS 6.2.1.3.a, 6.2.1.3.b, and 6.2.1.3.c.

LOWER ELLIGRAW BAYOU SUBBASIN FLOOD PROTECTION LEVEL OF SERVICE DEFICIENCIES (ALTERNATIVE NO. 1)

I. BUILDINGS (No. of Structure		2-YR	5-YR	10-YR	25-YR	100-YR	
A. Emergency Shelters/Essenti	al Services	(N/A)					
B. Habitable			0	0	0	0	0
C. Employment/Service Center		0	0	0	0	0	
II. ROAD ACCESS (Elevation)		E/P	2-YR	5-YR	10-YR	25-YR	100-YR
A. Evacuation (not applicable)							
B. Arterials							
• U.S. 41	• U.S. 41			3.7	4.1	4.4	4.9
C. Collectors (not applicable)			·····				
D. Neighborhood							
Doud Street		10.5	3.0	3.7	4.1	4.4	4.9
Pinehurst Street		11.1	11.0	11.5	11.6	11.6	11.7
• Kai Drive		12.3	11.1	11.5	11.6	11.7	11.8
Pine View Circle		13.1	11.6	12.2	12.5	12.8	13.3
Marianna Drive		12.4	11.6	12.2	12.5	12.8	13.3
Biltmore Way		12.4	11.6	12.2	12.5	12.8	13.3
Coventry Way		12.3	11.6	12.2	12.5	12.8	13.3
Biltmore Drive		13.8	11.6	12.2	12.5	12.8	13.3
Hardee Drive	West	13.9	11.8	12.6	13.0	13.4	14.1
	East	13.8	13.0	13.5	13.8	14.1	14.6
Tuckerstown Drive	West	13.5	11.8	12.6	13.0	13.4	14.1
	East	13.8	13.0	13.5	13.8	14.1	14.6

T621-A.F18(E-RPT)

TABLE 6.2.1.1.a

UPPER ELLIGRAW BAYOU SUBBASIN FLOOD PROTECTION LEVEL OF SERVICE DEFICIENCIES (ALTERNATIVE NO. 1)

I. BUILDINGS (No. of Structures Below)			5-YA	10-YR	25-YR	100-YR
A. Emergency Shelters/Essential Service	es (N/A)					
B. Habitabie			0	0	0	0
C. Employment/Service Centers		0	0	0	0	0
II. ROAD ACCESS (Elevation)	E/P	2-YR	5-YR	10-YR	25-YR	100-YR
A. Evacuation (not applicable)						
B. Arterials						
Beneva Road	15.5	13.6	13.8	14.0	14.3	14.8
C. Collector						
Palmer Ranch Parkway	17.9	14.2	14.7	14.9	15.1	15.4
D. Neighborhood (not deficiencies)						B FIS(F-RPI

T621-B.F18(E-RPT)

TABLE 6.2.1.1.b

GULF GATE LATERALSUBBASIN FLOOD PROTECTION LEVEL OF SERVICE DEFICIENCIES (ALTERNATIVENO. 1)

I. BUILDINGS (No. of Structures below)	2-YR	5-YR	10-YR	25-YR	100-YR	
A. Emergency Shelters/Essential Services	(N/A)					
• Gulf Gate Elementary School						
B. Habitable			0	0	0	0
C. Employment/Service Centers	0	0	0	0	0	
II. ROAD ACCESS (Elevation)	E/P	2-YR	5-YR	10-YR	25-YR	100-YR
A. Evacuation (not applicable)						
B. Arterials (not applicable)						
C. Collectors						
• Gulf Gate Drive	15.8	14.2	14.7	15.1	15.5	16.2
D. Neighborhood						
• Curtiss Avenue	14.9	13.3	14.2	14.6	15.0	15.6
Antiqua Place	15.2	13.5	14.5	15.0	15.4	16.2

T621-C.F22(E-RPT)

.

TABLE 6.2.1.1.c

LOWER ELLIGRAW BAYOU SUBBASIN FLOOD PROTECTION LEVEL OF SERVICE DEFICIENCIES (ALTERNATIVE NO. 2)

I. BUILDINGS (No. of Structures I	(wolec		2-YR	5-YR	10-YR	25-YR	100-YR
A. Emergency Shelters/Essential	Services	(N/A)					
B. Habitable			0	0	0	0	0
C. Employment/Service Centers			0	0	0	0	0
II. ROAD ACCESS (Elevation)			2-YR	5-YR	10-YR	25-YR	100-YR
A. Evacuation (not applicable)							
B. Arterials							
● U.S. 41		10.3	3.9	4.9	5.4	5.9	6.5
C. Collectors (not applicable)							
D. Neighborhood							
Doud Street		10.5	3. 9	4.9	5.4	5.9	6.5
Pinehurst Street		11.1	11.0	11.2	11.4	11.5	11.7
 Kai Drive 		12.3	11.3	11.6	11.7	11.9	12.0
Pine View Circle		13.1	11.6	12.1	12.5	12.8	13.3
Marianna Drive		12.4	11.6	12.1	12.5	12.8	13.3
Biltmore Way		12.4	11.6	12.1	12.5	12.8	13.3
Coventry Way		12.3	11.6	12.1	12.5	12.8	13.3
Biltmore Drive		13.8	11.6	12.1	12.5	12.8	13.3
Hardee Drive	West	13.9	11.7	12.4	12.9	13.3	14.1
	East	13.8	12.7	13.1	13.4	13.7	14.3
Tuckerstown Drive	West	13.5	11.7	12.4	12.9	13.3	14.1
	East	13.8	12.7	13.1	13.4	13.7	14.3

T622-A.F22(E-RPT)

TABLE 6.2.1.2.a

UPPER ELLIGRAW BAYOU SUBBASIN FLOOD PROTECTION LEVEL OF SERVICE DEFICIENCIES (ALTERNATIVE NO. 2)

BUILDINGS (No. of Structures Below)			5-YR	10-YR	25-YR	100-YR
A. Emergency Shelters/Essential Servic	es (N/A)					
B. Habitable			0	0	0	0
C. Employment/Service Centers		0	0	0	0	0
II. ROAD ACCESS (Elevation)	E/P	2-YR	5-YR	10-YR	25-YR	100-YR
A. Evacuation (not applicable)						
B. Arterials						
Beneva Road	15.5	13.7	14.6	15.0	15.4	16.0
C. Collector						
Palmer Ranch Parkway	17.9	14.1	14.7	15.1	15.5	16.1
D. Neighborhood (not deficiencies)						

T622-B.F22(E-RPT)

TABLE 6.2.1.2.b

GULF GATE LATERAL SUBBASIN FLOOD PROTECTION LEVEL OF SERVICE DEFICIENCIES (ALTERNATIVE NO. 2)

I. BUILDINGS (No. of Structures below	2-YR	5-YR	10-YR	25-YR	100-YR	
A. Emergency Shelters/Essential Servi						
Gulf Gate Elementary School						
B. Habitable	0	0	0	0	0	
C. Employment/Service Centers	0	0	0	0 0	0	
II. ROAD ACCESS (Elevation)	E/P	2-YR	5-YR	10-YR	25-YR	100-YR
A. Evacuation (not applicable)						
B. Arterials (not applicable)						
C. Collectors						
Gulf Gate Drive	15.8	14.2	14.7	15.1	15.5	16.2
D. Neighborhood			 			
Curtiss Avenue	14.9	13.3	14.1	14.6	14.9	15.6
Antiqua Place	15.2	13.5	14.5 [°]	14.9	15.4	16.1

T622-C.F22(E-RPT)

,

TABLE 6.2.1.2.c

FPLOS Deficiency

LOWER ELLIGRAW BAYOU SUBBASIN FLOOD PROTECTION LEVEL OF SERVICE DEFICIENCIES (ALTERNATIVE NO. 3)

I. BUILDINGS (No. of Structures I	below)		2-YR	5-YR	10-YR	25-YR	100-YR
A. Emergency Shelters/Essential	A. Emergency Shelters/Essential Services (N/A)						
B. Habitable	B. Habitable					0	0
C. Employment/Service Centers			0	0	0	0	0
II. ROAD ACCESS (Elevation)		E/P	2-YR	5-YR	10-YR	25-YR	100-YR
A. Evacuation (not applicable)							
B. Arterials							
• U.S. 41	• U.S. 41 10.3				5.4	5.8	6.5
C. Collectors (not applicable)							
D. Neighborhood							
Doud Street		10.5	3.9 ⁻	4.9	5.4	5.8	6.5
Pinehurst Street		11.1	11.0	11.4	11.5	11.6	11.7
• Kai Drive		12.3	11.5	11.7	11.8	11.9	12.1
Pine View Circle		13.1	12.0	12.5	12.8	13.0	13.5
• Marianna Drive		12.4	12.0	12.5	12.8	13.0	13.5
Biltmore Way		12.4	12.0	12.5	12.8	13.0	13.5
Coventry Way		12.3	12.0	12.5	12.8	13.0	13.5
Biltmore Drive		13.8	12.0	12.5	12.8	13.0	13.5
• Hardee Drive	West	13.9	12.1	12.8	13.1	13.5	14.2
	East	13.8	12.7	13.2	13.5	13.8	14.4
Tuckerstown Drive	West	13.5	12.1	12.8	13.1	13.5	14.2
	East	13.8	12.7	13.2	13.5	13.8	14.4

T623-A.F03(E-RPT)

TABLE 6.2.1.3.a

UPPER ELLIGRAW BAYOU SUBBASIN FLOOD PROTECTION LEVEL OF SERVICE DEFICIENCIES (ALTERNATIVE NO. 3)

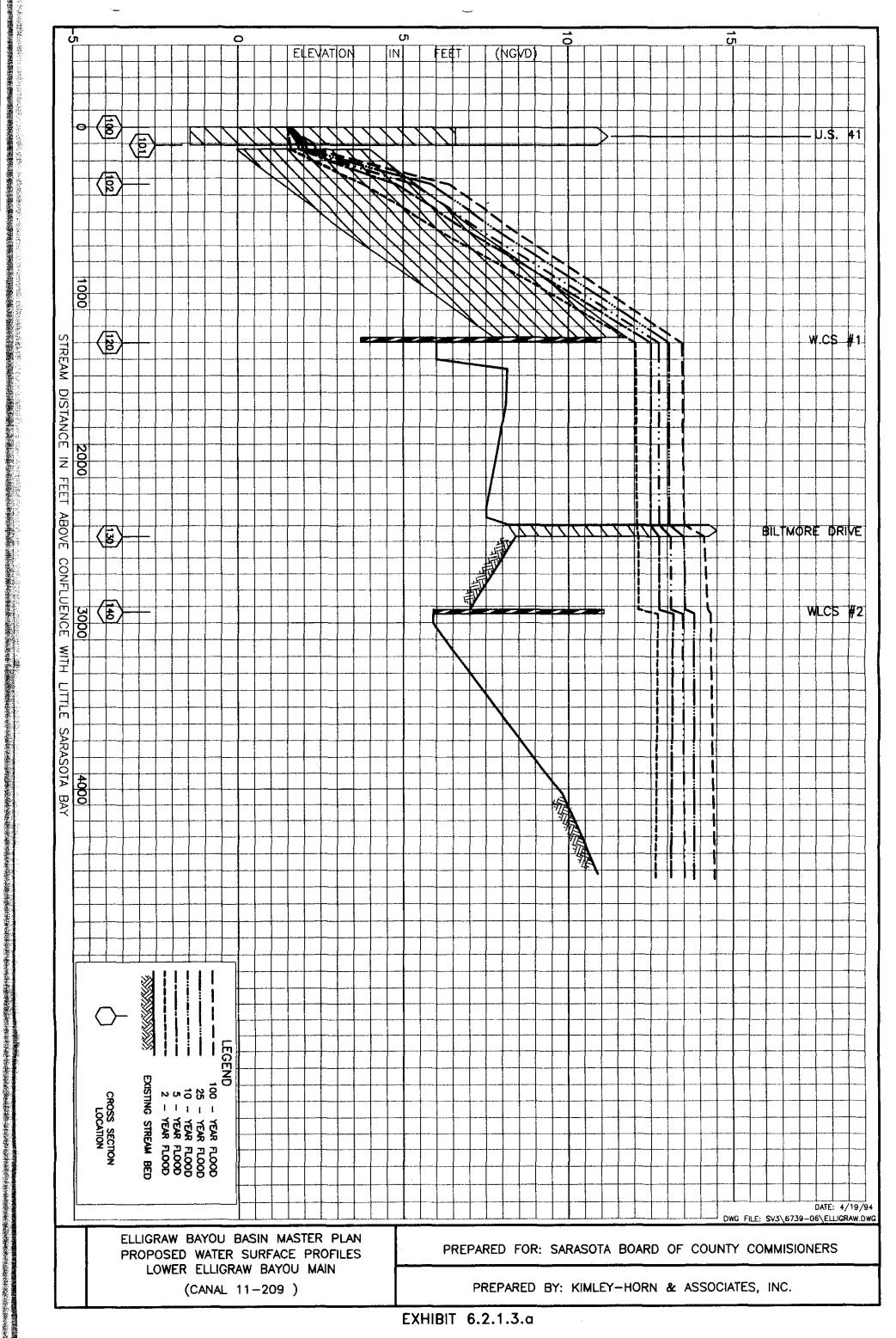
I. BUILDINGS (No. of Structures Below)	2-YR	5-YR	10-YR	25-YR	100-YR	
A. Emergency Shelters/Essential Service						
B. Habitable		0	0	0	0	0
C. Employment/Service Centers	0	0	0 0 0 0 10-YR 25-YR 15.1 15.5	0		
II. ROAD ACCESS (Elevation)	E/P	2-YR	5-YR	10-YR	25-YR	100-YR
A. Evacuation (not applicable)						
B. Arterials						
Beneva Road	15.5	13.7	14.6	15.1	15.5	16.0
C. Collector						
Paimer Ranch Parkway	17.9	14.1	14.7	15.1	15.5	16.1
D. Neighborhood (not deficiencies)						

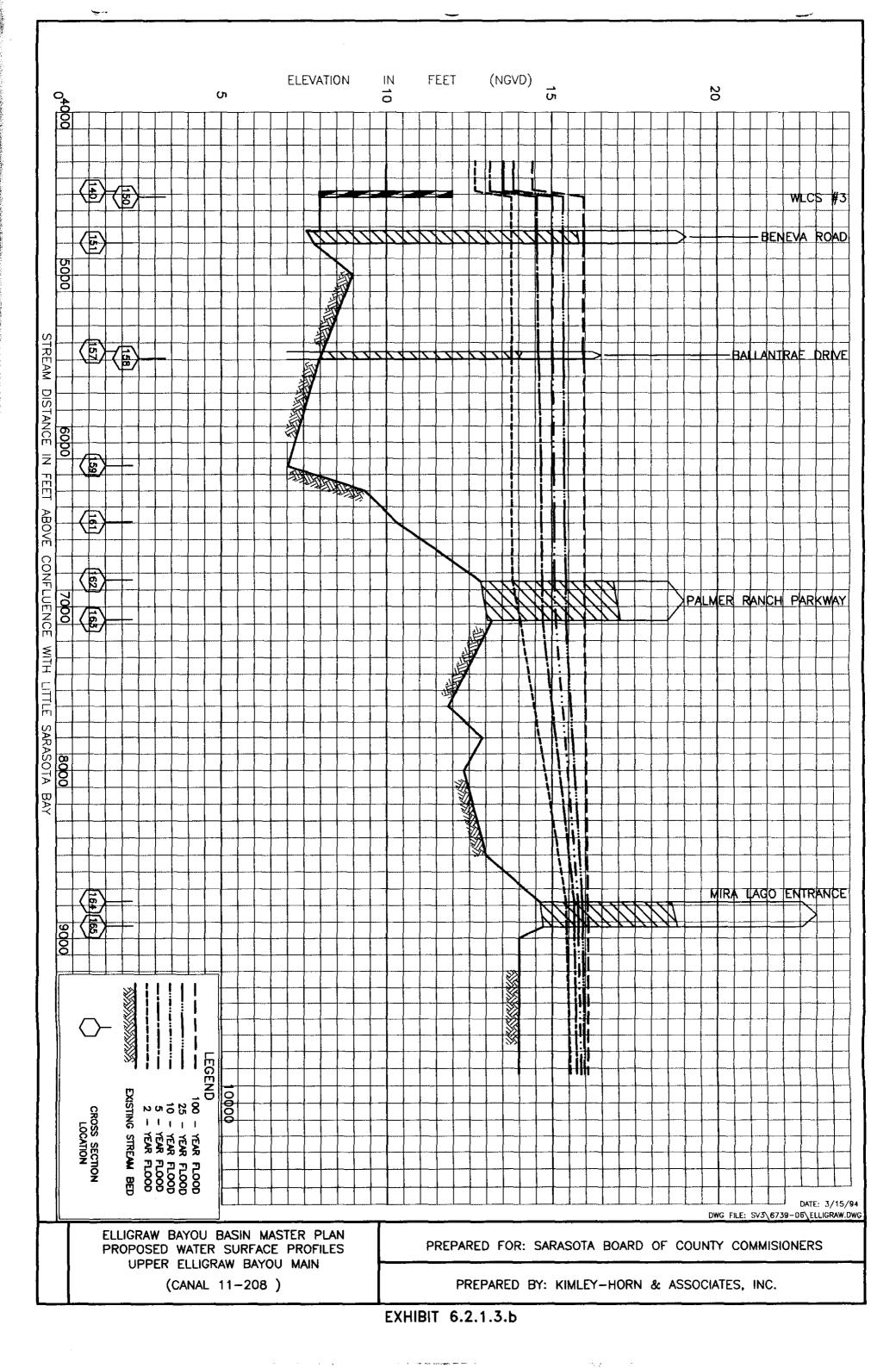
TABLE 6.2.1.3.b

FPLOS Deficiency

.

GULF GATE LATERAL SUBBASIN FLOOD PROTECTION LEVEL OF SERVICE DEFICIENCIES (ALTERNATIVE NO. 3)


I. BUILDINGS (No. of Structures below)	2-YR	5-YR	10-YA	25-YR	100-YR	
A. Emergency Shelters/Essential Servic						
Gulf Gate Elementary School						
B. Habitable	0	0	0	0	0	
C. Employment/Service Centers	0	0	0	0	0	
II. ROAD ACCESS (Elevation)	E/P	2-YR	5-YR	10-YR	25-YR	100-YR
A. Evacuation (not applicable)						
B. Arterials (not applicable)						
C. Collectors						
Gulf Gate Drive	15.8	14.2	14.7	15.1	15.5	16.2
D. Neighborhood						
Curtiss Avenue	14.9	13.3	14.2	14.6	15.0	15.7
Antiqua Place	15.2	13.5	14.5	15.0	15.4	16.2


T623-C.F22(E-RPT)

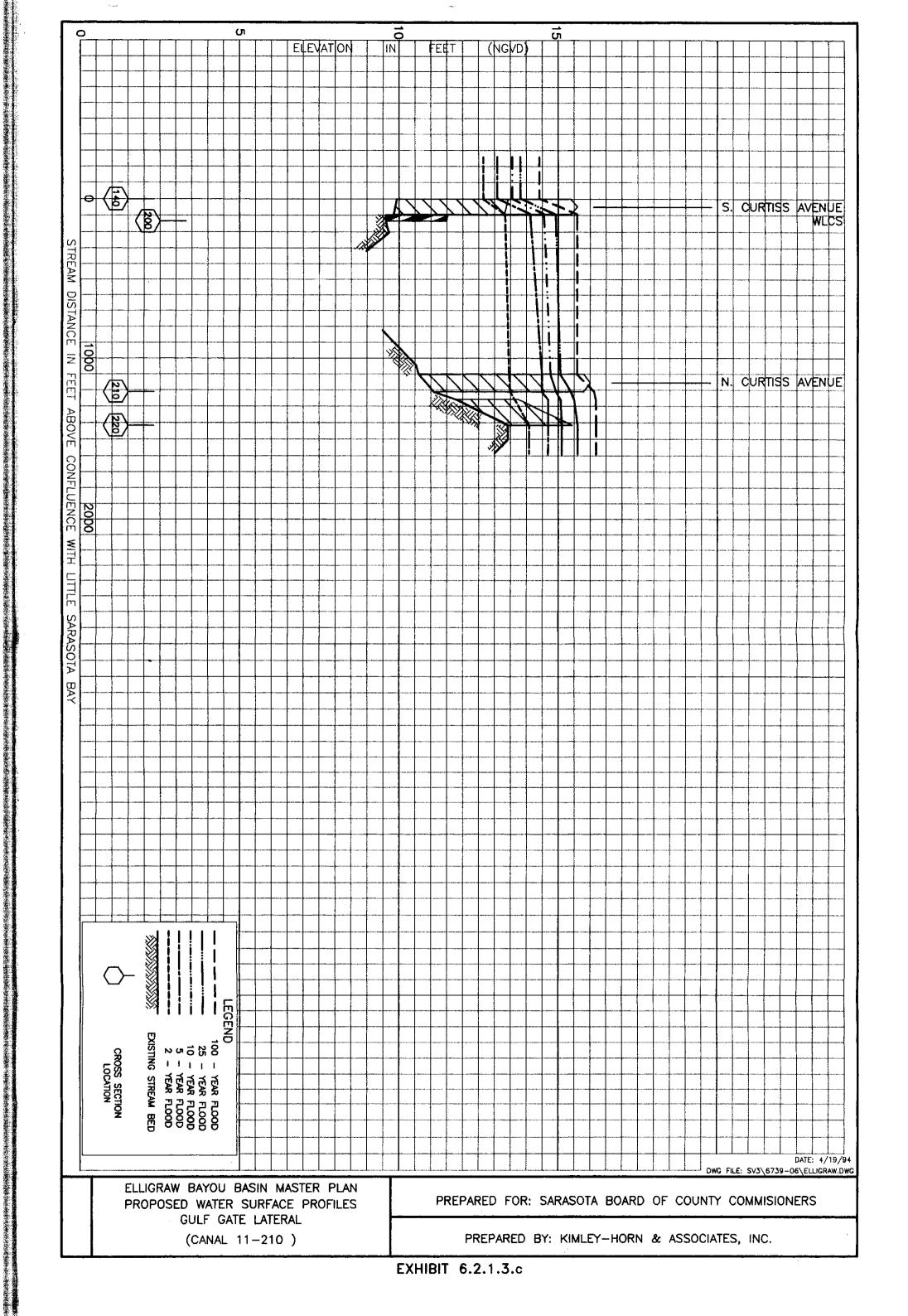

.

TABLE 6.2.1.3.c

FPLOS Deficiency

あるとないないないないない

6.2.2 WATER QUALITY

Although Section 6.1 identifies numerous water quality improvement projects, only those which could be quantified in terms of BMP coverage increases were considered. The pollutant loading model is capable of predicting the reduction in gross pollutant loads resulting from increased BMP coverage within the watershed. As such, the following modifications to the pollutant loading model were made:

Lower Elligraw Bayou Basin

- 1. Wet detention BMP (#3) was added to service commercial area (i.e. Robb & Stuckey Furniture Store) in subbasin 05110.
- Small wetland habitat restoration project in County park area south of Biltmore Way was considered as wet detention BMP (#3) to service 2% of residential development in subbasin 05120.

Upper Elligraw Bayou Basin

- 1. Directed subbasin 05172 (portion of Ballantrae) to existing wet detention BMP (#3) in Ballantrae.
- 2. Directed subbasin 05174 (portions of Ballantrae and County Club of Sarasota) to existing wet detention BMP (#3) in Ballantrae.

Gulf Gate Lateral

1. Convert Gulf Gate Lateral conveyance system to a stormwater BMP by modifying the existing weir structure at Curtiss Drive to increase residence time and by testing, removing, and properly disposing of sediment accumulation.

The estimated gross and net pollutant loads from Elligraw Bayou are presented in TABLE 6.2.2.a for the alternative condition. Under this alternative condition, additional BMP's (i.e. wet detention ponds) will be in place in both Subbasins 1 and 2. In addition, BMP's in Subbasin 3 will be assumed effective in removing pollutant loads.

Based upon the pollutant loadings analyses, the alternative condition is expected to reduce the nitrogen loads by 8% to 22% and toxin loads by 23% to 26% below existing conditions. Therefore, the alternative condition analyses indicates that the proposed QCIP can be expected to exceed the nutrient PLRG of 7% and approximate the toxin PLRG of 27%. However, it is anticipated that the non-quantifiable water quality benefits proposed in association with ALTERNATIVE 3 of the FPCIP will be effective in further reducing toxin loads.

TABLE 6.2.2.b identifies the pollutant loading reductions for each basin under the alternative condition. The results of the pollutant loading analyses are contained in APPENDIX C and are summarized on TABLE 6.2.2.c.

•

Parameters	Gross Load	Removal	Net Load
Drainage Area (acres)	460		460
Total Impervious Area (acres)	153		153
Runoff (acre-ft/yr)	924		924
Pollutant Loads (lbs/yr):			
Biochemical Oxygen Demand	25,316	4,866	20,450
Chemical Oxygen Demand	194,465	57,148	137,317
Total Suspended Solids	339,888	141,079	198,809
Total Dissolved Solids	251,212	11,344	239,868
Total Phosphorus	777	216	561
Dissolved Phosphorus	351	159	192
Total Kjeldahl Nitrogen	3,252	602	2,650
Nitrate + Nitrite	782	346	436
Total Lead	218	117	101
Total Copper	109	47	62
Total Zinc	172	61	112
Fotal Cadmium	5	1	3

TABLE 6.2.2.aESTIMATED TOTAL POLLUTANT LOADING FOR SURFACE RUNOFF IN THE ELLIGRAW BAYOU
WATERSHED FOR ALTERNATIVE CONDITION, SARASOTA COUNTY, FLORIDA.

^{*} Loadings do not reflect planned elimination of all septic tank systems within the watershed.

.

71

ŧ

		Basin No.		
Constituents (ibs/yr)	1	2	3	Tota
Biochemical Oxygen Demand	652	2,904	1,310	4,866
Chemical Oxygen Demand	4,818	36,480	15,850	57,148
Total Suspended Solids	8,233	93,897	38,949	141,079
Total Dissolved Solids	5,067	6,278	0	11,344
Total Phosphorus	12	146	57	216
Dissolved Phosphorus	10	107	43	159
Total Kjeldahl Nitrogen	72	370	160	602
Nitrate + Nitrite	13	247	86	346
Total Lead	21	53	43	117
Total Copper	3	31	13	47
Total Zinc	9	35	16	61
Total Cadmium	0.2	0.9	0.4	1.4
Mitigation Type	Retention Wet Detention	Retention Wet Detention	Wet Detention	

TABLE 6.2.2.bPOLLUTANT LOADING REDUCTIONS PER BASIN UTILIZING EXISTING BMP's IN THE ELLIGRAW BAYOU
WATERSHED UNDER ALTERNATIVE CONDITION.

Removal Efficiencies (CDM, 1992):

Retention

90% efficiency for all constituents

Wet Detention

Biochemical Oxygen Demand = 30%; Chemical Oxygen Demand = 50%; Total Suspended Solids = 70%; Total Dissolved Solids = 0%; Total Phosphorus = 50%; Dissolved Phosphorus = 80%; Total Kjeldahl Nitrogen = 30%; Nitrate + Nitrite = 80%; Total Lead = 80%; Total Copper = 75%; Total Zinc = 50%; Total Cadmium = 50%.

7.2

ŧ

POLLUTANT LOADING ANALYSIS - SUMMARY OF RESULTS

ALTERNATIVE CONDITION USING A MEDIUM LOADING FACTOR

.

Basin No. Cadmium		Runofi	BOD	COD	TSS	TDS	Total P	<u>Dissolved</u>	P TKN	<u>NO2 + NO</u>	<u>s Lead</u>	Copper	Zinc		
		(ao-fl/yr	1						(łbs/	(lbs/year)					
1	Drainage Area (ac) Impervious Area (ac) % Impervious Total Gross Load Total Net Load % Pollutant Removal	178 60 33.7% 360 360	178 60 33.7% 10,452 9,800 6.2%	78,807 73,989	130,878 122,645	97,968 92,901	178 60 33.7% 351 339 3.6%	178 60 33.7% 147 137 6.5%	1,412 1,340	178 60 33.7% 330 318 3.8%	178 60 33.7% 73 52 28.8%	178 60 33.7% 44 41 7.8%	178 60 33.7% 58 49 15.6%	178 60 33.79 2.0 1.8 7.9%	
2	Drainage Area (ac) Impervious Area (ac) % Impervious Total Gross Load Total Net Load % Pollutant Removal	205 68 32.5% 405 405	205 68 32.5% 10,497 7,593 27.7%	83,959 47,478	153,368 59,472	110,150 103,872	205 66 32.5% 311 165 47.0%	205 66 32.5% 151 44 70.8%	205 66 32.5% 1,306 936 28.3%	205 66 32.5% 344 97 71.8%	205 66 32.5% 92 39 58.1%	205 66 32.5% 48 17 64.0%	205 66 32.5% 82 47 43.0%	205 66 32.5% 1.9 1.1 44.3%	
3	Drainage Area (ac) Impervious Area (ac) % Impervious Total Gross Load Total Net Load % Pollutant Removal	77 27 34.5% 158 158	77 27 34.5% 4,367 3,057 30.0%	31,699 15,850	55,641 16,692	43,095 43,095	77 27 34.5% 114 57 50.0%	77 27 34.5% 54 11 80.0%	77 27 34.5% 535 374 30.0%	77 27 34.5% 108 22 80.0%	77 27 34.5% 53 11 80.0%	77 27 34.5% 17 4 75.0%	77 27 34.5% 32 16 50.0%	77 27 34.5% 0.8 0.4 50.0%	
Fotal	Total Gross Load Total Net Load Total Pollutant Removal % Pollutant Removal	924 924		194,465 137,317 57,148 29.45	198,809 141,079	251,212 239,868 11,344 4.5%	777 561 216 27.8%	351 192 159 45.4%	3,252 2,650 602 18.5%	782 436 346 44.2%	218 101 117 53.6%	109 62 47 42.9%	172 112 61 35.1%	4.7 3.3 1.4 30.0%	

TABLE 6.2.2.c

73

7.0 CONCLUSIONS

With respect to flood protection, significant level of service deficiencies exist within the Lower Elligraw Bayou basin. These level of service deficiencies were fully realized in lake June of 1992 when over 18 inches of rainfall fell in a three day period. As such, an immediate need exists to implement a FPCIP to resolve these FPLOS deficiencies.

State Water Policy requires that the Southwest Florida Water Management District establish pollutant load reduction goals for Elligraw Bayou. In addition, the National Estuary Program for Sarasota Bay is expected to reveal specific stormwater pollutant load reduction goals (PLRG's) by the end of the year. Preliminary discussions with the SBNEP have revealed that baywide PLRG's nitrogen and toxins of 7% and 27%, respectively, are to be proposed for stormwater. It is anticipated that these PLRG's will establish a baseline WQLOS standard for the entire SBNEP watershed which contains the Elligraw Bayou Drainage basin. However, it may be prudent to wait for adoption and implementation of a WQCIP until such PLRG's are formally proposed by SBNEP, adopted by SWFWMD, and assessed within the context of the entire SBNEP Watershed by the Sarasota County Pollutant Loading Model.

Therefore, it is recommended that Sarasota County proceed with the implementation of the FPCIP identified under Alternative No. 3 but wait for final adoption of the PLRG's before proceeding with modification and/or implementation of the proposed WQCIP. Discussions with the Sarasota County Stormwater Environmental Utility and the Southwest Florida Water Management District has yielded a consensus that FPCIP Alternative No. 3 is preferred because it also contains the most significant provisions to enhance water quality. Implementation of this proposed FPCIP and its interim water quality enhancement components are expected to compliment the development and implementation of the subsequent WQCIP. Alternative No. 3 is also considered as cost effective as Alternative 2 and more cost effective than Alternative 1.

BIBLIOGRAPHY

Camp Dresser & McKee (CDM) (1992). Watershed Management Model: WMM/NPDES User's Manual Version 3.10.

Camp Dresser & McKee (CDM) (1987). Sarasota County Stormwater Master Plan.

Corps of Engineers, U.S. Army (1973). Floodplain information - South Creek, North Creek, Catfish Creek, Clower Creek, Elligraw Bayou and Elligraw Bayou - Sarasota County, Florida.

Federal Emergency Management Agency (1992). Flood Insurance Study for Sarasota County, Florida.

Florida Department of Environmental Regulation (1988). Florida Nonpoint Source Assessment, Volume 1

Florida Stormwater LOS Committee (1993). Stormwater Management Levels of Service, Rough Draft.

Sarasota Bay National Estuary Program (1993). Framework for Action.

Sarasota County (1972). Ordinance 72-37.

Sarasota County (1993). Comprehensive Plan Amendment RU-24.

Sarasota County (1993). National Pollutant Discharge Elimination System - Part 2 Permit Application.

Smally, Wellford & Naiven, Inc. (1969). Elligraw Bayou Basin Flood Control Study.

Smally, Wellford & Naiven, Inc. (1961). Sarasota County Coastal Basins Flood Control Study.

Soil Conservation Service (1985). Sarasota County Soil Survey Manual.

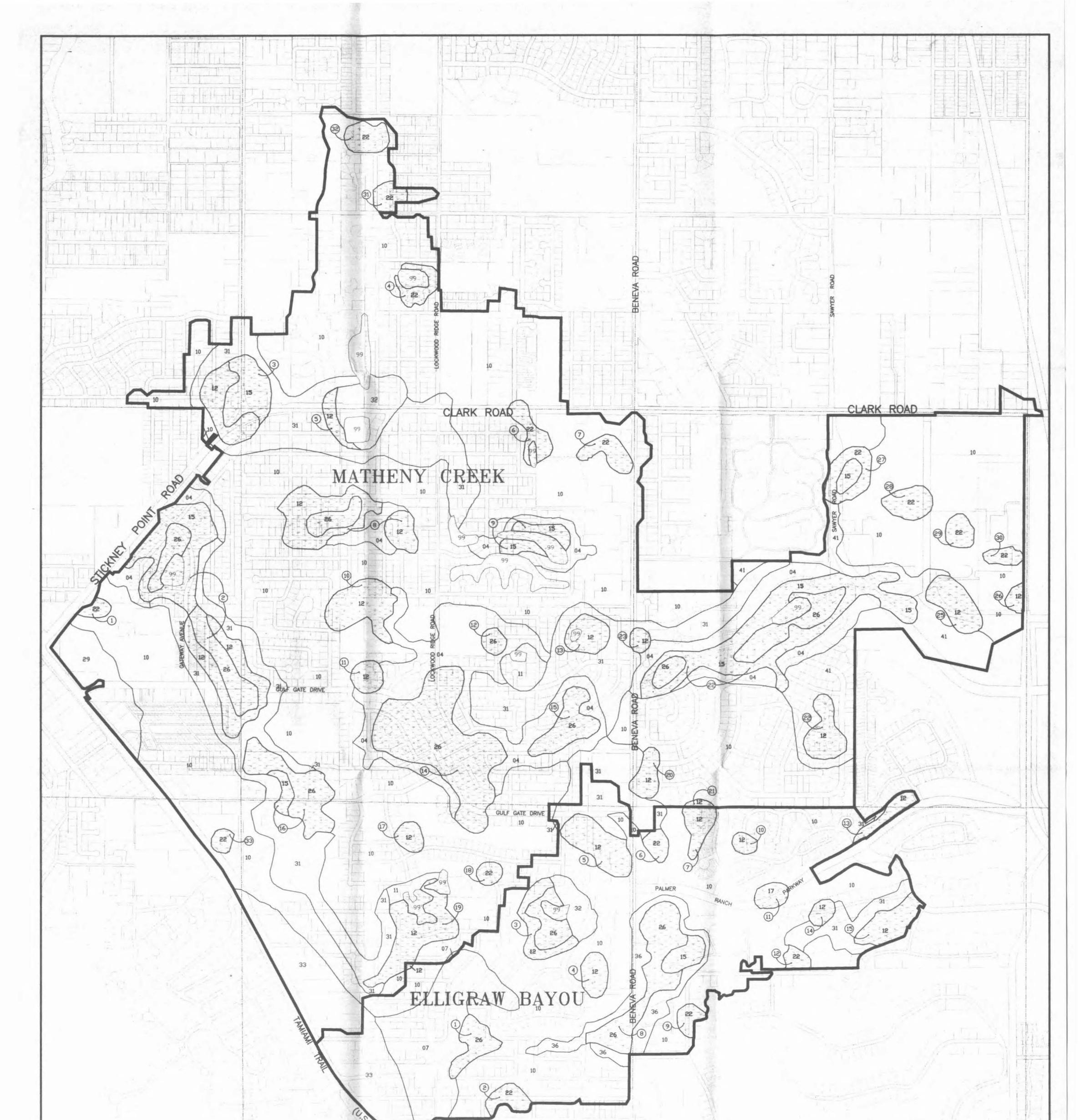
Soil Conservation Service (1993). Elligraw Bayou Watershed - Flood Plain Management Plan

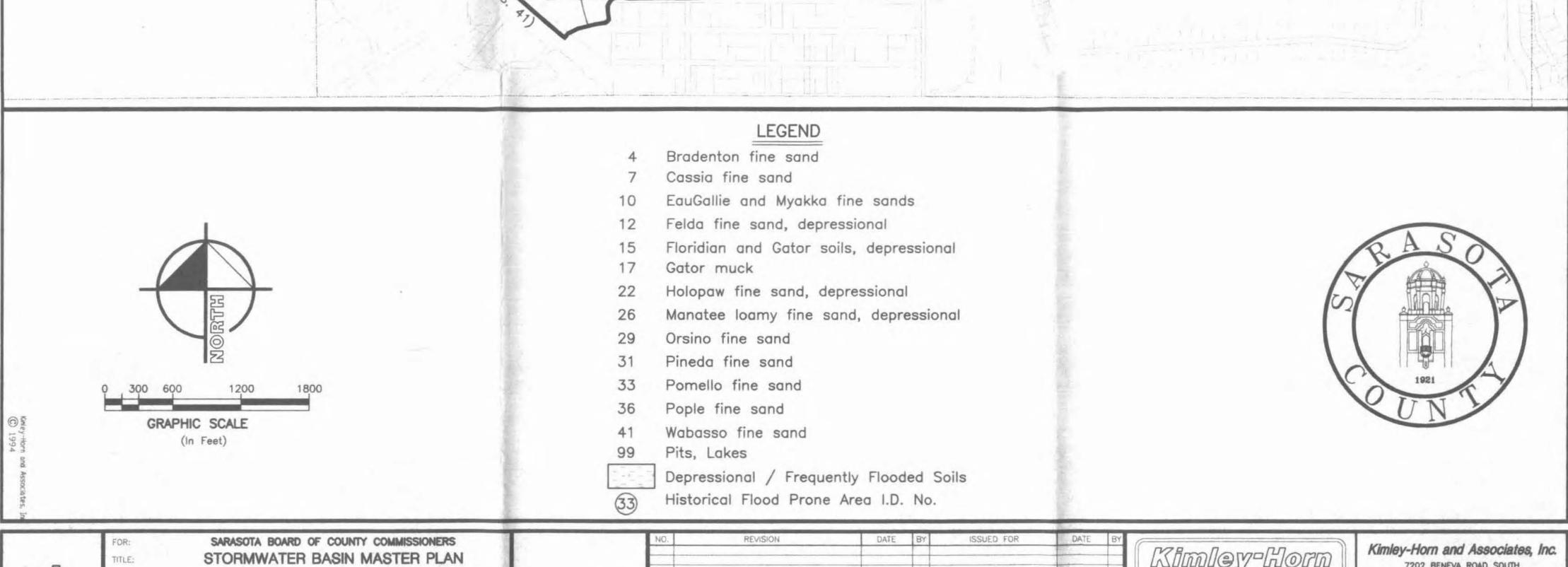
Southwest Florida Water Management District (1990). Management and Storage of Surface Waters - Permit Information Manual.

State of Florida (1993). Chapter 17-40, Florida Administrative Code, Water Policy.

DEVELOPMENT PLANS

Residential Developments


- 1. Ballantrae Condominium
- 2. Church site at Beneva Road and Gulf Gate Drive
- 3. Gulf Gate Woods
- 4. Mira Lago
- 5. Prestancia


Commercial Developments

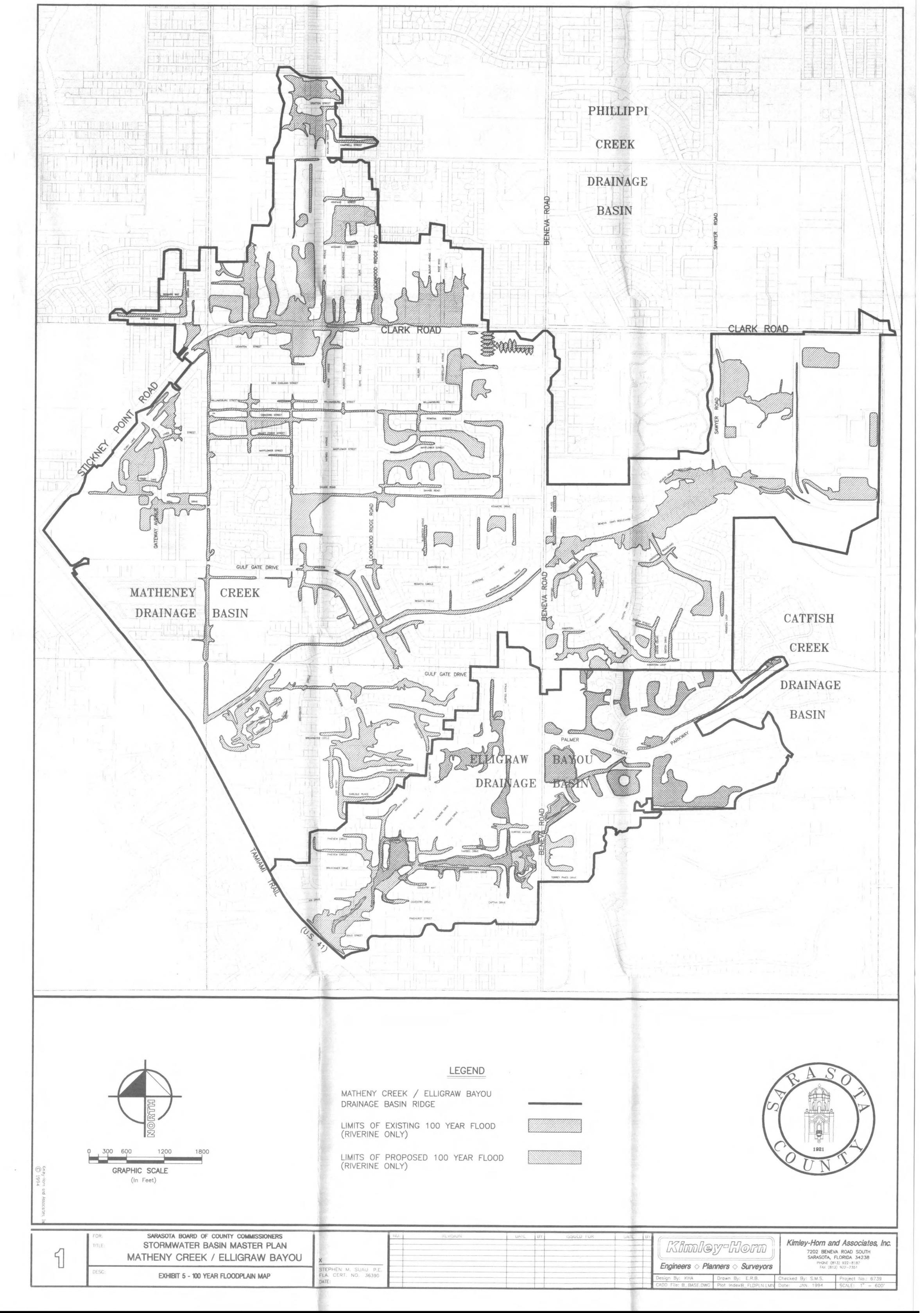
1. Robb & Stuckey Furniture Store

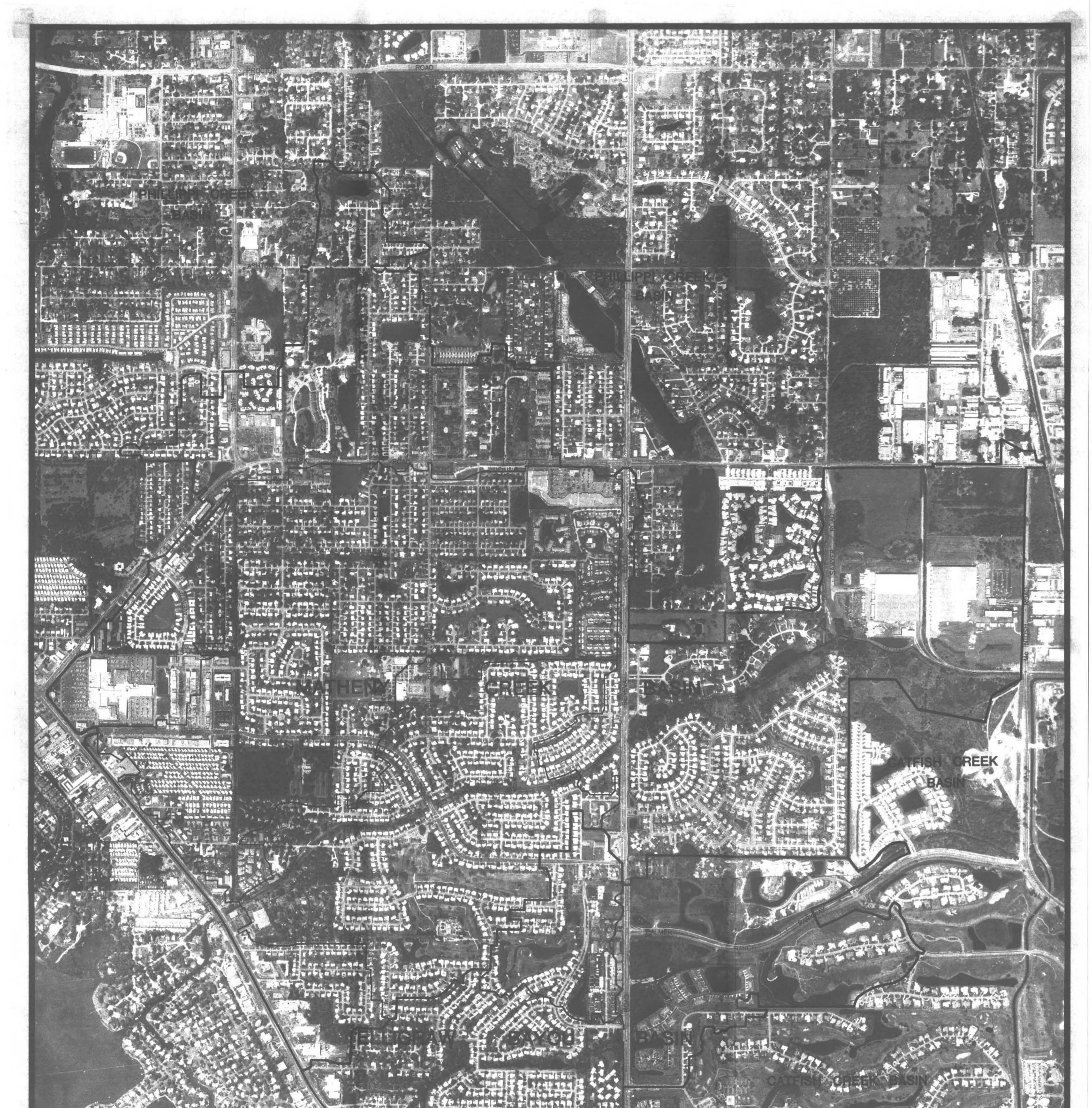
Major Roadway Corridors

- 1. U.S. 41
- 2. Beneva Road (from Gulf Gate Drive to Country Club of Sarasota)
- 3. Palmer Ranch Parkway (from Beneva Road to McIntosh Road)

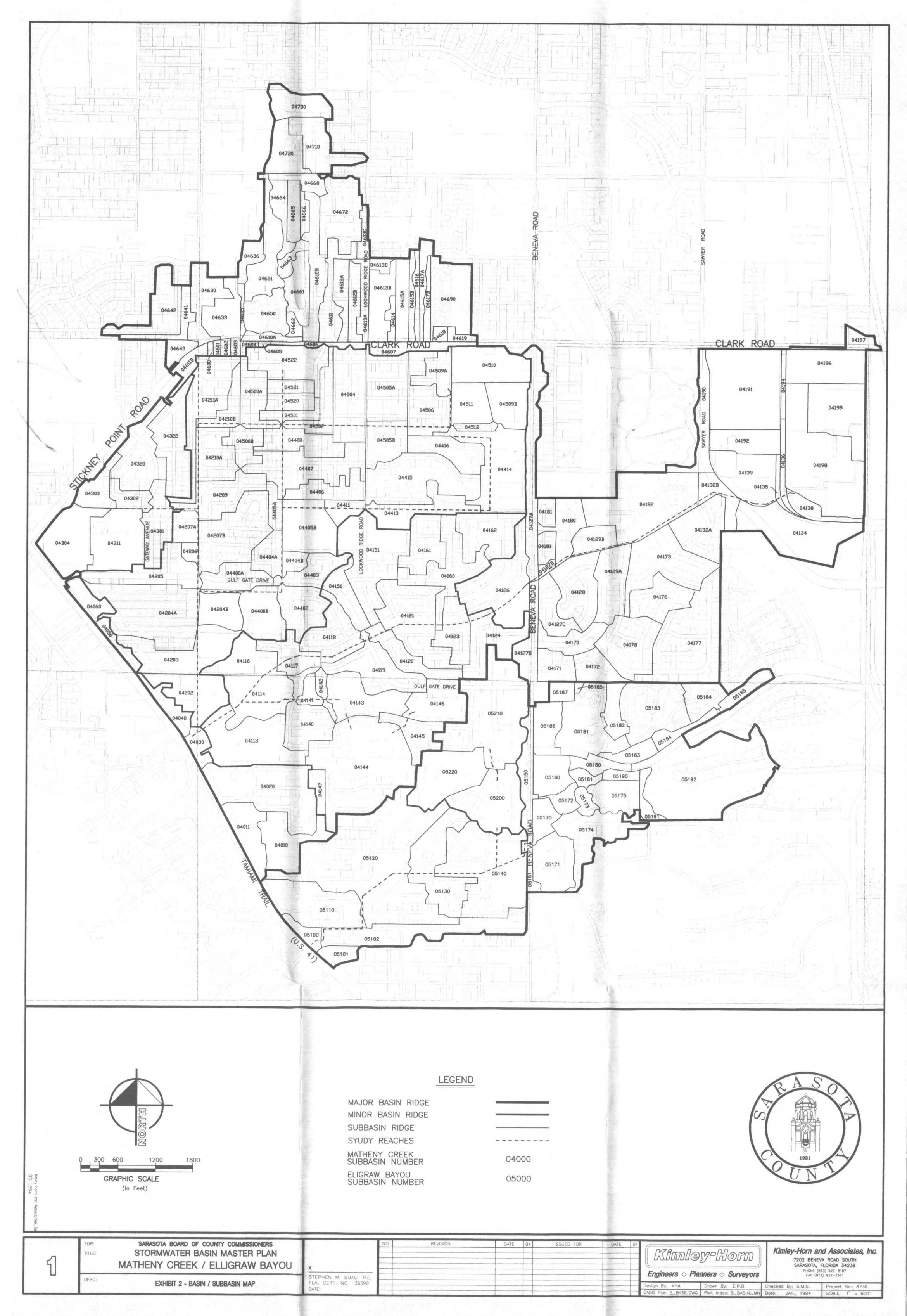
 FOR
 SAVASULA BOARD OF COUNTY COMMISSIONERS

 TITLE:
 STORMWATER BASIN MASTER PLAN MATHENY CREEK / ELLIGRAW BAYOU

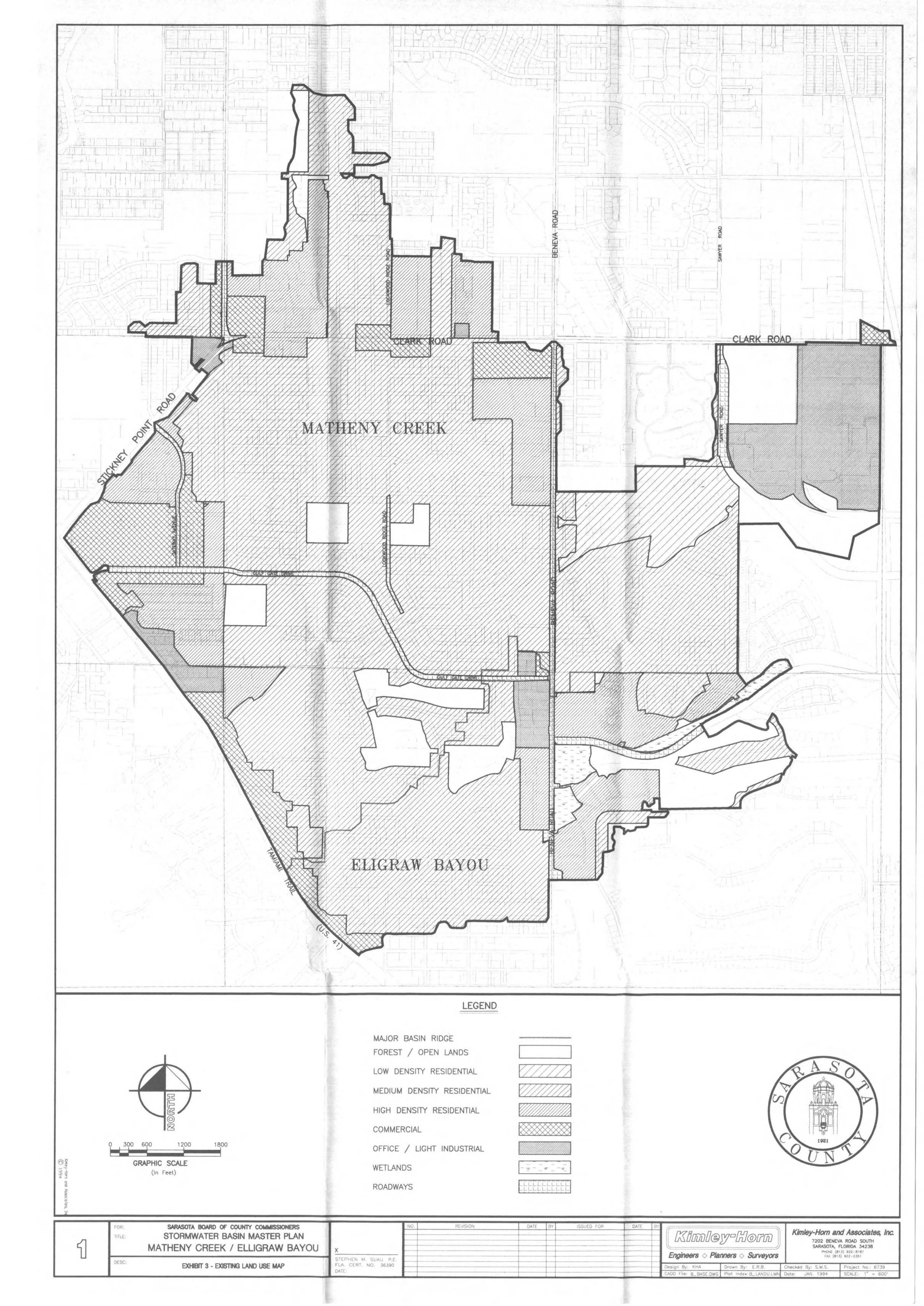

 DESC:
 Exhibit 4 - SCS SOILS MAP


 X

 Desc:
 Exhibit 4 - SCS SOILS MAP


 X

 Design By:
 KHA
 Drawn By:
 E.R.B.
 Checked By:
 SM.S.
 Project No.: 6739 DATE:



N.T.S.	LEGEND MAJOR BASIN RIDGE MINOR BASIN RIDGE LINE			BAS 1921 UNI
FOR: SARASOTA BOARD OF COUNTY COMMISSIONERS STORMWATER BASIN MASTER PLAN MATHENEY CREEK / ELLIGRAW BAYOU DESC: AFRIAL WEACH DELINEATIONS		DATE BY ISSUED FOR DATE	BY KIIMI@YPHOPM Engineers ◇ Planners ◇ Surveyors	Kimley-Horn and Associates, I 7202 BENEVA ROAD SOUTH SARASOTA, FLORIDA 34238 PHONE (813) 922-8187 FAX (813) 922-2351

and a second stand for the second

ELLIGRAW BAYOU - SUBBASIN HYDROLOGIC INVENTORY

SUBBASIN NO. 05100 05101 05102 05110 05120 05130 05140	AREA (acres) 3.62 3.78 21.79 21.05 69.92 20.92 36.74 177.82	DCIA (acres) 0.00 1.26 6.74 11.58 3.81 7.89	NON-DCIA (acres) 2.72 2.64 2.94 3.41 18.34 6.47 8.99	PERVIOUS (acres) 0.90 1.14 17.59 10.90 40.00 10.64 19.86	CURVE NUMBER 92.3 91.1 78.3 80.5 82.2 83.7 82.2	TC (min.) 10 72 37 37 31 32
05150 05161 05163 05164 05165 05170 05171 05172 05173 05174 05175 05180 05181 05182 05183 05184 05185 05186 05187 05191 05192		6.70 1.56 3.94 0.12 0.13 0.26 0.08 1.36 2.95 1.28 0.83 2.07 4.13 1.68 4.58 1.82 8.32 1.89 0.14 5.73 0.85 2.40 10.60	0.00 0.00 0.00 0.00 0.00 0.00 0.29 2.99 0.85 0.73 1.93 1.32 0.00 3.18 1.31 3.22 1.38 0.00 0.00 0.00 0.00 0.00 0.00 3.18 1.31 3.22 1.38 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.60 0.60 0.00 0.60 0.00 0.60 0.00	$\begin{array}{c} 1.93\\ 0.96\\ 4.49\\ 2.28\\ 4.38\\ 3.71\\ 1.54\\ 3.47\\ 6.76\\ 1.42\\ 1.10\\ 11.74\\ 3.50\\ 2.77\\ 12.02\\ 2.65\\ 7.99\\ 3.92\\ 0.37\\ 2.45\\ 0.58\\ 1.67\\ 0.57\\ 37.64 \end{array}$	75.0 75.0 75.0 75.0 75.0 75.0 75.0 76.8 82.0 82.0 83.6 83.6 84.2 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0	42 24 29 60 27 13 10 102 34 10 10 33 22 15 15 15 15 15 15 15 15 15 5 15
05200 05210 05220	19.85 37.97 19.25 77.07	8.65 16.59 2.37	2.13 4.98 2.01	9.07 16.40 14.87	79.4 80.4 77.7	22 65 28

459.66

	I.D.	NO.	SIZE	Түре	LENGTH (FT.)	INV U.S.	ERT D.S.	LOCATION
ELLIGRAW BAYOU MAIN	101	2	12'x 8' 40"x 65"	RC BOX CMPA	110 1,130.6	-1.4 8.12	-1.4 0.00	U.S. 41 1,150' UPSTREAM OF U.S.41
(Canal 11-209 Lower)	120	1	-	WLCS EB-1	-	10.5	-	1,165' UPSTREAM OF U.S.41
(Canal 11-208 Upper)	130	1	40"x 65"	СМРА	75	9.1	8.6	BILTMORE DRIVE
	140	1	-	WLCS EB-2	-	11.1	-	500' UPSTREAM OF BILTMORE DR.
	150	1	-	WLCS EB-3	-	12.0	-	2,000' UPSTREAM OF BILTMORE DR. BENEVA RD.
	151	3	8'x 8' 72"	RC BOX RCP	79 40	7.80	7.67 8.03	BALLANTRAE DRIVE
	163	1	48"	RCP	230	12.97	12.81	PALMER RANCH PARKWAY
	165	1	48"	RCP	150	14.73	14.63	MIRA LAGO ENTRANCE
GULF GATE LATERAL	200	1	40" x 65"	СМРА	94	9.78	9.90	CURTISS AVENUE
(Canal 11-210)	200	1	-	WLCS GGL-1	-	11.5	-	
	210	1	40"x 65"	СМРА	109	11.17	10.64	CURTISS AVENUE
	220	1	24"x 36"	СМРА	156	13.40	11.76	

ELLIGRAW BAYOU - BASIN MASTER PLAN

INVENTORY OF STRUCTURES

ſ

THIS IS TO CERTIFY THAT THE ENCLOSED ENGINEERING CALCULATIONS WERE PERFORMED BY ME OR UNDER MY DIRECT SUPERVISION.

. . .

Ill Sam

STEPHEN M. SUAU, P.E. #36309

DATE: 8/9/94

EXISTING CONDITIONS

.

.

•

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94

CONTROL PARAMETERS

START TIME: .00 END TIME: 48.00

TO TIME (hours)	SIMULATION INC (secs)	PRINT INC (mins)
100.00	1.00	15.00

RUNOFF	HYDROGRAPH	FILE:	DEFAULT
OFFSITE	HYDROGRAPH	FILE:	DEFAULT
BOUNDAI	RY DATABASE	FILE:	NONE

NOTE:

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		R/TM/STR c/hr/af)
100	TIME	1.500	.000	.000	.000	1.500 1.500	.000 100.000
101	AREA	1.500	.000	.000	.000	1.500 9.000 10.000 11.000 12.000 13.000	.000 .060 .190 .870 2.500 4.750
102	AREA	1.500	.000	.000	.000	$\begin{array}{c} 1.500 \\ 8.300 \\ 9.000 \\ 10.000 \\ 11.000 \\ 12.000 \\ 13.000 \\ 14.000 \end{array}$.001 .002 .060 .120 .860 2.140 3.360 7.060
104	AREA	6.620	.000	.000	.000	9.000 10.000 11.000 12.000 13.000 14.000	.110 .230 .300 .400 1.110 2.470
106	AREA	8.100	.000	.000	.000	11.000 12.000 13.000 14.000	.030 .400 1.120 2.480
108	AREA	8.100	.000	.000	.000	11.000 12.000 13.000 14.000 15.000	.140 .170 .620 2.230 3.060
110	AREA	9.700	.000	.000	.000	9.700 11.000 12.000 13.000 14.000 15.000	.070 .090 .180 .630 2.240 3.060

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		R/TM/STR c/hr/af)
120	AREA	10.540	.000	.000	.000	9.400 11.000 12.000 13.000 14.000 15.000 16.000	1.000 1.051 2.517 4.192 9.681 16.480 36.096
130	AREA	10.540	.000	.000	.000	9.000 11.000 14.000 15.000 15.500 16.000	.200 .247 .665 2.741 3.729 5.006
140	AREA	11.080	.000	.000	.000	11.000 14.000 15.000 16.000	2.380 4.338 6.464 13.794
150	AREA	12.000	.000	.000	.000	8.000 12.000 16.000 17.000	.126 .243 .371 .402
151	AREA	12.000	.000	.000	.000	16.600 17.600	.000
157	AREA	12.000	.000	.000	.000	16.600 17.600	.000 .000
158	AREA	12.000	.000	.000	.000	17.000 18.000	.000
159	AREA	12.000	.000	.000	.000	17.000 18.000	.000
160	AREA	14.790	.000	.000	.000	14.000 15.000 15.500 16.000 16.500	2.090 3.785 4.719 5.727 6.603

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		AR/TM/STR ac/hr/af)
161	AREA	12.000	.000	.000	.000	17.000 18.000	.000 .000
162	AREA	12.000	.000	.000	.000	18.000 19.000	.000
163	AREA	12.970	.000	.000	.000	15.000 16.000 16.500 17.000	.540 1.000 1.240 1.520
164	AREA	14.630	.000	.000	.000	18.500 19.500	.000 .000
165	AREA	14.730	.000	.000	.000	14.000 15.000 16.000 17.000	.020 .130 .820 1.930
170	ÀREA	15.000	.000	.000	.000	15.000 15.500 16.000 16.500	.842 1.235 1.635 2.984
171	AREA	13.720	.000	.000	.000	13.500 14.000 15.000 16.000 17.000	1.620 1.840 2.280 2.650 3.900
173	AREA	14.180	.000	.000	.000	14.000 15.000 16.000 17.000 18.000	.690 .780 .860 .940 1.110
175	AREA	14.000	.000	.000	.000	14.000 15.000 16.000 17.000	3.150 3.420 3.760 4.400

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)	STAGE A (ft) (a	R/TM/STR c/hr/af)
180	AREA	14.550	.000	.000	.000	14.500 17.500	.606 .862
181	AREA	14.730	.000	.000	.000	15.000 20.000	3.566 5.138
182	AREA	16.200	.000	.000	.000	15.500 20.000	1.621 2.452
183	AREA	16.200	.000	.000	.000	15.500 20.000	3.021 4.307
183 A	AREA	14.710	.000	.000	.000	14.710 20.000	.000 .002
184	AREA	16.500	.000	.000	.000	16.500 20.500	.706 1.019
185A	STRG	14.730	.000	.000	.000	14.730 19.000	.000 .001
185B	AREA	14.730	.000	.000	.000	15.000 20.000	.144 .305
186	AREA	14.730	.000	.000	.000	14.500 18.500	.490 .973
187	AREA	16.430	.000	.000	.000	16.000 17.500 17.800	.395 .423 .735
190	AREA	12.000	.000	.000	.000	18.000 19.000	.000 .000
191	AREA	14.940	.000	.000	.000	14.500 18.000	2.130 2.890
192	AREA	14.910	.000	.000	.000	14.500 18.000	7.740 9.500
200	AREA	11.510	.000	.000	.000	11.500 15.000 16.000 17.000	1.614 2.183 2.803 5.465

٠

and the second second

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		R/TM/STR c/hr/af)
210	AREA	11.510	.000	.000	.000	11.500 15.000 16.000 17.000 18.000	.589 1.286 2.073 3.690 30.610
220	AREA	13.400	.000	.000	.000	13.400 14.000 15.000 16.000 17.000	2.140 2.280 2.680 4.020 8.630

.

.

Advanced In Co	terconnected pyright 1989	Channel & Po , Streamline	ond Routing Technologie	(adICPR Ver 1 s, Inc.	.40)
ELLIGRAW BA 04-01-94	YOU - BASIN	MASTER PLAN	(EXISTING CC	ND.)	
FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : CREST EL. (ft): RGHT SS (h/v):	POSITIVE AN 11.500 BTM 15.000 .600 NUM	D NEGATIVE F	LOWS ALLOWED : 35.000 : 999.000	D EQ.) LEFT SS (h/v) WEIR COEF.	: 15.000 : 2.600
FROM NODE : TO NODE :	9.000 NU	MBER X-Y PTS	LOWS ALLOWED : 9.000		: 999.000 : 1.000
	X-VAL (ft) .000 22.000 27.000 28.000 40.000 94.000 134.000 182.000 185.000	Y-VAL (ft) 11.300 11.000 9.500 9.000 8.999 10.000 11.000 11.300		· .	
		AREA (sf) P .00 .03 35.04 83.30 216.80 268.55 184657.90 185582.90	ERIM (ft) TO .00 54.04 86.04 107.14 160.25 185.27 185.27 185.27	PWD (ft) .00 54.04 86.02 107.00 160.00 185.00 185.00 185.00	

NOTE:

and and a second s

Advanced I	Interconnected Copyright 1989	Channel & , Streamlin	Pond Routin Ne Technolog	ng (adICPR Ve jies, Inc.	r 1.40)
ELLIGRAW E 04-01-94	BAYOU - BASIN	MASTER PLAN	(EXISTING	COND.)	
>REACH NAME FROM NODE TO NODE REACH TYPE FLOW DIRECTION CREST EL. (ft) WEIR COEF.	: 11.300 NU	EIR/GATE/OR D NEGATIVE MBER X-Y PI GATE COEF	FLOWS ALLOW	IED	ft): 999.000 EM.: 1.000
	X-VAL (ft) .000 100.000 280.000 330.000 380.000 430.000 480.000 530.000 580.000 630.000	Y-VAL (ft) 14.000 13.000 12.200 11.900 11.500 11.500 11.500 12.300 12.900 13.500 14.000			
	DEPTH (ft) .000 .200 .600 .900 1.000 1.600 1.700 2.200 2.700 999.000 1004.000	AREA (sf) .00 10.00 65.00 127.81 153.63 372.63 419.92 687.00 1002.00 678486.00 681886.00	PERIM (ft) .00 100.00 175.01 243.76 272.51 457.52 488.35 580.02 680.03 680.03 680.03	TOPWD (ft) .00 100.00 175.00 243.75 272.50 457.50 488.33 580.00 680.00 680.00 680.00	

.

NOTE:

>

··

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 112 FROM NODE : 120 TO NODE : 110 : IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 14.000 NUMBER X-Y PTS: 5.000 OPENING (ft): 999.000 WEIR COEF.: 2.000 GATE COEF .: .600 NUMBER OF ELEM.: 1.000 X-VAL (ft) Y-VAL (ft) .000 15.300 50.000 15.000 130.000 14.000 220.000 13.999 420.000 14.500 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) .00 .00 .000 .00 .05 105.15 .001 90.42 90.42 .501 1.001 330.00 330.00 280.15 370.01 370.00 398.65 1.301 420.01 420.00 999.000 419432.20 420.01 420.00 1004.000 421532.20 420.01 420.00

NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04 - 01 - 94>>REACH NAME : 140 FROM NODE : 140 TO NODE : 130 : IRREGULAR WEIR/GATE/ORIFICE, MAVIS EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 11.080 NUMBER X-Y PTS: 19.000 OPENING (ft): 999.000 WEIR COEF .: 3.130 GATE COEF .: .600 NUMBER OF ELEM.: 1.000 X-VAL (ft) Y-VAL (ft) .000 16.000 15.000 15.000 21.000 13.920 29.000 12.210 34.000 11.570 39.000 11.510 39.010 11.080 40.500 11.079 40.510 11.530 44.000 11.540 44.010 12.730 52.000 12.750 53.500 13.410 55.500 13.430 55.510 14.070 58.000 14.100 65.000 15.000 85.000 15.500 105.000 15.000 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) .000 .00 .00 .00 .001 .00 1.49 1.49 .431 .65 2.35 1.51 .451 .69 4.04 3.18 .461 .75 8.36 7.50 .491 1.01 10.89 10.00 1.131 9.01 16.57 15.01 1.651 17.45 19.58 17.44 1.671 17.88 27.67 25.53 2.331 36.24 32.46 30.11 2.351 36.86 34.56 32.21 2.841 53.21 37.39 34.51 2.991 58.45 38.39 35.34 3.021 59.55 41.05 38.00 3.921 99.15 53.19 50.00 4.421 136.02 100.72 97.50 4.921 186.65 108.23 105.00 999.000 104564.90 108.23 105.00 1004.000 105089.90 108.23 105.00

NOTE: TUCKERSTOWN WEIR

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 150 FROM NODE : 150 TO NODE : 140 REACH TYPE : IRREGULAR WEIR/GATE/ORIFICE, MAVIS EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 12.000 NUMBER X-Y PTS: 11.000 OPENING (ft): 999.000 WEIR COEF.: 3.130 GATE COEF .: .600 NUMBER OF ELEM.: 1.000 X-VAL (ft) Y-VAL (ft) 15.500 .000 50.000 15.010 55.000 15.000 55.010 13.510 85.000 13.500 85.010 12.000 95.000 11.999 95.010 13.500 125.000 13.510 125.010 16.000 145.000 16.100 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) .000 .00 .00 .00 9.99 .001 .00 15.01 1.501 12.99 10.01 1.511 15.41 72.97 69.99 3.001 119.70 75.95 70.01 120.43 3.011 80.96 75.01 3.501 169.43 131.45 125.01 4.001 231.93 131.95 125.01 4.101 245.44 151.94 145.00 999.000 144505.80 151.94 145.00 1004.000 145230.80 151.94 145.00

NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 193 FROM NODE : 192 TO NODE : 191 : TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 15.500 BTM. WIDTH (ft):1025.000 LEFT SS (h/v): 5.000 RGHT SS (h/v): 5.000 OPENING (ft): 999.000 WEIR COEF .: 2.600 GATE COEF .: .600 NUMBER OF ELEM.: 1.000 NOTE: >>REACH NAME : 160 FROM NODE : 160 TO NODE : 159 : IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 15.700 NUMBER X-Y PTS: 5.000 OPENING (ft): 999.000 WEIR COEF.: 2.600 GATE COEF .: .600 NUMBER OF ELEM.: 1.000 X-VAL (ft) Y-VAL (ft) 16.800 .000 250.000 16.000 350.000 15.700 450.000 16.000 580.000 17.000 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) .000 .00 .00 .00 .300 30.00 200.00 200.00 1.100 331.60 554.01 554.00 1.300 445.00 580.01 580.00 999.000 579111.00 580.01 580.00 1004.000 582011.00 580.01 580.00

NOTE:

and a second second

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 170 FROM NODE : 170 TO NODE : 157 : IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 15.200 NUMBER X-Y PTS: 5.000 OPENING (ft): 999.000 WEIR COEF .: 2.600 GATE COEF .: .600 NUMBER OF ELEM.: 1.000 X-VAL (ft) Y-VAL (ft) .000 17.000 30.000 16.000 50.000 15.200 80.000 16.000 100.000 17.000 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) .00 .000 .00 .00 .800 20.00 50.03 50.00 1.800 95.00 100.07 100.00 999.000 99815.00 100.07 100.00 1004.000 100315.00 100.07 100.00

NOTE:

الربين الموالية

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 101 FROM NODE : 101 TO NODE : 100 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 144.000 96.000 RISE (in): LENGTH (ft): 110.000 U/S INVERT (ft): -1.400 D/S INVERT (ft): -1.400 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 MANNING N: .013 .500 # OF CULVERTS: 2.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 11.200 CREST LN. (ft): 100.000 WEIR COEF.: 2.800 RESERVED: ******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* WEIR COEF.:******* RESERVED: ******* RESERVED: ******* RESERVED: ******* NOTE: U.S. 41 CROSSING >>REACH NAME : 102 FROM NODE : 102 : 101 TO NODE REACH TYPE : CULVERT, ARCH w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 65.000 RISE (in): 40.000 LENGTH (ft): 198.500 U/S INVERT (ft): 1.410 D/S INVERT (ft): .000 MANNING N: .024 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED

NOTE: BASED UPON RECORD DRAWING

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 104 FROM NODE : 104 TO NODE : 102 REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA :
 SPAN (in):
 24.000
 RISE (in):
 24.000

 U/S INVERT (ft):
 6.620 D/S INVERT (ft):
 5.380

 ENTRNC LOSS:
 .500 # OF CULVERTS:
 1.000
 LENGTH (ft): 36.000 MANNING N: .024 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):9999.000 CREST LN. (ft): .000 WEIR COEF.: 2.800 RESERVED: ******* RESERVED: ****** RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* WEIR COEF.:******* RESERVED: ******* RESERVED:******* RESERVED: ******* NOTE: >>REACH NAME : 108 FROM NODE : 108 TO NODE : 106 REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 18.000 RISE (in): 18.000 LENGTH (ft): 43.000 U/S INVERT (ft): 7.580 D/S INVERT (ft): 7.230 MANNING N: .024 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 999.000 CREST LN. (ft): .000 WEIR COEF .: 2.800 RESERVED:******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED: *******

NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 130 FROM NODE : 130 : 120 TO NODE REACH TYPE : CULVERT, ARCH w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA :
 SPAN (in):
 65.000
 RISE (in):
 40.000

 U/S INVERT (ft):
 9.100 D/S INVERT (ft):
 8.600

 ENTRNC LOSS:
 .500 # OF CULVERTS:
 1.000
 RISE (in): 40.000 LENGTH (ft): 75.000 MANNING N: .024 POSITION A : RECTANGULAR RUADWAI/ DENT CREST EL. (ft): 14.300 CREST LN. (ft): 50.000 DESERVED:******* RESERVED:******* WEIR COEF.: 2.800 RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******CREST LN. (ft):*******WEIR COEF.:*******RESERVED:*******RESERVED:*******RESERVED:******* NOTE: BILTMORE ROAD CROSSING >>REACH NAME : 151 FROM NODE : 151 TO NODE : 150 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 96.000 RISE (in): 96.000 LENGTH (ft): 79.000 U/S INVERT (ft): 7.800 D/S INVERT (ft): 7.670 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 3.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 19.100 CREST LN. (ft): 50.000 RESERVED:******* RESERVED:******* WEIR COEF.: 2.800 RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):****** CREST LN. (ft):****** RESERVED:****** RESERVED:******* WEIR COEF .: ******* RESERVED: *******

NOTE: BENEVA ROAD CROSSING

the state of the second s

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 158 : 158 FROM NODE : 157 TO NODE REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 72,000 RISE (in): 72.000 LENGTH (ft): 40.000 U/S INVERT (ft): 7.970 D/S INVERT (ft): 8.030 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 : RECTANGULAR ROADWAY/BERM WEIR POSITION A CREST EL. (ft): 16.500 CREST LN. (ft): 50.000 WEIR COEF.: 2.800 RESERVED: ******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):****** CREST LN. (ft):******* WEIR COEF .: ******* RESERVED:******* RESERVED: ******* RESERVED:******* NOTE: DATA BASED UPON PROJECT SURVEY >>REACH NAME : 163 FROM NODE : 163 TO NODE : 162 REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA 48.000 RISE (in): 48.000 SPAN (in): LENGTH (ft): 230.000 U/S INVERT (ft): 12.970 D/S INVERT (ft): 12.810 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 MANNING N: .013 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 19.000 CREST LN. (ft): 50.000 WEIR COEF .: 2.800 RESERVED: ******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED: *******

NOTE: PALMER RANCH PARKWAY CROSSING

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 165 FROM NODE : 165 TO NODE : 164 REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA . SPAN (in): 48.000 RISE (in): 48,000 LENGTH (ft): 150.000 U/S INVERT (ft): ENTRNC LOSS: 14.730 D/S INVERT (ft): 14.630 MANNING N: .013 .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 23.000 CREST LN. (ft): 50.000 WEIR COEF.: 2.800 RESERVED: ******* RESERVED:******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******** WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED: ******* NOTE: MIRA LAGO ENTRANCE >>REACH NAME : 182 FROM NODE : 182 TO NODE : 181 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): RISE (in): 38.000 24.000 LENGTH (ft): 89.000 U/S INVERT (ft): 16.200 D/S INVERT (ft): 15.000 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED

NOTE:

Advanced In Coj	terconnected Channel & Pond Routing (adICPR Ver 1.40) pyright 1989, Streamline Technologies, Inc.
ELLIGRAW BAY 04-01-94	YOU - BASIN MASTER PLAN (EXISTING COND.)
FROM NODE : TO NODE : REACH TYPE :	183 183 182 CULVERT, ELLIPTICAL w/ ROADWAY POSITIVE AND NEGATIVE FLOWS ALLOWED OFF
CULVERT DATA : SPAN (in): U/S INVERT (ft): ENTRNC LOSS:	38.000RISE (in):24.000LENGTH (ft):104.00015.100D/S INVERT (ft):15.100MANNING N:.013.500# OF CULVERTS:1.000
POSITION A :	NOT USED
POSITION B :	NOT USED
NOTE:	
FROM NODE TO NODE REACH TYPE	164 CULVERT, ELLIPTICAL w/ ROADWAY POSITIVE AND NEGATIVE FLOWS ALLOWED
CULVERT DATA : SPAN (in): U/S INVERT (ft): ENTRNC LOSS:	30.000RISE (in):19.000LENGTH (ft):307.00014.710 D/S INVERT (ft):14.100MANNING N:.0131.100# OF CULVERTS:1.000
POSITION A :	NOT USED
POSITION B :	NOT USED
NOTE :	

and the second sec

. _B____

.

Advanced Int Coj	terconnected Channel & Pond Routing (adICPR Ver 1.40) pyright 1989, Streamline Technologies, Inc.
ELLIGRAW BAY 04-01-94	YOU - BASIN MASTER PLAN (EXISTING COND.)
FROM NODE : TO NODE : REACH TYPE :	184 184 183 CULVERT, ELLIPTICAL w/ ROADWAY POSITIVE AND NEGATIVE FLOWS ALLOWED OFF
U/S INVERT (IC):	38.000RISE (in):24.000LENGTH (ft):94.00016.500 D/S INVERT (ft):15.100MANNING N:.013.500# OF CULVERTS:1.000
POSITION A :	NOT USED
POSITION B :	NOT USED
NOTE :	
REACH TYPE :	185A 181 CULVERT, CIRCULAR w/ ROADWAY POSITIVE AND NEGATIVE FLOWS ALLOWED
CULVERT DATA : SPAN (in): U/S INVERT (ft): ENTRNC LOSS:	30.000RISE (in):30.000LENGTH (ft):160.00013.960 D/S INVERT (ft):13.480MANNING N:.013.500 # OF CULVERTS:1.000
POSITION A :	NOT USED
POSITION B :	NOT USED
NOTE:	

•

.

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 185B FROM NODE : 185B TO NODE : 185a REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 15.000 RISE (in): 15.000 LENGTH (ft): 73.000 U/S INVERT (ft): 13.480 D/S INVERT (ft): 13.960 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED NOTE: >>REACH NAME : 186 FROM NODE : 186 TO NODE : 181 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 87.000 U/S INVERT (ft): 14.460 D/S INVERT (ft): 14.440 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED NOTE:

- 181 m

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 210 : 210 : 200 FROM NODE TO NODE REACH TYPE : CULVERT, ARCH w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 65.000 RISE (in): 40.000 LENGTH (ft): 109.000 U/S INVERT (ft): 11.170 D/S INVERT (ft): 10.640 MANNING N: .024 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 16.560 CREST LN. (ft): 50.000 WEIR COEF .: 2.800 RESERVED:******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* WEIR COEF .: ******* RESERVED: ******* RESERVED:******* RESERVED: ******* NOTE: >>REACH NAME : 220 FROM NODE : 220 TO NODE : 210 REACH TYPE : CULVERT, ARCH w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA . SPAN (in): U/S INVERT (ft): ENTRNC LOSS: 36.000 RISE (in): 24.000 LENGTH (ft): 156.000 13.400 D/S INVERT (ft): 11.760 MANNING N: .024 .500 # OF CULVERTS: 1.000 POSITION A CREST EL. (ft): 17.500 CREST LN. (ft): 25.000 : RECTANGULAR ROADWAY/BERM WEIR WEIR COEF.: 2.600 RESERVED: ******* RESERVED:******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* RESERVED:******* RESERVED:******* WEIR COEF .: ******* RESERVED: ******* RESERVED: *******

NOTE:

and the second s

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04 - 01 - 94>>REACH NAME : 120 FROM NODE : 120 TO NODE : 102 REACH TYPE : DROP STRUCTURE w/ ARCH CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 65.000 RISE (in): 40.000 LENGTH (ft): 932.100 U/S INVERT (ft): 8.120 D/S INVERT (ft): 1.410 MANNING N: .024 ENTRNC LOSS: 1.300 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 10.540 CREST LN. (ft): 3.000 OPENING (ft): WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: .640 1.000 POSITION B : TRAPEZOIDAL RISER SLOT

 CREST EL. (ft):
 11.180 BOT. WIDTH (ft):
 8.600
 SS (h/v):
 2.500

 OPENING (ft):
 999.000
 WEIR COEF.:
 3.200
 GATE COEF.:
 .600

 NOTE: BASED UPON RECORD DRAWING >>REACH NAME : 171 : 171 : 151 : DROP STRUCTURE w/ CIRC. CULVERT FROM NODE TO NODE REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 18.000 RISE (in): 18.000 LENGTH (ft): 32.000 U/S INVERT (ft): 12.510 D/S INVERT (ft): 12.100 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 13.720 CREST LN. (ft): 4.600 OPENING (ft): 1.550 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 SITION B : RECTANGULAR RIDER SHOT CREST EL. (ft): 999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B NOTE: DATA BASED ON PROJECT SURVEY

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 173 FROM NODE : 173 : 159 TO NODE : DROP STRUCTURE w/ CIRC. CULVERT REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 15.000 RISE (in): 15.000 LENGTH (ft): 32.000 U/S INVERT (ft): 12.950 D/S INVERT (ft): 12.580 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.180 CREST LN. (ft): 4.800 OPENING (ft): WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.150 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft):9999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: DATA BASED ON PROJECT SURVEY >>REACH NAME : 175 FROM NODE : 175 TO NODE : 161 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 15.000 RISE (in): 15.000 LENGTH (ft): 42.000 U/S INVERT (ft): 12.920 D/S INVERT (ft): 12.550 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.000 CREST LN. (ft): 4.900 OPENING (ft): 1.260 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000

NOTE: DATA BASED ON PROJECT SURVEY

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 180 FROM NODE : 180 : 161 TO NODE : DROP STRUCTURE w/ CIRC. CULVERT REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 54.000 RISE (in): 54.000 LENGTH (ft): 119.000 U/S INVERT (ft): 9.400 D/S INVERT (ft): 9.260 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.550 CREST LN. (ft): 18.000 OPENING (ft): 1.510 WEIR COEF .: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 16.060 CREST LN. (ft): 33.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: DATA BASED ON PROJECT SURVEY >>REACH NAME : 181A FROM NODE : 181 TO NODE : 160 REACH TYPE : DROP STRUCTURE w/ ELLP. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA
 SPAN (in):
 38.000
 RISE (in):
 24.000

 U/S INVERT (ft):
 12.920 D/S INVERT (ft):
 12.560

 ENTRNC LOSS:
 .500 # OF CULVERTS:
 1.000
 24.000 LENGTH (ft): 293.000 MANNING N: .013 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.790 CREST LN. (ft): 2.200 OPENING (ft): 1.440 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 16.230 CREST LN. (ft): 26.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000 NOTE: DATA BASED ON PROJECT SURVEY

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04 - 01 - 94>>REACH NAME : 181B FROM NODE : 181 : 180 TO NODE TO NODE : 100 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 54.000 RISE (in): 54.000 LENGTH (ft): 220.000 U/S INVERT (ft): 8.990 D/S INVERT (ft): 8.830 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 MANNING N: .013 .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.730 CREST LN. (ft): 5.950 OPENING (ft): 1.190 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 15.920 CREST LN. (ft): 26.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000 NOTE: DATA BASED ON PROJECT SURVEY : 183B : 183 : 183A >>REACH NAME FROM NODE TO NODE REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 18.000 RISE (in): 18.000 LENGTH (ft): 238.000 U/S INVERT (ft): 15.170 D/S INVERT (ft): 14.710 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 16.230 CREST LN. (ft): 3.080 OPENING (ft): WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: .530 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 18.380 CREST LN. (ft): 14.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000

NOTE: DATA BASED ON PROJECT SURVEY

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 187 FROM NODE : 187 : 181 TO NODE REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 18.000 RISE (in): U/S INVERT (ft): 13.110 D/S INVERT (ft): ENTRNC LOSS: .500 # OF CULVERTS: 18.000 LENGTH (ft): 48.000 12.140 MANNING N: .013 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 16.430 CREST LN. (ft): 1.750 OPENING (ft): 1.490 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 17.920 CREST LN. (ft): 10.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM.: 1.000 NOTE: DATA BASED UPON PROJECT SURVEY : 191 >>REACH NAME : 191 FROM NODE : 190 TO NODE REACH TYPE : DROP STRUCTURE w/ ELLP. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 76.000 RISE (in): 48.000 LENGTH (ft): 40.000 U/S INVERT (ft): 10.290 D/S INVERT (ft): 10.210 MANNING N: . 013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.940 CREST LN. (ft): 8.000 OPENING (ft): 1.330 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 16.270 CREST LN. (ft): 33.000 **OPENING** (ft): 999,000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 192 : 192 FROM NODE : 190 TO NODE REACH TYPE : DROP STRUCTURE w/ ELLP. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 76.000 RISE (in): 48.000 LENGTH (ft): 105.000 U/S INVERT (ft): 10.500 D/S INVERT (ft): 10.290 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.910 CREST LN. (ft): 18.000 **OPENING** (ft): 1.550 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 16.460 CREST LN. (ft): 33.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE : : 200 >>REACH NAME FROM NODE : 200 : 140 TO NODE REACH TYPE : DROP STRUCTURE w/ ARCH CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 65.000 RISE (in): 40.000 LENGTH (ft): 94.000 U/S INVERT (ft): 9.780 D/S INVERT (ft): 9.900 MANNING N: .024 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 11.510 CREST LN. (ft): 8.300 OPENING (ft): 999.000 WEIR COEF.: 3.200 .600 NUMBER OF ELEM.: 1.000 GATE COEF .: POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 14.010 CREST LN. (ft): 8.500 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000

NOTE: DATA BASED ON PROJECT SURVEY

ententente de la constante de la c

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94

FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION :	FREE	ID NEGATIVE	FLOWS ALLOW	V ED	(ft): 6.600
		Y-VAL (ft) 8.700 7.200 8.700	.040 .040		
	DEPTH (ft) .000 1.500 1.500 6.500	AREA (sf) .00 5.25 5.25 40.25	.00 7.63 7.63	TOPWD (ft) .00 7.00 7.00 7.00 7.00	.0 152.0

. •

NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 110 FROM NODE : 110 TO NODE : 108 : IRREGULAR SECTION CHANNEL, MOMENTUM EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED OUTLET CONTROL : FREE LENGTH (ft): 315.000 U/S INVERT (ft): 9.700 D/S INVERT (ft): 7.580 1.500 MAX. DEPTH (ft): X-VAL (ft) Y-VAL (ft) N-VAL .000 10.800 .040 7.500 9.200 .040 15.000 11.100 .040 AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE DEPTH (ft) .000 .00 9.71 .00 .00 .0 1.500 13.30 292.7 12.95 1.600 11.05 13.30 13.82 363.0 1.900 15.38 13.30 629.2 15.00 6.900 90.38 13.30 15.00 12045.8

.

NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 157 FROM NODE : 157 TO NODE : 151 **REACH TYPE** : IRREGULAR SECTION CHANNEL, MOMENTUM EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED OUTLET CONTROL : FREE LENGTH (ft): 650.000 U/S INVERT (ft): 8.030 D/S INVERT (ft): 7.800 MAX. DEPTH (ft): 8.000 X-VAL (ft) Y-VAL (ft) N-VAL .000 16.500 .035 15.000 11.800 .035 20.000 10.300 .035 30.000 10.100 .035 40.000 9.000 .035 54.000 11.900 .035 62.000 16.900 .035 70.000 17.100 .035 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE .000 .00 .00 .00 .0 1.100 8.42 15.48 15.31 238.2 1.300 12.58 26.47 26.28 325.2 2.800 61.17 39.09 38.52 3501.1 2.900 65.07 39.92 39.32 3826.3 7.500 296.63 63.98 61.36 35017.0 7.900 321.30 64.73 62.00 39693.1 8.000 327.70 68.74 66.00 39411.8 8.100 334.50 68.74 70.00 40784.2 13.100 684.50 68.74 70.00 134520.3

NOTE: BASED UPON SCS CROSS-SECTION

Advanced	Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.
ELLIGRAW 04-01-94	BAYOU - BASIN MASTER PLAN (EXISTING COND.)
OUTLET CONTROL): 650,000 U/S INVERT (ft): 7 000 D/S INVERT (ct).
	X-VAL (ft) Y-VAL (ft) N-VAL .000 17.600 .035 10.000 16.200 .035 20.000 15.800 .035 25.000 11.900 .035 32.000 8.600 .035 40.000 7.000 .035 50.000 8.200 .035 60.000 11.800 .035 90.000 16.900 .035
	DEPTH (ft)AREA (sf)PERIM (ft)TOPWD (ft)CONVEYANCE.000.00.00.00.00.01.2009.6016.1916.00287.71.60016.6219.4119.11636.44.800102.8636.3634.798734.84.900106.3837.1935.599100.38.800299.6666.8163.5334603.39.200327.5479.2075.8835829.49.500350.8983.1579.7938902.89.900383.8583.1585.0045181.610.600445.1083.1590.0057825.815.600895.1083.1590.00185272.7

.

.

NOTE: BASED UPON SCS CROSS-SECTION

and the second sec

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 161 FROM NODE : 161 TO NODE : 159 : IRREGULAR SECTION CHANNEL, MOMENTUM EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED OUTLET CONTROL : FREE LENGTH (ft): 350.000 U/S INVERT (ft): 7.000 D/S INVERT (ft): 7.000 MAX. DEPTH (ft): 9.000 X-VAL (ft) Y-VAL (ft) N-VAL .000 17.600 .035 10.000 16.200 .035 20.000 .035 15.800 25.000 .035 11.900 32.000 8.600 .035 7.000 40.000 .035 50.000 8.200 .035 60.000 11.800 .035 90.000 16.900 .035 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE .000 1.200 .00 .00 .00 .0 9.60 16.19 16.00 287.7 1.600 16.62 19.41 19.11 636.4 4.800 102.86 36.36 34.79 8734.8 4.900 106.38 37.19 35.59 9100.3 8.800 299.66 63.53 66.81 34603.3 9.000 312.98 73.00 69.71 35068.8 9.200 327.54 73.00 75.88 37829.5 9.900 383.85 73.00 85.00 49278.4 10.600 73.00 445.10 63069.1 90.00 15.600 895.10 73.00 90.00 202072.2

NOTE: BASED UPON SCS CROSS-SECTION

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 : 162 >>REACH NAME FROM NODE : 162 : 161 TO NODE REACH TYPE : IRREGULAR SECTION CHANNEL, MOMENTUM EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED OUTLET CONTROL : FREE LENGTH (ft): 350.000 U/S INVERT (ft): 11.740 D/S INVERT (ft): 10.300 MAX. DEPTH (ft): 7.000 X-VAL (ft) Y-VAL (ft) .000 17.100 N-VAL .000 22.000 .035 .035 13.100 24.000 12.200 .040 31.000 11.500 .040 37.000 12.200 .040 38.000 13.500 .040 57.000 17.500 .035 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE .000 .00 .00 .0 .00 .700 4.55 13.08 13.00 83.6 1.600 17.46 16.41 15.69 676.3 2.000 24.24 19.15 18.20 1116.8 5.600 56.75 156.18 55.10 13460.6 6.000 178.60 58.69 57.00 16279.6 7.000 235.60 58.69 57.00 24992.5 12.000 520.60 58.69 57.00 91018.8

NOTE: BASED UPON PALMER RANCH RECORD DRWG

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 164 FROM NODE : 164 TO NODE : 163 REACH TYPE : IRREGULAR SECTION CHANNEL, MOMENTUM EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED OUTLET CONTROL : FREE LENGTH (ft):1700.000 U/S INVERT (ft): 14.630 D/S INVERT (ft): 12.970 MAX. DEPTH (ft): 2.000 X-VAL (ft) Y-VAL (ft) N-VAL .000 18.200 .035 24.000 13.100 .035 31.000 12.300 .060 37.000 13.300 .060 65.000 19.900 .035 89.000 22.800 .035 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE .000 .00 .00 .00 .0 .800 11.80 4.72 11.91 63.1 1.000 14.09 7.29 13.94 120.3 2.000 25.71 23.26 22.89 823.3 5.900 183.03 23.26 29075.2 57.79

NOTE: BASED UPON PALMER RANCH RECORD DRWG

287.40

510.70

955.70

23.26

23.26

23.26

65.00

89.00

89.00

67913.7

201421.7

647949.0

7.600

10.500

15.500

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94 >>REACH NAME : 190 : 190 FROM NODE : 162 TO NODE : IRREGULAR SECTION CHANNEL, MOMENTUM EQ. REACH TYPE : POSITIVE AND NEGATIVE FLOWS ALLOWED FLOW DIRECTION OUTLET CONTROL : FREE LENGTH (ft): 500.000 U/S INVERT (ft): 10.210 D/S INVERT (ft); 9.710 MAX. DEPTH (ft): 7.000 X-VAL (ft) Y-VAL (ft) N-VAL .00Ó 17.000 .060 35.000 10.000 .060 55.000 9.999 .060 90.000 17.000 .035 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE .00 .000 .00 .00 .0 .001 .01 20.00 20.00 .0 7.000 384.94 91.38 89.99 30103.5 7.001 385.03 91.38 90.00 30115.5 12.001 835.03 91.38 112281.8 90.00

NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94

REACH SUMMARY

to any production of the second s

INDEX	RCHNAME			
1	102A	102	101	TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, MAVIS EQ. IRREGULAR WEIR/GATE/ORIFICE, MAVIS EQ. TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. ULVERT, RECTANGULAR W/ ROADWAY CULVERT, ARCH W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY CULVERT, ARCH W/ ROADWAY CULVERT, RECTANGULAR W/ ROADWAY CULVERT, RECTANGULAR W/ ROADWAY CULVERT, RECTANGULAR W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY
2	104A	104	102	TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ.
3	108A	108	106	IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ.
4	112	120	110	IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ.
5		140	130	IRREGULAR WEIR/GATE/ORIFICE, FREAD EO.
6	150	150	140	IRREGULAR WEIR/GATE/ORIFICE, MAVIS EQ.
7	140 150 193	192	191	TRAPEZOIDAL WEIR/GATE/ORIFICE, MAVIS EQ.
8	160	160	159	IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ.
9	170	170	157	TRRECHLAR WEIR/GATE/ORIFICE, FREAD EQ.
10	101	101	100	CILVERT RECTANCILAR W/ BOADWAY
11	102	102	101	CULVERT ARCH W/ ROADWAY
12	104	104	102	CHILVERT CIPCULAR W/ ROADWAY
13	108	108	105	CULVERT, CIRCULAR W/ RUADWAI
14	130	130	120	CULVERT, CIRCULAR W/ RUADWAY
15	151	151	150	CULVERI, ARCH W/ KUADWAI
16	158	158	157	CULVERT, CIRCULAR W/ ROADWAY
17	163	163	162	CULVERT, CIRCULAR W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY CULVERT, ELLIPTICAL W/ ROADWAY CULVERT, ELLIPTICAL W/ ROADWAY CULVERT, ELLIPTICAL W/ ROADWAY
18	165	165	164	CULVERT, CIRCULAR W/ RUADWAI
19	182	182	181	CULVERI, CIRCULAR W/ RUADWAY
20	183	183	182	CULVERI, ELLIPTICAL W/ ROADWAY
21	183A	1832	164	CULVERI, ELLIPTICAL W/ ROADWAY
22	184	184	183	CULVERT, ELLIPTICAL W/ RUADWAY
23	184 185A 185B	1854	181	CULVERT, ELLIPTICAL W/ ROADWAY CULVERT, ELLIPTICAL W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY CULVERT, ELLIPTICAL W/ ROADWAY CULVERT, ARCH W/ ROADWAY CULVERT, ARCH W/ ROADWAY DROP STRUCTURE W/ ROADWAY DROP STRUCTURE W/ CIRC. CULVERT DROP STRUCTURE W/ CIRC. CULVERT
24	185B	1858	1853	CULVERT, CIRCULAR W/ RUADWAY
25	186	186	181	CULVERT, CIRCULAR W/ RUADWAY
26	210	210	200	CULVERT, ELLIPTICAL W/ ROADWAY
27	220	220	210	CULVERI, ARCH W/ KUADWAY
28	120	120	102	DROD SUDUCTIONE/ DOUL CUTUEDE
29	171	171	151	DROP STRUCTURE W/ ARCH CULVERT
30	173	173	150	DROP STRUCTURE W/ CIRC. CULVERT
31	175	175	161	DROP STRUCTURE W/ CIRC. CULVERT
32	180	180	161	DROP STRUCTURE W/ CIRC. CULVERT
33	181A	181	160	DROP STRUCTURE W/ CIRC. CULVERT
34	181B	181	180	DROP STRUCTURE W/ ELLP. CULVERT
35	183B	183	1833	DROP STRUCTURE W/ ELLP. CULVERT DROP STRUCTURE W/ CIRC. CULVERT DROP STRUCTURE W/ CIRC. CULVERT DROP STRUCTURE W/ ELLP. CULVERT DROP STRUCTURE W/ ELLP. CULVERT DROP STRUCTURE W/ ELLP. CULVERT
36	187	187	181	DROF STRUCTURE W/ CIRC. CULVERT
37	191	191	190	DROP SIRUCTURE W/ CIRC. CULVERT
38	192	192	190	DROP STRUCTURE W/ ELLP. CULVERT
39		200	140	DROP STRUCTURE W/ EDDF. CULVERT
40	106	106	104	DROP STRUCTURE w/ ARCH CULVERT
41	110	110	108	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
42	157	157	151	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
43	159	159	151	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
44	161	161	150	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
45	162	162		IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
46	164	164	161	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
47	190	190	163 162	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
• ·		(30	104	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.

.

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94

INPUT SUMMARY

DATA TYPE	NUMBER READ
NODES	41
REACHES	
WEIRS	9
CULVERTS	18
DROP STRUCTURES	12
CHANNELS, ENERGY EQ.	0
CHANNELS, MOMENTUM EQ.	8
RATING CURVES	Ō
TOTAL REACHES	47

Advanced Interconr Copyright	nected Chanr 1989, Stre	nel & Pond H amline Tech	Routing (a nnologies,	dICPR Ver Inc.	1.40)
ELLIGRAW BAYOU - 1 04-01-94	BASIN MASTER	R PLAN (EXIS	ST. COND.	- 2 YR)	
BASIN NAME NODE NAME	100 101	101 101	102 106		120 120
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.				
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs)	SCSIIMOD 4.25 24.00	4.25	4.25	4.25	4.25
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	3.62 92.30 .00 10.00 .00 ONSITE	.00 10.00 .00	5.80 72.00	79.70 32.00 37.00 .00	16.60 37.00 .00
110 18 .20	(hrs) VOL 12.02 12.02 12.80 12.33 12.33	(in) NOTES 3.39 3.27 2.23 2.84 2.72			
BASIN NAME NODE NAME	130 130	140 140	150 151		
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.	UH256 256.	UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs		4.25	4.25		4.25
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	20.92 83.70 18.20 31.00 .00 ONSITE	82.20 21.50 32.00 .00	75.00 77.60 42.00 .00	75.00 62.00 24.00 .00	75.00 46.70 29.00 .00
150 9.21 151 3.27	(hrs) VOL 12.19 12.23 12.32 12.16 12.18	(in) NOTES 2.85 2.80 3.63 3.28 2.93			

Advanced	Interconnected Copyright 1989,	Channel & F Streamline	ond Routing (Technologies	adICPR Ver , Inc.	1.40)
ELLIGRAW 04-01-94	BAYOU - BASIN M	ASTER PLAN	(EXIST. COND.	- 2 YR)	
BASIN NAME NODE NAME			190 163 190 163		165 165
UNIT HYDROG PEAKING FAC		-	1256 UH256 156. 256.		UH256 256.
RAINFALL FI RAIN AMOUNT STORM DURAT	(in)			4.25	SCSIIMOD 4.25 24.00
AREA (ac) CURVE NUMBE DCIA (%) TC (mins) LAG TIME (h BASIN STATU	R 7 6 rs)	5.00 75 4.90 24 0.00 15 .00	.22 4.51 .00 75.00 .70 2.80 .00 27.00 .00 .00 .1TE ONSITE	75.00 6.50 13.00 .00	75.00 5.00 10.00 .00
161 190	3.3512.184.3512.08	1.97 2.42 1.92 2.00	IOTES		
BASIN NAME NODE NAME			171 172 171 159		174 157
UNIT HYDROG PEAKING FAC			256 UH256 56. 256.	UH256 256.	UH256 256.
RAIN AMOUNT	LE SCSI (in) ION (hrs) 2	IMOD SCSII 4.25 4 4.00 24	. 25 4.25	SCSIIMOD 4.25 24.00	SCSIIMOD 4.25 24.00
AREA (ac) CURVE NUMBE DCIA (%) TC (mins) LAG TIME (h BASIN STATU	R 7 2 10 rs)	6.60 23 2.00 34 .00	.00 83.60	31.20 10.00 .00	78.20 13.10 33.00 .00
170 171 1 172 173	cfs)TMX (hrs)2.3113.152.4012.246.5112.024.8512.023.0512.25	2.56 2.82 3.13 3.08	OTES		

Advanced Interconn Copyright	ected Chann 1989, Stre	el & Pond B amline Tech	Routing (a nnologies,	dICPR Ver Inc.	1.40)
ELLIGRAW BAYOU - E 04-01-94	BASIN MASTER	R PLAN (EXIS	ST. COND.	- 2 YR)	
BASIN NAME NODE NAME	175 175		181 181	182 182	183 183
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.				
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs)	SCSIIMOD 4.25 24.00	4.25	SCSIIMOD 4.25 24.00	4.25	SCSIIMOD 4.25 24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	8.95 81.30 46.10 22.00 .00 ONSITE	75.00 37.70 15.00 .00 ONSITE	23.20 15.00 .00 ONSITE	82.60 31.50 15.00 .00	19.53 81.60 42.60 15.00 .00 ONSITE
180 6.02 181 27.27 182 8.89	12.12 12.07 12.07 12.07	(in) NOTES 3.18 2.72 2.68 3.00 3.14			
BASIN NAME NODE NAME	184 184		186 186	187 187	191 191
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.		UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs)	4.25	4.25	4.25		
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	7.20 81.00 26.30 15.00 .00 ONSITE	75.00 27.50 15.00 .00	70.00 15.00 .00	1.46 75.00 60.30 10.00 .00 ONSITE	2.97 75.00 80.80 10.00 .00 ONSITE
BASIN QMX (cfs) TMX 184 10.41 185 .64 186 13.77 187 2.65 191 6.08	(hrs) VOL 12.07 12.07 12.07 12.02 12.02	(in) NOTES 2.81 2.49 3.46 3.24 3.71			

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXIST. COND. - 2 YR) 04-01-94

BASIN NAME	192	200	210	220
NODE NAME	192			
NODE NAME	192	200	210	220
UNIT HYDROGRAPH				
-	UH256		UH256	UH256
PEAKING FACTOR	256.	256.	256.	256.
				250.
RAINFALL FILE	SCSIIMOD	SCSIIMOD	SCSIIMOD	SCSIIMOD
RAIN AMOUNT (in)		4.25		
	7.4J			
STORM DURATION (hrs)	24.00	24.00	24.00	24.00
AREA (ac)	51.89	19.85	37.97	19.25
CURVE NUMBER	77.00		- • • • • •	· - •
				77.70
	20.40	43.60	43.70	12.30
TC (mins)	65.00	22.00	65.00	
LAG TIME (hrs)	.00	.00	.00	
BASIN STATUS				.00
BASIN STATUS	ONSITE	ONSITE	ONSITE	ONSITE
BASIN QMX (cfs) TMX ((hrs) VOL	(in) NOTES		
192 29.98 1	12.71	2.44		
		3.05		
	12.71	3.10		

2.32

220

17.08

12.20

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXIST. COND. - 2 YR) 04-01-94

NODAL MAXIMUM CONDITIONS REPORT

NODE ID	STAGE (ft)	VOLUME (af)	< RUNOFF (cfs)	INFLOW OFFSITE (cfs)	OTHER (cfs)	OUTFLOW (cfs)
ID 100 101 102 104 106 108 110 120 130 140 150 151 157 158 159 160 161 162 163 164 165 170 171 173 175 180 181 182 183 183 183 184 185 185 186 187				OFFSITE	OTHER	(cfs) .00 100.68 97.72 27.16 27.09 16.81 17.20 76.98 63.85 61.63 53.36 88.68 60.51 44.21 56.93 .00 82.24 32.51 6.44 5.58 .61 1.62 5.30 2.41 3.34 12.93 14.04 2.90
190 191 192 200 210 220	14.15 15.11 15.32 14.14 14.19 14.22	1.01 1.53 7.08 5.03 2.54 1.87	2.58 6.04 29.90 23.99 27.51 16.94	.00 .00 .00 .00 .00	16.39 .00 .00 18.06 7.37 .00	28.96 1.78 15.21 16.36 18.06 7.37

.....

Advanced Interconne Copyright	1989, Str	nel & Pond eamline Tec	Routing (a hnologies,	dICPR Ver Inc.	1.40)
ELLIGRAW BAYOU - BA 04-01-94	ASIN MASTE	R PLAN (EXI	ST. COND.	- 5 YR)	
BASIN NAME	100	101	102	110	1
NODE NAME	101	101	106	110	1
UNIT HYDROGRAPH	UH256			UH256	UH
PEAKING FACTOR	256.	256.	256.	256.	2
RAINFALL FILE RAIN AMOUNT (in)	SCSIIMOD				SCSII
STORM DURATION (hrs)	6.00 24.00			6.00 24.00	6
					24
AREA (ac) CURVE NUMBER	3.62 92.30				69
DCIA (%)	.00				
TC (mins)	10.00		72.00	37.00	
LAG TIME (hrs)	.00	.00			- · ·
BASIN STATUS	ONSITE	ONSITE			
BASIN QMX (cfs) TMX ((hrs) VOL	(in) NOTES			
10.91 1	12.02	5.10			
101 11.20 1 102 18.84 1		4.97			
• • • •	12.80 12.25	3.74			
	2.25	4.43 4.32			
BASIN NAME	130	140			
NODE NAME	130		150 151	151 151	
UNIT HYDROGRAPH	UH256	UH256	UH256	UH256	UH
PEAKING FACTOR	256.	256.	256.	256.	
RAINFALL FILE	SCSIIMOD		SCSIIMOD	SCSIIMOD	SCSII
RAIN AMOUNT (in)	6.00	6.00	6.00	6.00	
STORM DURATION (hrs)	24.00	24.00	24.00	24.00	24
AREA (ac)	20.92			2.52	8
CURVE NUMBER DCIA (%)	83.70			75.00	
TC (mins)	18.20 31.00		77.60	62.00	46
LAG TIME (hrs)	.00		42.00 .00	24.00	29
BASIN STATUS	ONSITE	ONSITE		.00 ONSITE	
BASIN QMX (cfs) TMX (hrs) VOL	(in) NOTES			
130 34.60 1	2.19	4.48			
140 58.69 1		4.41			
150 13.48 1 151 4.93 1		5.31			
	2.16 2.18				
	44 1 0	4.50			

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.					
ELLIGRAW BAYOU - E 04-01-94	BASIN MASTER	R PLAN (EXIS	ST. COND.	- 5 YR)	
BASIN NAME NODE NAME	161 161		163 163		
UNIT HYDROGRAPH PEAKING FACTOR		UH256 256.			
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs)	SCSIIMOD 6.00 24.00	SCSIIMOD 6.00 24.00	SCSIIMOD 6.00 24.00	SCSIIMOD 6.00 24.00	SCSIIMOD 6.00 24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	4.90 60.00 .00 ONSITE		2.80 27.00 .00 ONSITE	3.97 75.00 6.50 13.00 .00 ONSITE	5.00 10.00
BASIN QMX (cfs) TMX 161 2.10 190 4.48 163 6.07 164 7.66 165 3.41	(hrs) VOL 12.67 12.07 12.18 12.05 12.04	(in) NOTES 3.41 3.93 3.35 3.45 3.41			
BASIN NAME NODE NAME	170 170		172 159		
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.		UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs	SCSIIMOD 6.00) 24.00	6.00	SCSIIMOD 6.00 24.00	6.00	
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	5.12 76.80 26.60 102.00 .00 ONSITE	23.20 34.00 .00	83.60 36.00 10.00 .00	84.10 31.20 10.00 .00	.00
BASIN QMX (cfs) TMX1703.7717119.671729.921737.4117421.92	(hrs) VOL 13.15 12.24 12.02 12.02 12.25	4.10			

Advanced Interconr	nected Chanr	nel & Pond H	Routing (a	dICPR Ver	1.40)
Copyright	: 1989, Stre	amline Tech	nnologies,	Inc.	
ELLIGRAW BAYOU - E 04-01-94	BASIN MASTER	R PLAN (EXIS	ST. COND.	- 5 YR)	
BASIN NAME	175	180	181	182	183
NODE NAME	175	180	181	182	183
UNIT HYDROGRAPH	UH256		UH256	UH256	UH256
PEAKING FACTOR	256.		256.	256.	256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs)	SCSIIMOD 6.00 24.00	6.00	6.00	6.00	SCSIIMOD 6.00 24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	81.30 46.10 22.00 .00		79.80 23.20 15.00	82.60 31.50 15.00	42.60 15.00
BASIN QMX (cfs) TMX 175 18.38 180 9.60 181 43.71 182 13.75	12.12 12.07 12.07			ONSITE	ONSITE
BASIN NAME	184		186	187	191
NODE NAME	184		186	187	191
UNIT HYDROGRAPH	UH256	UH256	UH256	UH256	UH256
PEAKING FACTOR	256.	256.	256.	256.	256.
RAINFALL FILE	SCSIIMOD	SCSIIMOD	SCSIIMOD	SCSIIMOD	SCSIIMOD
RAIN AMOUNT (in)	6.00	6.00	6.00	6.00	6.00
STORM DURATION (hrs)	24.00	24.00	24.00	24.00	24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	7.20 81.00 26.30 15.00 .00 ONSITE	75.00 27.50 15.00	75.00 70.00 15.00 .00	75.00 60.30 10.00	75.00 80.80 10.00 .00
BASIN QMX(cfs) TMX18416.431851.0518620.411874.001918.83	12.07 12.07 12.07 12.02	4.41 4.00 5.11 4.86			

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.					
ELLIGRAW BAYOU - BAS 04-01-94	IN MASTER	PLAN (EXIS	ST. COND.	•	
BASIN NAME	192		210	220	
NODE NAME	192	200	210	220	
UNIT HYDROGRAPH	UH256	UH256	UH256	UH256	2.1
PEAKING FACTOR	256.	256.	256.	256.	
RAINFALL FILE	SCSIIMOD	SCSIIMOD	SCSIIMOD	SCSIIMOD	
RAIN AMOUNT (in)	6.00	6.00	6.00	6.00	
STORM DURATION (hrs)	24.00	24.00	24.00	24.00	
	51.89	19.85	37.97	19.25	
CURVE NUMBER	77.00	79.40	80.40	77.70	
DCIA (%)	20.40	43.60	43.70	12.30	
TC (mins)	65.00	22.00	65.00	28.00	
LAG TIME (hrs)			.00		
BASIN STATUS	ONSITE	ONSITE	ONSITE	ONSITE	
BASIN QMX (cfs) TMX (h 192 49.64 12 200 39.44 12	.71 .12	3.97 4.67			
210 42.46 12	.71	4.73			
220 28.87 12	.20	3.83			

.

.

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXIST. COND. - 5 YR) 04-01-94

NODE ID	STAGE (ft)	VOLUME (af)	<pre>Contended Contended C</pre>	INFLOW OFFSITE (cfs)	> OTHER (cfs)	OUTFLOW (cfs)
100 101 102 104 106 108 110 120 130 140 150 151 157 158 159 160 161 162 163 164 165 170 171 173 175 180 181 182 183 183 183 183 184 185 185 186 187 190	$\begin{array}{c} 1.50\\ 1.59\\ 8.95\\ 9.47\\ 10.86\\ 11.69\\ 11.86\\ 14.30\\ 14.81\\ 14.89\\ 14.92\\ 14.92\\ 14.92\\ 14.94\\ 14.96\\ 14.95\\ 15.68\\ 14.97\\ 15.04\\ 15.78\\ 15.79\\ 15.41\\ 15.78\\ 15.79\\ 15.41\\ 15.80\\ 14.93\\ 15.14\\ 15.80\\ 17.29\\ 17.33\\ 16.06\\ 17.65\\ 15.81\\ 15.80\\ 17.65\\ 15.81\\ 15.80\\ 16.03\\ 16.91\\ 15.01\\ 15.01\\ \end{array}$	$\begin{array}{c} 161.48\\ .11\\ .23\\ .11\\ .04\\ .24\\ .31\\ 17.71\\ 3.21\\ 14.88\\ 1.80\\ 2.18\\ 2.01\\ 1.64\\ 2.81\\ 6.01\\ 1.64\\ 2.81\\ 6.01\\ 1.46\\ 1.71\\ .43\\ .36\\ .42\\ 2.94\\ .71\\ 3.05\\ .51\\ 3.48\\ 3.65\\ 6.71\\ .01\\ .99\\ .01\\ .18\\ 1.12\\ .37\\ 1.34\end{array}$	$\begin{array}{c} & 0 \\ 21.97 \\ & 0 \\ 0 \\ 18.74 \\ & 0 \\ 28.79 \\ 101.43 \\ 34.45 \\ 58.47 \\ & 0 \\ 17.87 \\ 21.91 \\ & 0 \\ 17.87 \\ 21.91 \\ & 0 \\ 9.84 \\ 13.76 \\ 2.08 \\ & 0 \\ 9.84 \\ 13.76 \\ 2.08 \\ & 0 \\ 9.84 \\ 13.76 \\ 2.08 \\ & 0 \\ 9.84 \\ 13.76 \\ 2.08 \\ & 0 \\ 1.00 \\ 15.84 \\ & 0 \\ 1.00 \\ 15.84 \\ & 0 \\ 1.00 \\ 19.82 \\ 3.97 \\ 4.29 \end{array}$	(cfs) .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	$\begin{array}{c} 128.30\\ 127.03\\ 127.02\\ 67.08\\ 59.34\\ 59.32\\ 54.94\\ 101.61\\ 96.83\\ 100.65\\ 126.69\\ 85.98\\ 62.90\\ 77.22\\ 131.74\\ 4.99\\ 57.29\\ 54.02\\ 9.88\\ 7.01\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ $	(cfs) .00 128.30 127.03 67.13 67.08 59.34 59.32 114.76 101.61 96.83 79.13 126.69
191 192 200 210 220	15.17 15.51 15.06 15.15 15.19	1.69 8.73 6.81 3.56 4.44	8.78 49.44 36.88 42.22 28.51	.00 .00 .00 .00 .00	3.95 .00 24.88 8.06 .00	2.87 30.72 23.43 24.88 8.06

NODAL MAXIMUM CONDITIONS REPORT

Advanced Interconr Copyright	ected Chann 1989, Stre	el & Pond H amline Tech	Routing (a nnologies,	dICPR Ver Inc.	1.40)
ELLIGRAW BAYOU - H 04-01-94	BASIN MASTER	R PLAN (EXIS	ST. COND.	- 10 YR)	
BASIN NAME NODE NAME	100 101		102 106	110 110	120 120
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.		UH256 256.		
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs)	SCSIIMOD 7.00 24.00	7 00	SCSIIMOD 7.00 24.00	7.00	7.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	3.62 92.30 .00 10.00 .00 ONSITE	91.10 .00 10.00 .00	21.79 78.30 5.80 72.00 .00 ONSITE	79.70 32.00 37.00 .00	82.20 16.60 37.00 .00
102 23.49 110 35.01	12.02 12.02 12.80	6.09 5.95 4.64 5.37			
BASIN NAME NODE NAME	130 130	140 140	150 151		160 160
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.	UH256 256.	UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs	SCSIIMOD 7.00) 24.00	7.00	7.00	7.00	7.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	20.92 83.70 18.20 31.00 .00 ONSITE	82.20 21.50 32.00 .00	75.00 77.60 42.00 .00	75.00 62.00 24.00 .00	75.00 46.70 29.00 .00
BASIN QMX (cfs) TMX 130 41.94 140 71.29 150 15.94 151 5.90 160 16.84	(hrs) VOL 12.19 12.23 12.32 12.16 12.18	(in) NOTES 5.43 5.36 6.28 5.85 5.43			

Advanced Intercon	nected Chan	nel & Pond i	Routing (a	dICPR Ver	1.40)
Copyrigh	t 1989, Stro	eamline Teci	hnologies,	Inc.	
ELLIGRAW BAYOU - 1 04-01-94	BASIN MASTE	R PLAN (EXI	ST. COND.	- 10 YR)	
BASIN NAME	161		163	164	165
NODE NAME	161		163	164	165
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.	UH256 256.	UH256 256.		
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs	SCSIIMOD 7.00) 24.00	7 00	SCSIIMOD 7.00 24.00	7.00	7.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	2.40 75.00 4.90 60.00 .00 ONSITE	24.70 15.00 .00	4.51 75.00 2.80 27.00 .00 ONSITE	75.00 6.50 13.00	75.00 5.00 10.00 .00
BASIN QMX (cfs) TMX 161 2.66 190 5.54 163 7.71 164 9.64 165 4.29	12.67 12.07 12.18	4.28 4.83			
BASIN NAME	170	17 1	172	173	1 74
NODE NAME	170	1 7 1	159	173	157
UNIT HYDROGRAPH	UH256	UH256	UH256	UH256	UH256
PEAKING FACTOR	256.	256.	256.	256.	256.
RAINFALL FILE	SCSIIMOD	SCSIIMOD	SCSIIMOD	SCSIIMOD	SCSIIMOD
RAIN AMOUNT (in)	7.00	7.00	7.00	7.00	7.00
STORM DURATION (hrs)) 24.00	24.00	24.00	24.00	24.00
AREA (ac)	5.12		3.55	2.66	15.74
CURVE NUMBER	76.80		83.60	84.10	78.20
DCIA (%)	26.60		36.00	31.20	13.10
TC (mins)	102.00		10.00	10.00	33.00
LAG TIME (hrs)	.00		.00	.00	.00
BASIN STATUS	ONSITE		ONSITE	ONSITE	ONSITE
BASIN QMX (cfs) TMX 170 4.63 171 23.89 172 11.88 173 8.88 174 27.16	(hrs) VOL 13.15 12.24 12.02 12.02 12.25	(in) NOTES 5.01 5.37 5.74 5.69 4.81			

Advanced Interconne Copyright	ected Chann 1989, Stre	el & Pond B amline Tech	Routing (a nnologies,	dICPR Ver Inc.	1.40)
ELLIGRAW BAYOU - BA 04-01-94	ASIN MASTER	R PLAN (EXIS	ST. COND.	- 10 YR)	
BASIN NAME NODE NAME	175 175	180 180	181 181		
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.	256.		256.	256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs)	SCSIIMOD 7.00 24.00	SCSIIMOD 7.00 24.00	SCSIIMOD 7.00 24.00	SCSIIMOD 7.00 24.00	SCSIIMOD 7.00 24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	8.95 81.30 46.10 22.00 .00 ONSITE	4.45 75.00 37.70 15.00 .00	19.78 79.80 23.20	5.78 82.60 31.50 15.00 .00	19.53 81.60 42.60 15.00 .00
BASIN QMX (cfs) TMX (175 22.03 1 180 11.70 1 181 53.29 1 182 16.55 1 183 56.63 1	2.12 2.07	(in) NOTES 5.78 5.18 5.19 5.59 5.73			
BASIN NAME NODE NAME	184 184		186 186	187 187	
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.	UH256 256.	UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs)	SCSIIMOD 7.00 24.00	7 00	SCSIIMOD 7.00 24.00		SCSIIMOD 7.00 24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	7.20 81.00 26.30 15.00 .00 ONSITE	75.00 27.50 15.00 .00	8.18 75.00 70.00 15.00 .00 ONSITE	75.00 60.30 10.00 .00	75.00 80.80 10.00 .00
185 1.29 1 186 24.26 1 187 4.78 1	(hrs) VOL 2.07 2.07 2.07 2.02 2.02 2.02	(in) NOTES 5.35 4.90 6.07 5.81 6.37			

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXIST. COND. - 10 YR) 04-01-94 BASIN NAME 192 200 210 220 NODE NAME 192 200 210 220 UNIT HYDROGRAPH UH256 UH256 UH256 **UH256** PEAKING FACTOR 256. 256. 256. 256. RAINFALL FILE SCSIIMOD SCSIIMOD SCSIIMOD SCSIIMOD RAIN AMOUNT (in) 7.00 7.00 7.00 7.00 STORM DURATION (hrs) 24.00 24.00 24.00 24.00 AREA (ac) 51.89 19.85 37.97 19.25 CURVE NUMBER 77.00 79.40 80.40 77.70 DCIA (%) 20.40 43.60 43.70 12.30 TC (mins) 65.00 22.00 65.00 28.00 LAG TIME (hrs) .00 .00 .00 .00 BASIN STATUS ONSITE ONSITE ONSITE ONSITE BASIN QMX (cfs) TMX (hrs) VOL (in) NOTES 192 61.27 12.71 4.88 200 47.51 12.12 5.61 210 51.06 12.71 5.68 220 35.84 12.20 4.74

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXIST. COND. - 10 YR) 04-01-94

NODE ID	STAGE (ft)	VOLUME (af)	RUNOFF (cfs)	INFLOW OFFSITE (cfs)	> OTHER (cfs)	OUTFLOW (cfs)
100 101 102 104 106 108 110 120 130 140 150 151 157 158 159 160 161 162 163 164 165 170 171 173 175 180 181 182 183 183 183 183 183 184 185 185 185 186 187 190 191 192 200	$\begin{array}{c} 1.50\\ 1.68\\ 11.88\\ 11.92\\ 12.63\\ 12.65\\ 12.65\\ 12.91\\ 14.47\\ 15.02\\ 15.13\\ 15.14\\ 15.19\\ 15.19\\ 15.19\\ 15.20\\ 15.21\\ 15.20\\ 15.24\\ 15.27\\ 15.20\\ 15.24\\ 15.20\\ 15.24\\ 15.20\\ 15.36\\ 15.99\\ 17.59\\ 16.17\\ 17.84\\ 16.01\\ 16.00\\ 16.22\\ 16.98\\ 15.25\\ 15.55\end{array}$	$\begin{array}{c} 196.86\\ .11\\ 2.15\\ .84\\ .77\\ .59\\ .75\\ 19.92\\ 3.61\\ 16.43\\ 1.87\\ 2.27\\ 2.09\\ 1.73\\ 2.96\\ 6.60\\ 1.54\\ 1.86\\ .74\\ 1.86\\ .74\\ .41\\ .51\\ .45\\ 3.61\\ .90\\ 3.77\\ .68\\ 4.33\\ 4.08\\ 7.67\\ .01\\ 1.16\\ .01\\ .23\\ 1.26\\ .40\\ 1.43\\ 2.63\\ 9.04 \end{array}$	$\begin{array}{c} .00\\ 26.03\\ .00\\ 23.38\\ .00\\ 34.99\\ 123.71\\ 41.71\\ 71.00\\ .00\\ 21.20\\ 27.14\\ .00\\ 21.20\\ 27.14\\ .00\\ 11.79\\ 16.66\\ 2.63\\ .00\\ 7.58\\ 9.35\\ 4.23\\ 4.57\\ 23.86\\ 8.81\\ 20.53\\ 11.28\\ 51.39\\ 16.03\\ 54.89\\ .00\\ 19.25\\ .00\\ 19.25\\ .00\\ 1.24\\ 23.57\\ 4.75\\ 5.32\\ 10.36\\ 61.00\\ \end{array}$.00 .00 .00 .00 .00 .00 .0	$\begin{array}{c} (C15)\\ 180.44\\ 178.85\\ 180.06\\ 144.03\\ 136.51\\ 140.10\\ 132.87\\ 137.36\\ 129.64\\ 122.43\\ 141.24\\ 105.12\\ 81.08\\ 92.38\\ 148.43\\ 6.40\\ 81.54\\ 68.37\\ 12.33\\ 7.73\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .0$	$(CIS) \\ .00 \\ 180.44 \\ 178.85 \\ 142.85 \\ 142.85 \\ 144.03 \\ 136.51 \\ 140.10 \\ 170.87 \\ 137.36 \\ 129.64 \\ 93.38 \\ 141.24 \\ 101.80 \\ 77.70 \\ 92.38 \\ 141.24 \\ 101.80 \\ 77.70 \\ 92.38 \\ 148.34 \\ 64.23 \\ 16.68 \\ 12.33 \\ 2.15 \\ 4.12 \\ 5.16 \\ 4.31 \\ 9.09 \\ 15.59 \\ 9.59 \\ 5.97 \\ 9.56 \\ 2.76 \\ .72 \\ 13.61 \\ 2.30 \\ 58.17 \\ 10.45 \\ 46.99 \\ \end{tabular}$
210 220	15.37 15.53 15.58	7.58 4.19 5.74	44.35 50.76 35.35	.00 .00 .00	27.32 8.20 .00	30.54 27.32 8.20

an advances of all the design of the features

NODAL MAXIMUM CONDITIONS REPORT

Advanced Int Cop	erconnected Chan yright 1989, Str	nel & Pond eamline Tec	Routing (a hnologies,	dICPR Ver Inc.	1.40)
ELLIGRAW BAY 04-01-94	OU - BASIN MASTE	R PLAN (EXI	ST. COND.	- 25 YR)	
BASIN NAME NODE NAME	100 101		102 106	110 110	120 120
UNIT HYDROGRAP PEAKING FACTOR			UH256 256.		UH256 256.
RAINFALL FILE RAIN AMOUNT (i: STORM DURATION	n) 8.00	8.00	8.00	8.00	SCSIIMOD 8.00 24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	ONSITE	91.10 .00 10.00 .00 ONSITE	78.30 5.80 72.00 .00 ONSITE	79.70 32.00 37.00 .00	16.60 37.00
BASIN QMX (cfs 100 14.8 101 15.3 102 28.1 110 41.2 120 146.1	7 12.02 9 12.80 5 12.25	(in) NOTES 7.08 6.93 5.57 6.32 6.21			
BASIN NAME NODE NAME	130 130		150 151	151 151	160 160
UNIT HYDROGRAP PEAKING FACTOR	0	UH256 256.	UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (i) STORM DURATION	SCSIIMOD n) 8.00 (hrs) 24.00	8.00	SCSIIMOD 8.00 24.00	8.00	8.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	83.70 18.20 31.00 .00	21.50 32.00	75.00 77.60 42.00 .00	75.00 62.00 24.00	75.00 46.70 29.00 .00
130 49.20 140 83.90 150 18.40 151 6.8) TMX (hrs) VOL 3 12.19 3 12.23 2 12.32 7 12.16 1 12.18	6.39 6.31			

.

Advanced Interconn Copyright	ected Chanr 1989, Stre	nel & Pond H eamline Tech	Routing (a nnologies,	dICPR Ver Inc.	1.40)
ELLIGRAW BAYOU - E 04-01-94	BASIN MASTER	R PLAN (EXIS	ST. COND.	- 25 YR)	
BASIN NAME NODE NAME	161 161	190 190	163 163	164 164	165 165
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.			UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs)	SCSIIMOD 8.00 24.00	8.00		8.00	SCSIIMOD 8.00 24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	2.40 75.00 4.90 60.00 .00 ONSITE	75.00 24.70 15.00 .00	2.80 27.00 .00	.00	1.62 75.00 5.00 10.00 .00 ONSITE
163 9.38	12.67 12.07 12.18	(in) NOTES 5.18 5.75 5.12 5.22 5.18			
BASIN NAME NODE NAME	170 170	171 171	172 159	173 173	174 157
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.	UH256 256.	UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs)	8.00	8.00	SCSIIMOD 8.00 24.00	8.00	SCSIIMOD 8.00 24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	76.80 26.60 102.00 .00	12.70 82.00 23.20 34.00 .00 ONSITE	83.60 36.00 10.00 .00	84.10 31.20 10.00	15.74 78.20 13.10 33.00 .00 ONSITE
172 13.84	13.15 12.24 12.02	5.94 6.33			

Advanced Interco Copyrig	nnected Chan ht 1989, Stre	nel & Pond M eamline Tech	Routing (a hnologies,	dICPR Ver Inc.	1.40)
ELLIGRAW BAYOU - 04-01-94	BASIN MASTER	R PLAN (EXI	ST. COND.	- 25 YR)	
BASIN NAME NODE NAME	175 1 7 5	180 180	181 181	182 182	183 183
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.		UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (h)	SCSIIMOD 8.00 (s) 24.00	8.00	8.00	8.00	SCSIIMOD 8.00 24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	8.95 81.30 46.10 22.00 .00 ONSITE	75.00 37.70 15.00 .00	79.80 23.20 15.00 .00	82.60 31.50 15.00 .00	19.53 81.60 42.60 15.00 .00 ONSITE
BASIN QMX (cfs) TM 175 25.69 180 13.82 181 62.92 182 19.36 183 66.06	12.12 12.07 12.07	(in) NOTES 6.75 6.12 6.13 6.55 6.70			
BASIN NAME NODE NAME	184 184		186 186	187 187	191 191
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.	UH256 256.	UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (h)	8.00	8.00	8.00	SCSIIMOD 8.00 24.00	SCSIIMOD 8.00 24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	26.30 15.00 .00	75.00 27.50 15.00 .00	75.00 70.00 15.00 .00	60.30 10.00	75.00 80.80 10.00 .00
185 1.53 186 28.13 187 5.57	MX (hrs) VOL 12.07 12.07 12.07 12.02 12.02 12.02	6.31 5.83 7.04			

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (EXIST. COND. - 25 YR) 04-01-94 BASIN NAME 192 200 210 220 NODE NAME 192 200 210 220 UNIT HYDROGRAPH UH256 UH256 UH256 **UH256** PEAKING FACTOR 256. 256. 256. 256. RAINFALL FILE SCSIIMOD SCSIIMOD SCSIIMOD SCSIIMOD RAIN AMOUNT (in) 8.00 8.00 8.00 8.00 STORM DURATION (hrs) 24.00 24.00 24.00 24.00 AREA (ac) 51.89 19.85 37.97 19.25 CURVE NUMBER 77.00 79.40 80.40 77.70 DCIA (%) 20.40 43.60 43.70 12.30 TC (mins) 65.00 22.00 65.00 28.00 LAG TIME (hrs) .00 .00 .00 .00 BASIN STATUS ONSITE ONSITE ONSITE ONSITE BASIN QMX (cfs) TMX (hrs) VOL (in) NOTES 192 73.06 12.71 5.81 200 55.62 12.12 6.57 210 59.70 12.71 6.64 220

5.66

42.89

12.20

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXIST. COND. - 25 YR) 04-01-94

NODE ID	STAGE (ft)	VOLUME (af)	< RUNOFF (cfs)	INFLOW OFFSITE (cfs)	> OTHER (cfs)	OUTFLOW (cfs)
1D 100 101 102 104 106 108 110 120 130 140 150 151 157 158 159 160 161 162 163 164 165 170 171 173 175 180 181 182 183 183 183 183 185 185 186 187 190 191	(fc) 1.50 1.80 12.25 12.31 13.29 13.31 13.59 14.57 15.20 15.28 15.32 15.32 15.32 15.42 15.42 15.44 15.48 15.44 15.48 15.44 15.48 15.44 15.57 15.44 15.58 16.02 15.46 15.58 16.16 17.85 16.16 16.17 15.44 15.48 16.16 16.16 15.44 15.68	(ar) 232.80 .12 3.02 1.11 1.59 1.20 1.67 21.13 4.17 18.30 1.94 2.37 2.21 1.81 3.10 6.83 1.63 1.98 1.00 .46 .58 4.34 1.07 4.43 .84 5.05 4.48 8.60 .01 1.31 .26 1.40 .43 1.52 2.97	(cfs) .00 30.07 .00 28.08 00 41.23 146.09 48.98 83.56 .00 24.55 32.43 .00 13.74 19.58 3.19 .00 9.21 11.33 5.11 5.44 28.08 10.27 23.92 13.35 60.79 18.77 64.11 .00 22.67 .00 1.47 27.35 5.53 6.35 11.95	(cfs) .00 .00 .00 .00 .00 .00 .00 .0	$\begin{array}{c} 236.99\\ 235.08\\ 236.24\\ 201.42\\ 189.36\\ 194.69\\ 186.84\\ 173.31\\ 161.78\\ 148.60\\ 143.81\\ 119.36\\ 95.25\\ 103.28\\ 176.15\\ 7.77\\ 86.83\\ 74.93\\ 14.30\\ 8.77\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ $	(cfs) .00 236.99 235.08 200.73 201.42 189.36 194.69 222.41 173.31 161.78 113.43 143.81 115.50 92.69 103.28 8.51 168.29 63.28 18.51 168.29 63.28 18.51 168.29 63.28 18.51 168.29 5.30 4.74 4.32 32.43 42.40 11.59 18.06 6.21 11.44 2.13 .80 15.84 2.77 64.48
192 200 210 220	15.68 15.67 15.90 15.97	10.20 8.33 4.82 7.05	72.71 51.86 59.34 42.26	.00 .00 .00 .00	36.22 .00 30.18 8.91 .00	12.08 61.57 37.41 30.18 8.91

NODAL MAXIMUM CONDITIONS REPORT

.

Advanced Interconr Copyright	ected Chann 1989, Stro	nel & Pond I eamline Tecl	Routing (a hnologies,	dICPR Ver Inc.	1.40)
ELLIGRAW BAYOU - E 04-01-94	BASIN MASTE	R PLAN (EXIS	ST. COND.	- 100 YR)	
BASIN NAME	100	101	102	110	120
NODE NAME	101		106	110	120
UNIT HYDROGRAPH	UH256	UH256	UH256	UH256	UH256
PEAKING FACTOR	256.	256.	256.	256.	256.
RAINFALL FILE	SCSIIMOD		SCSIIMOD	SCSIIMOD	SCSIIMOD
RAIN AMOUNT (in) STORM DURATION (hrs)	10.00		10.00	10.00	10.00
STORM DURATION (HIS)	24.00	24.00	24.00	24.00	24.00
AREA (ac)	3.62	_	21.79	19.73	69.92
CURVE NUMBER DCIA (%)	92.30				82.20
IC (mins)	.00		5.80		
LAG TIME (hrs)	10.00				
BASIN STATUS	ONSITE		.00 ONSITE		
BASIN QMX (cfs) TMX 100 18.82 101 19.50 102 37.68 110 53.79 120 190.97	(hrs) VOL 12.02 12.02 12.80 12.25 12.25	(in) NOTES 9.06 8.91 7.45 8.25 8.14			
BASIN NAME NODE NAME	130 130		150 151	151 151	160 160
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.	UH256 256.	UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE	SCSIIMOD	SCSIIMOD	SCSIIMOD	SCSIIMOD	SCSIIMOD
RAIN AMOUNT (in)	10.00	10.00	10.00		10.00
STORM DURATION (hrs)	24.00	24.00	24.00	24.00	24.00
AREA (ac)	20.92	36.74	8.63	2.52	8.43
CURVE NUMBER	83.70		75.00		
DCIA (%)	18.20	- • • • •	77.60	62.00	46.70
TC (mins) LAG TIME (hrs)	31.00		42.00	24.00	29.00
BASIN STATUS	.00 ONSITE		.00 ONSITE	.00	.00
			UNDITE	ONSITE	ONSITE
BASIN QMX (cfs) TMX 130 63.96	(hrs) VOL				
130 63.96 140 109.22	12.19 12.23	8.33			
150 23.40	12.32	8.25 9.22			
151 8.83	12.16	8.75			
160 25.81	12.18	8.28			

an an a third a standing party and a second

	Advanced Intercon Copyrigh	nected Chan t 1989, Stro	nel & Pond) eamline Tecl	Routing (a hnologies,	dICPR Ver Inc.	1.40)
	ELLIGRAW BAYOU - 1 04-01-94	BASIN MASTE	R PLAN (EXI	ST. COND.	- 100 YR)	
	BASIN NAME NODE NAME	161 161	190 190	163 163	164 164	165 165
	UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.		UH256 256.	UH256 256.	UH256 256.
	RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs	SCSIIMOD 10.00) 24.00	10.00	10.00	SCSIIMOD 10.00 24.00	SCSIIMOD 10.00 24.00
	AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	2.40 75.00 4.90 60.00 .00 ONSITE	75.00 24.70 15.00 .00	4.51 75.00 2.80 27.00 .00 ONSITE	3.97 75.00 6.50 13.00 .00 ONSITE	1.62 75.00 5.00 10.00 .00 ONSITE
	BASIN QMX (cfs) TMX 161 4.38 190 8.75 163 12.77 164 15.73 165 6.98	(hrs) VOL 12.67 12.07 12.18 12.05 12.02	(in) NOTES 7.02 7.62 6.96 7.07 7.03			
	BASIN NAME NODE NAME	170 170	171 171	172 159	173 173	174 157
	UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.	UH256 256.	UH256 256.	UH256 256.	UH256 256.
	RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs)	SCSIIMOD 10.00 24.00	SCSIIMOD 10.00 24.00	SCSIIMOD 10.00 24.00	SCSIIMOD 10.00 24.00	SCSIIMOD 10.00 24.00
	AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	5.12 76.80 26.60 102.00 .00 ONSITE	82.00 23.20 34.00 .00	3.55 83.60 36.00 10.00 .00 ONSITE	2.66 84.10 31.20 10.00 .00 ONSITE	15.74 78.20 13.10 33.00 .00 ONSITE
~	BASIN QMX (cfs) TMX 170 7.26 171 36.61 172 17.74 173 13.28 174 43.13	(hrs) VOL 13.15 12.24 12.02 12.02 12.25	(in) NOTES 7.83 8.26 8.67 8.62 7.63			

.....

Advanced Intercon Copyrigh	nected Chan t 1989, Str	nel & Pond eamline Tec	Routing (a hnologies,	dICPR Ver	1.40)
ELLIGRAW BAYOU - : 04-01-94	BASIN MASTE	R PLAN (EXI	ST. COND.	- 100 YR)	
BASIN NAME NODE NAME	175 175		181 181	182 182	
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.		UH256 256.	UH256 256.	
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs	SCSIIMOD 10.00) 24.00	10 00		10.00	
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	8.95 81.30 46.10 22.00 .00 ONSITE	75.00 37.70 15.00 .00	79.80 23.20 15.00 .00	82.60 31.50 15.00 .00	81.60 42.60 15.00 .00
BASIN QMX (cfs) TMX 175 33.02 180 18.11 181 82.21 182 24.97 183 84.91	12.12 12.07 12.07	(in) NOTES 8.70 8.01 8.05 8.49 8.65			
BASIN NAME NODE NAME	184 184		186 186	187 187	
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.	UH256 256.	UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs)	SCSIIMOD 10.00 24.00	10 00	SCSIIMOD 10.00 24.00	SCSIÌMOD 10.00 24.00	SCSIIMOD 10.00 24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	7.20 81.00 26.30 15.00 .00 ONSITE	75.00 27.50 15.00 .00	8.18 75.00 70.00 15.00 .00 ONSITE	1.46 75.00 60.30 10.00 .00 ONSITE	2.97 75.00 80.80 10.00 .00 ONSITE
185 2.02 186 35.89 187 7.16	12.07 12.07 12.07 12.02	(in) NOTES 8.24 7.71 8.99 8.70 9.32			

.

Advanced Interco Copyrig	onnected Chann ght 1989, Stre	el & Pond I amline Tecl	Routing (a nnologies,	dICPR Ver Inc.	1.40)
ELLIGRAW BAYOU - 04-01-94	- BASIN MASTER	PLAN (EXI	ST. COND.	- 100 YR)	
BASIN NAME	192	200	210	220	
NODE NAME		200			
UNIT HYDROGRAPH	UH256	UH256	11H256	UH256	
PEAKING FACTOR	256.	256.	256.	256.	
RAINFALL FILE	SCSIIMOD	SCSIIMOD	SCSTIMOD	SCSTIMOD	
RAIN AMOUNT (in)	10.00	10.00	10.00	10 00	
RAIN AMOUNT (in) STORM DURATION (h)	rs) 24.00	24.00	24.00	24.00	
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	51.89	19.85	37.97	19.25	
CURVE NUMBER	77.00	79.40	80.40	77.70	
DCIA(x)	20.40	43.60	43.70	12.30	
IC (mins)	65.00	22.00	65.00	28.00	
DAG TIME (NIS)	.00	.00	.00	.00	
BASIN STATUS	ONSITE	ONSITE	ONSITE	ONSITE	
BASIN QMX (cfs) TN19296.8720071.8921077.0322057.11	12.71 12.12 12.71	7.69 8.51 8.58			

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXIST. COND. - 100 YR) 04-01-94

NODAL MAXIMUM CONDITIONS REPORT

NODE ID	STAGE (ft)	VOLUME (af)	<pre>KUNOFF (cfs)</pre>	INFLOW - OFFSITE (cfs)	OTHER (cfs)	OUTFLOW (cfs)
100 101 102 104 106 108 110 120 130 140 150 151 157 158 159 160 161 162 163 164 165 170 161 162 163 164 165 170 171 173 175 180 181 182 183 183 A 184 185 B 186 187 190 191	(ft) 1.50 2.12 12.69 12.78 14.24 14.26 14.59 15.59 15.64 15.59 15.64 15.77 15.77 15.80 15.80 15.80 15.87 16.18 16.06 16.48 16.50 15.80 15.80 15.80 15.66 16.48 16.50 16.48 16	(af) 305.63 .14 4.21 1.48 3.33 2.93 3.88 23.19 21.52 2.04 2.54 2.35 1.96 3.34 7.19 2.54 2.35 1.79 2.19 1.52 .54 .81 5.50 1.38 5.50 1.38 5.50 1.38 5.20 10.48 .01 1.71 .33 1.71 .33 1.71 .382	(cfs) .00 38.10 .00 37.58 .00 53.77 190.90 63.49 108.71 .00 31.28 43.09 .00 17.63 25.48 4.32 .00 17.63 25.48 4.32 .00 12.50 15.35 6.91 7.20 36.54 13.19 30.69 17.54 79.65 24.26 82.55 .00 1.96 34.94 7.11 8.45 15.12	(cfs) .00 .00 .00 .00 .00 .00 .00 .0	340.66 337.82 338.47 305.58 284.98 296.63 292.68 247.07 228.60 196.35 150.63 153.70 125.10	
192 200 210 220	16.02 16.19 16.53 16.50	13.13 9.92 6.51 10.30	96.35 66.89 76.54 56.17	.00 .00 .00 .00	.00 37.10 12.60 .00	49.34 47.13 37.10 12.60

ALTERNATIVE 1

.

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94

CONTROL PARAMETERS

START TIME: .00 END TIME: 50.00

TO TIME (hours)	SIMULATION INC (secs)	PRINT INC (mins)
100.00	1.00	15.00

RUNOFF HYDROGRAPH FILE: DEFAULT OFFSITE HYDROGRAPH FILE: DEFAULT BOUNDARY DATABASE FILE: NONE

NOTE:

-> ---

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94

.....

- And the second second

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		AR/TM/STR [ac/hr/af]
100	TIME	1.500	.000	.000	.000	1.500 1.500	.000
101	AREA	1.500	.000	.000	.000	1.500 9.000 10.000 11.000 12.000 13.000	.000 .060 .190 .870 2.500 4.750
102	AREA	1.500	.000	.000	.000	$\begin{array}{r} 1.500 \\ 8.300 \\ 9.000 \\ 10.000 \\ 11.000 \\ 12.000 \\ 13.000 \\ 14.000 \end{array}$.001 .002 .060 .120 .860 2.140 3.360 7.060
104	AREA	6.000	.000	.000	.000	9.000 10.000 11.000 12.000 13.000 14.000	.110 .230 .300 .400 1.110 2.470
106	AREA	8.500	.000	.000	.000	11.000 12.000 13.000 14.000	.030 .400 1.120 2.480
108	AREA	9.000	.000	.000	.000	11.000 12.000 13.000 14.000 15.000	.140 .170 .620 2.230 3.060
110	AREA	9.700	.000	.000	.000	9.700 11.000 12.000 13.000 14.000 15.000	.070 .090 .180 .630 2.240 3.060

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)	STAGE (ft)	AR/TM/STR (ac/hr/af)
120	AREA	10.500	.000	.000	.000	9.400 11.000 12.000 13.000 14.000 15.000 16.000	1.000 1.051 2.517 4.192 9.681 16.480 36.096
130	AREA	10.500	.000	.000	.000	9.000 11.000 14.000 15.000 15.500 16.000	.200 .247 .665 2.741 3.729 5.006
140	AREA	11.080	.000	.000	.000	11.000 14.000 15.000 16.000	2.380 4.338 6.464 13.794
150	AREA	12.000	.000	.000	.000	8.000 12.000 16.000 17.000	.126 .243 .371 .402
151	AREA	12.000	.000	.000	.000	16.600 17.600	.000
157	AREA	12.000	.000	.000	.000	16.600 17.600	.000
158	AREA	12.000	.000	.000	.000	17.000 18.000	.000
159	AREA	12.000	.000	.000	.000	17.000 18.000	.000
160	AREA	14.790	.000	.000	.000	14.000 15.000 15.500 16.000 16.500	2.090 3.785 4.719 5.727 6.603

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94

-- .

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)	STAGE (ft)	AR/TM/STR (ac/hr/af)
161	AREA	12.000	.000	.000	.000	17.000 18.000	.000 .000
162	AREA	12.000	.000	.000	.000	18.000 19.000	.000
163	AREA	12.970	.000	.000	.000	15.000 16.000 16.500 17.000	.540 1.000 1.240 1.520
164	AREA	14.630	.000	.000	.000	18.500 19.500	.000
165	AREA	14.730	.000	.000	.000	14.000 15.000 16.000 17.000	.020 .130 .820 1.930
170	AREA	15.000	.000	.000	.000	15.000 15.500 16.000 16.500	.842 1.235 1.635 2.984
171	AREA	13.720	.000	.000	.000	13.500 14.000 15.000 16.000 17.000	1.620 1.840 2.280 2.650 3.900
173	AREA	14.180	.000	.000	.000	14.000 15.000 16.000 17.000 18.000	.690 .780 .860 .940 1.110
175	AREA	14.000	.000	.000	.000	14.000 15.000 16.000 17.000	3.150 3.420 3.760 4.400

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94

- --

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)	STAGE (ft)	AR/TM/STR (ac/hr/af)
180	AREA	14.520	.000	.000	.000	14.500 17.500	 .606 .862
181	AREA	14.730	.000	.000	.000	15.000 20.000	3.566
182	AREA	16.200	.000	.000	.000	15.500 20.000	1.621
183	AREA	16.200	.000	.000	.000	15.500 20.000	3.021 4.307
183A	AREA	14.710	.000	.000	.000	14.710 20.000	000 .002
184	AREA	16.500	.000	.000	.000	16.500 20.500	.706
185A	STRG	14.730	.000	.000	.000	14.730 19.000	1.019
185B	AREA	14.730	.000	.000	.000	15.000 20.000	.001 .144
186	AREA	14.730	.000	.000	.000	14.500	.305
187	AREA	16.430	.000	.000	.000	18.500 16.000 17.500 17.800	.973 .395 .423 .735
190	AREA	12.000	.000	.000	.000	18.000 19.000	.000
191	AREA	14.940	.000	.000	.000	14.500	2.130 2.890
192	AREA	14.910	.000	.000	.000	14.500 18.000	7.740
200	AREA	11.510	.000	.000	.000	11.500 15.000 16.000 17.000	9.500 1.614 2.183 2.803 5.465

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94

.

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)	STAGE / (ft) (a	AR/TM/STR ac/hr/af)
210	AREA	11.510	.000	.000	.000	11.500 15.000 16.000 17.000 18.000	.589 1.286 2.073 3.690 30.610
220	AREA	13.400	.000	.000	.000	13.400 14.000 15.000 16.000 17.000	2.140 2.280 2.680 4.020 8.630

.

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) >>REACH NAME : 102A FROM NODE : 102 TO NODE : 101 REACH TYPE : TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 11.500 BTM. WIDTH (ft): 35.000 LEFT SS (h/v): RGHT SS (h/v): 15.000 OPENING (ft): 999.000 WEIR COEF.: 15.000 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 2.600 NOTE : >>REACH NAME : 108A FROM NODE : 108 TO NODE : 106 REACH TYPE : IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 11.400 NUMBER X-Y PTS: 6.000 OPENING (ft): 999.000 WEIR COEF .: 2.600 GATE COEF .: .600 NUMBER OF ELEM .: 1.000 X-VAL (ft) Y-VAL (ft) .000 14.000 100.000 13.000 280.000 11.900 330.000 11.700 430.000 11.400 730.000 14.400 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) .000 .00 19.50 .00 .00 .300 130.00 130.00 .500 52.50 200.00 200.00 1.600 432.00 490.01 490.00 2.600 1022.00 690.02 690.00 3.000 1306.00 730.03 730.00 999.000 728386.00 730.03 730.00 1004.000 732036.00 730.03 730.00

NOTE:

Advanced Interconnecte Copyright 198	ed Channel & Pond Routing (adICPR Ver 1.40) 39, Streamline Technologies, Inc.
ELLIGRAW BAYOU - BASIN 04-01-94	N MASTER PLAN (ALTERNATIVE 1)
X-VAL (ft) .000 50.000 130.000 220.000	IUMBER X-Y PTS: 5.000 OPENING (ft): 999.000 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 Y-VAL (ft)
DEPTH (ft) .000 .001 .501 1.001 1.301 999.000 1004.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

NOTE :

÷

Advanced	Interconnecte Copyright 198	ed Channel & 39, Streamli	Pond Routi ne Technolo	ing (adICPR Dgies, Inc.	Ver 1.40)
ELLIGRAW 04-01-94	BAYOU - BASIN				
CREST EL. (ft	·: 3.130	UMBER X-Y P GATE COE	FLOWS ALLO	WED	(ft): 999.000 ELEM.: 1.000
	X-VAL (ft) .000 15.000 21.000 29.000 34.000 39.010 40.500 40.510 44.000 44.010 52.000 53.500 55.510 58.000 65.000 85.000 105.000	Y-VAL (ft) 16.000 15.000 13.920 12.210 11.570 11.570 11.510 11.080 11.079 11.530 11.540 12.730 12.750 13.410 13.430 14.070 14.100 15.000 15.000			
	DEPTH (ft) .000 .001 .431 .451 .461 .491 1.131 1.651 1.671 2.331 2.351 2.841 2.991 3.021 3.921 4.421 4.921 999.000 1004.000	AREA (sf) .00 .00 .65 .69 .75 1.01 9.01 17.45 17.88 36.24 36.86 53.21 58.45 59.55 99.15 136.02 186.65 104564.90 105089.90	PERIM (ft) .00 1.49 2.35 4.04 8.36 10.89 16.57 19.58 27.67 32.46 34.56 37.39 38.39 41.05 53.19 100.72 108.23 108.23	TOPWD (ft) .00 1.49 1.51 3.18 7.50 10.00 15.01 17.44 25.53 30.11 32.21 34.51 35.34 38.00 50.00 97.50 105.00 105.00	

NOTE: TUCKERSTOWN WEIR

.

• -

. • .

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.
ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94
<pre>>>REACH NAME : 150 FROM NODE : 150 TO NODE : 140 REACH TYPE : IRREGULAR WEIR/GATE/ORIFICE, MAVIS EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 12.000 NUMBER X-Y PTS: 11.000 OPENING (ft): 999.000 WEIR COEF.: 3.130 GATE COEF.: .600 NUMBER OF ELEM.: 1.000</pre>
X-VAL (ft) Y-VAL (ft) .000 15.500 50.000 15.010 55.000 15.000 55.010 13.510 85.000 13.500 85.010 12.000 95.000 11.999 95.010 13.500 125.000 13.510 125.010 16.000 145.000 16.100
DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) .000 .00 .00 .00 .00 .001 .00 10.00 9.99 1.501 15.01 12.99 10.01 1.511 15.41 72.97 69.99 3.001 119.70 75.95 70.01 3.011 120.43 80.96 75.01 3.501 169.43 131.45 125.01 4.001 231.93 131.95 125.01 4.101 245.44 151.94 145.00 999.000 144505.80 151.94 145.00 1004.000 145230.80 151.94 145.00

.

.

. .

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 160 FROM NODE : 160 TO NODE : 159 : IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 15.700 NUMBER X-Y PTS: 5.000 OPENING (ft): 999.000 WEIR COEF .: 2.600 GATE COEF .: .600 NUMBER OF ELEM.: 1.000 X-VAL (ft) Y-VAL (ft) .000 16.800 250.000 16.000 350.000 15.700 450.000 16.000 580.000 17.000 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) .000 .00 -00 .00 .300 30.00 200.00 200.00 1.100 331.60 554.01 554.00 1.300 445.00 580.01 580.00 999.000 579111.00 580.01 580.00 1004.000 582011.00 580.01 580.00

NOTE:

Advanced In Co	terconnected Channel & Pond Routing (adICPR Ver 1.40) pyright 1989, Streamline Technologies, Inc.
ELLIGRAW BA 04-01-94	YOU - BASIN MASTER PLAN (ALTERNATIVE 1)
FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : CREST EL. (ft): RGHT SS (h/v):	<pre>193 192 191 TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ. POSITIVE AND NEGATIVE FLOWS ALLOWED 15.500 BTM. WIDTH (ft):1025.000 LEFT SS (h/v): 5.000 5.000 OPENING (ft): 999.000 WEIR COEF.: 2.600 .600 NUMBER OF ELEM.: 1.000</pre>
FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION :	170 170 157 IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. POSITIVE AND NEGATIVE FLOWS ALLOWED 15.200 NUMBER X-Y PTS: 5.000 OPENING (ft): 999.000 2.600 GATE COEF.: .600 NUMBER OF ELEM.: 1.000
	X-VAL (ft) Y-VAL (ft) .000 17.000 30.000 16.000 50.000 15.200 80.000 16.000 100.000 17.000
	DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) .000 .00 .00 .00 .800 20.00 50.03 50.00 1.800 95.00 100.07 100.00 999.000 99815.00 100.07 100.00 1004.000 100315.00 100.07 100.00
NOTE	

.

.

NOTE:

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94

>>REACH NAME :	104A
FROM NODE :	104
	102
REACH TYPE :	RECTANGULAR WEIR/GATE/ORIFICE, VILLEMONTE EQ.
CREDI EL. (IU);	8.500 CREST LN (ft), 4000 oppress (a)
WEIR COEF .:	3.130 GATE COEF.: .600 NUMBER OF ELEM.: 1.000
NOTE:	1.000 NOMBER OF ELEM.: 1.000

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.	
ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 04-01-94	1)
<pre>>>REACH NAME : 101 FROM NODE : 101 TO NODE : 100 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF</pre>	
CULVERT DATA : SPAN (in): 144.000 RISE (in): 96.000 U/S INVERT (ft): -1.400 D/S INVERT (ft): -1.400 ENTRNC LOSS: .500 # OF CULVERTS: 2.000	LENGTH (ft): 110.000 MANNING N: .013
POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 11.200 CREST LN. (ft): 100.000 RESERVED:******* RESERVED:*******	WEIR COEF.: 2.800 RESERVED:*******
POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* RESERVED:****** RESERVED:*******	WEIR COEF.:******** RESERVED:*******
NOTE: U.S. 41 CROSSING	
<pre>>>REACH NAME : 102 FROM NODE : 102 TO NODE : 101 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF</pre>	
CULVERT DATA : SPAN (in): 132.000 RISE (in): 48.000 U/S INVERT (ft): 1.410 D/S INVERT (ft): .000 ENTRNC LOSS: .500 # OF CULVERTS: 3.000	LENGTH (ft): 200.000 MANNING N: .013
POSITION A : NOT USED	
POSITION B : NOT USED	

NOTE:

.

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) >>REACH NAME : 104 FROM NODE : 104 TO NODE : 102 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA • SPAN (in): 38.000 RISE (in): U/S INVERT (ft): 24.000 LENGTH (ft): 15.000 6.000 D/S INVERT (ft): 2.000 MANNING N: ENTRNC LOSS: .500 # OF CULVERTS: .013 2.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):9999.000 CREST LN. (ft): .000 WEIR COEF .: RESERVED: ******* 2.800 RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******** WEIR COEF .:******** RESERVED:******* RESERVED: ******* RESERVED: ******* NOTE: >>REACH NAME : 108 FROM NODE : 108 TO NODE : 106 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 38.000 RISE (in): U/S INVERT (ft): 9.000 D/S INVERT (ft): 24.000 LENGTH (ft): 56.000 9.000 ENTRNC LOSS: MANNING N: .500 # OF CULVERTS: .013 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 999.000 CREST LN. (ft): .000 RESERVED: ******* WEIR COEF.: 2.800 RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******** WEIR COEF .: ******* RESERVED:******* RESERVED:******* RESERVED: ******* NOTE:

0.0141

A second s

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 130 FROM NODE : 130 TO NODE : 120 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 72.000 RISE (in): 60.000 LENGTH (ft): U/S INVERT (ft): 8.400 D/S INVERT (ft): 8.200 80.000 MANNING N: ENTRNC LOSS: .500 # OF CULVERTS: .013 2.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 14.300 CREST LN. (ft): 50.000 WEIR COEF.: 2.800 RESERVED: ******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED: ******* NOTE: BILTMORE ROAD CROSSING >>REACH NAME : 151 FROM NODE : 151 TO NODE : 150 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA . SPAN (in): 96.000 RISE (in): 96.000 U/S INVERT (ft): 7.800 D/S INVERT (ft): 7.670 LENGTH (ft): 79.000 MANNING N: ENTRNC LOSS: .500 # OF CULVERTS: .013 3.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 19.100 CREST LN. (ft): 50.000 WEIR COEF .: RESERVED: ******* 2.800 RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******** WEIR COEF .:******* RESERVED:******* RESERVED: ******* RESERVED: ******* NOTE: BENEVA ROAD CROSSING

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04 - 01 - 94>>REACH NAME : 158 FROM NODE : 158 TO NODE : 157 REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 72.000 RISE (in): 72.000 U/S INVERT (ft): 7.970 D/S INVERT (ft): 8.030 LENGTH (ft): 40.000 MANNING N: ENTRNC LOSS: .500 # OF CULVERTS: 2.000 .013 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 16.500 CREST LN. (ft): 50.000 WEIR COEF.: 2.800 RESERVED: ******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******** WEIR COEF .:******* RESERVED: ******* RESERVED:******* RESERVED:******* NOTE: DATA BASED UPON PROJECT SURVEY >>REACH NAME : 163 FROM NODE : 163 TO NODE : 162 REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 48.000 RISE (in): 48.000 LENGTH (ft): 230.000 U/S INVERT (ft): 12.970 D/S INVERT (ft): 12.810 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 19.000 CREST LN. (ft): 50.000 WEIR COEF .: 2.800 RESERVED:******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED: *******

NOTE: PALMER RANCH PARKWAY CROSSING

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 165 FROM NODE : 165 TO NODE : 164 REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 48.000 RISE (in): 48.000 U/S INVERT (ft): 14.730 D/S INVERT (ft): LENGTH (ft): 150.000 14.630 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 23.000 CREST LN. (ft): 50.000 WEIR COEF .: RESERVED: ******* 2.800 RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******** WEIR COEF .: ******* RESERVED:******* RESERVED: ******* RESERVED: ******* NOTE: MIRA LAGO ENTRANCE >>REACH NAME : 182 FROM NODE : 182 TO NODE : 181 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA 38.000 RISE (in): 24.000 SPAN (in): U/S INVERT (ft): 16.200 D/S INVERT (ft): 15.000 LENGTH (ft): 89.000 MANNING N: ENTRNC LOSS: .500 # OF CULVERTS: 1.000 .013 POSITION A : NOT USED POSITION B : NOT USED

NOTE :

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 183 : 183 FROM NODE : 182 TO NODE REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 104.000 15.100 D/S INVERT (ft): 15.100 U/S INVERT (ft): MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED NOTE: >>REACH NAME : 183A FROM NODE : 183A TO NODE : 164 REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 30.000 RISE (in): 19.000 LENGTH (ft): 307.000 U/S INVERT (ft): 14.710 D/S INVERT (ft): 14.100 MANNING N: .013 ENTRNC LOSS: 1.100 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED

NOTE :

1

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 184 FROM NODE : 184 TO NODE : 183 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 94.000 U/S INVERT (ft): 16.500 D/S INVERT (ft): 15.100 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED NOTE: >>REACH NAME : 185A FROM NODE : 185A TO NODE : 181 REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 30.000 RISE (in): 30.000 LENGTH (ft): 160.000 U/S INVERT (ft): 13.960 D/S INVERT (ft): 13.480 MANNING N: .013 ENTRNC LOSS: .500 **# OF CULVERTS:** 1.000 POSITION A : NOT USED POSITION B : NOT USED

NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 185B FROM NODE : 185B TO NODE : 185A REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 15.000 RISE (in): 15.000 LENGTH (ft): 73.000 U/S INVERT (ft): 13.480 D/S INVERT (ft): 13.960 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED NOTE : >>REACH NAME : 186 FROM NODE : 186 TO NODE : 181 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA . SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 87.000 U/S INVERT (ft): 14.460 D/S INVERT (ft): 14.440 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED

NOTE :

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 210 FROM NODE : 210 TO NODE : 200 REACH TYPE : CULVERT, ARCH w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 65.000 RISE (in): 40.000 U/S INVERT (ft): 11.170 D/S INVERT (ft): 10.640 LENGTH (ft): 109.000 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 MANNING N: .024 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 16.560 CREST LN. (ft): 50.000 WEIR COEF .: 2.800 RESERVED: ******* RESERVED: ******* RESERVED:******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******** WEIR COEF .:******* RESERVED: ******* RESERVED: ******* RESERVED: ******* NOTE : >>REACH NAME : 220 FROM NODE : 220 TO NODE : 210 REACH TYPE : CULVERT, ARCH w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA 1 SPAN (in): 36.000 RISE (in): 24.000 LENGTH (ft): 156.000 U/S INVERT (ft): 13.400 D/S INVERT (ft): 11.760 MANNING N: .024 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 17.500 CREST LN. (ft): 25.000 WEIR COEF .: 2.600 RESERVED: ******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******** WEIR COEF .: ******* RESERVED: ******* RESERVED:******* RESERVED: ******* NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 120 FROM NODE : 120 TO NODE: 102REACH TYPE: DROP STRUCTURE w/ RECT. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 132.000RISE (in): 48.000LENGTH (ft): 932.600IVERT (ft): 7.930 D/S INVERT (ft): 1.400MANNING N: .013 U/S INVERT (ft): 7.930 D/S INVERT (ft): 1.400 ENTRNC LOSS: 1.300 # OF CULVERTS: 3.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 10.500 CREST LN. (ft): 35.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft):9999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 999.000 GATE COEF.: 3.200 NUMBER OF ELEM.: .600 NOTE: >>REACH NAME : 171 FROM NODE : 171 TO NODE : 151 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 18.000 RISE (in): 18.000 LENGTH (ft): 32.000 U/S INVERT (ft): 12.510 D/S INVERT (ft): 12.100 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 13.720 CREST LN. (ft): 4.600 OPENING (ft): 1.550 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft):******* CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF .: .660 NUMBER OF ELEM.: 1.000 NOTE: DATA BASED UPON PROJECT SURVEY

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 173 : 173 FROM NODE TO NODE : 159 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 15.000 RISE (in): 15.000 LENGTH (ft): 32.000 U/S INVERT (ft): 12.950 D/S INVERT (ft): 12.580 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.180 CREST LN. (ft): 4.800 OPENING (ft): 1.150 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft):9999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: DATA BASED UPON PROJECT SURVEY >>REACH NAME : 175 FROM NODE : 175 TO NODE : 161 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 15.000 RISE (in): 15.000 LENGTH (ft): 42.000 U/S INVERT (ft): 12.920 D/S INVERT (ft): 12.550 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.000 CREST LN. (ft): 4.900 OPENING (ft): 1.260 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 : RECTANGULAR RISER SLOT POSITION B CREST EL. (ft): 999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000

NOTE: DATA BASED UPON PROJECT SURVEY

an and a second s

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 180 FROM NODE : 180 TO NODE : 161 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA • SPAN (in): 54.000 RISE (in): 54.000 LENGTH (ft): 119.000 U/S INVERT (ft): 9.400 D/S INVERT (ft): 9.260 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.550 CREST LN. (ft): 18.000 OPENING (ft): 1.510 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 16.060 CREST LN. (ft): 33.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: DATA BASED UPON PROJECT SURVEY >>REACH NAME : 181A FROM NODE : 181 TO NODE : 160 REACH TYPE : DROP STRUCTURE w/ ELLP. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 293.000 U/S INVERT (ft): 12.920 D/S INVERT (ft): 12.560 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT DSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.790 CREST LN. (ft): 2.200 OPENING (ft): 1.440 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 : RECTANGULAR RISER SLOT POSITION B CREST EL. (ft): 16.230 CREST LN. (ft): 26.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: DATA BASED UPON PROJECT SURVEY

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 181B FROM NODE : 181 TO NODE : 180 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 54.000 RISE (in): 54.000 U/S INVERT (ft): 8.990 D/S INVERT (ft): 8.830 LENGTH (ft): 220.000 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 MANNING N: .013 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.730 CREST LN. (ft): 5.950 OPENING (ft): WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.190 1.000 POSITION B : RECTANGULAR RISER SLOT • CREST EL. (ft): 15.920 CREST LN. (ft): 26.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000 NOTE: DATA BASED UPON PROJECT SURVEY >>REACH NAME : 183B FROM NODE : 183 TO NODE : 183A REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA :
 SPAN (in):
 18.000
 RISE (in):
 18.000
 LENGTH (ft):
 238.000

 U/S INVERT (ft):
 15.170 D/S INVERT (ft):
 14.710
 MANNING N:
 .013
 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 16.230 CREST LN. (ft): 3.080 OPENING (ft): .530 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 18.380 CREST LN. (ft): 14.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000 NOTE: DATA BASED UPON PROJECT SURVEY

and a second of the second

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 187 FROM NODE : 187 TO NODE : 181 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in):18.000RISE (in):18.000LENGTH (ft):48.000U/S INVERT (ft):13.110 D/S INVERT (ft):12.140MANNING N:.013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 16.430 CREST LN. (ft): 1.750 OPENING (ft): 1.490 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 17.920 CREST LN. (ft): 10.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: DATA BASED UPON PROJECT SURVEY >>REACH NAME : 191 FROM NODE : 191 TO NODE : 190 REACH TYPE : DROP STRUCTURE w/ ELLP. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA - : SPAN (in): 76.000 RISE (in): 48.000 LENGTH (ft): 40.000 U/S INVERT (ft): 10.290 D/S INVERT (ft): 10.210 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT SITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.940 CREST LN. (ft): 8.000 OPENING (ft): 1.330 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 16.270 CREST LN. (ft): 33.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000

NOTE:

* . . . Salahara ana an

5 Sec. 6

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 192 FROM NODE : 192 : 190 TO NODE REACH TYPE : DROP STRUCTURE w/ ELLP. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 76.000 RISE (in): 48.000 LENGTH (ft): 105.000 U/S INVERT (ft): 10.500 D/S INVERT (ft): 10.290 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.910 CREST LN. (ft): 18.000 OPENING (ft): 1.550 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 16.460 CREST LN. (ft): 33.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE : >>REACH NAME : 200 FROM NODE : 200 TO NODE : 140 REACH TYPE : DROP STRUCTURE w/ ARCH CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA :

 SPAN (in):
 65.000
 RISE (in):
 40.000

 U/S INVERT (ft):
 9.780 D/S INVERT (ft):
 9.900

 ENTRNC LOSS:
 .500
 # OF CULVERTS:
 1.000

 LENGTH (ft): 94.000 MANNING N: .024 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 11.510 CREST LN. (ft): 8.300 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 : RECTANGULAR RISER SLOT POSITION B CREST EL. (ft): 14.010 CREST LN. (ft): 8.500 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: DATA BASED UPON PROJECT SURVEY

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 106 FROM NODE : 106 TO NODE : 104 REACH TYPE : IRREGULAR SECTION CHANNEL, MOMENTUM EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED OUTLET CONTROL : FREE LENGTH (ft): 265.000 U/S INVERT (ft): 8.100 D/S INVERT (ft): 6.600 MAX. DEPTH (ft): 1.500 X-VAL (ft) Y-VAL (ft) N-VAL .000 8.700 .040 3.000 7.200 .040 7.000 8.700 .040 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE .000 .00 .00 .00 .0 1.500 5.25 7.63 7.00 152.0 1.500 5.25 7.63 7.00 152.0 6.500 40.25 7.63 7.00 4532.4

NOTE:

Advanced In Co	terconnected pyright 1989	Channel & , Streamli	Pond Routi ne Technolo	ng (adICPR) gies, Inc.	Ver 1.40)
ELLIGRAW BA 04-01-94	YOU - BASIN	MASTER PLA	N (ALTERNAT	IVE 1)	
FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : OUTLET CONTROL :	108 IRREGULAR S POSITIVE AN FREE 315.000 U/S	D NEGATIVE	FLOWS ALLO	WED	(ft): 7.580
	X-VAL (ft)	10.800	.040		
	15.000	9.200 11.100	.040 .040		
	DEPTH (ft) .000 1.500 1.600 1.900 6.900	.00 9.71 11.05 15.38	13.30 13.30 13.30	00. 12.95 13.82 15.00	
እርጥም •					

.

NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.							
ELLIGRAW BA 04-01-94	YOU - BASIN	MASTER PLAN	N (ALTERNAT)	IVE 1)			
FROM NODE :	FREE 650.000 U/s	ND NEGATIVE	FLOWS ALLOW	∛ED	(ft): 7.800		
	X-VAL (ft) .000 15.000 20.000 30.000 40.000 54.000 62.000 70.000	11.800 10.300 10.100 9.000 11.900 16.900	.035 .035 .035 .035 .035 .035 .035		·		
	DEPTH (ft) .000 1.100 1.300 2.800 2.900 7.500 7.900 8.000 8.100 13.100	.00 8.42 12.58 61.17 65.07 296.63 321.30 327.70 334.50 684.50	.00 15.48 26.47 39.09 39.92 63.98 64.73 68.74 68.74 68.74	.00 15.31 26.28 38.52 39.32 61.36 62.00 66.00	.0 238.2 325.2 3501.1 3826.3 35017.0 39693.1		
NOTE :	BASED UPON	SCS CROSS-S	ECTION				

.

	Advanced In Co	terconnected pyright 1989	i Channel &), Streamlin	Pond Routin Technolog	ng (adICPR) jies, Inc.	Ver 1.40)
	ELLIGRAW BA 04-01-94	YOU - BASIN	MASTER PLAN	N (ALTERNAT)	(VE 1)	
	FROM NODE :	POSITIVE AN FREE 650.000 U/s	ID NEGATIVE	FLOWS ALLOW	VED	(ft): 7.970
		X-VAL (ft)	Y-VAL (ft)	N-VAL		
		.000	17.600	.035		
		10.000		.035		
		20.000				
		25.000				
		32.000				
		40.000		.035		
		50.000				
		60.000				
		90.000	16.900	.035		
		DEPTH (ft)	• •	PERIM (ft)	TOPWD (ft)	CONVEYANCE
		.000	.00	.00	.00	.0
		1.200	- • • •			287.7
		1.600			19.11	636.4
		4.800				
		4.900				
		8.800			63.53	
		9.200 9.500				
		9.900				
-		10.600				
		15.600				
		13.000	895.10	83.15	90.00	185272.7
	NOTE:	BASED UPON	SCS CROSS-S	SECTION		

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.						
ELLIGRAW BAY 04-01-94	YOU - BASIN	MASTER PLAT	N (ALTERNAT	IVE 1)		
FROM NODE : TO NODE :	FREE 350.000 U/:	ND NEGATIVE	FLOWS ALLO	WED	(ft): 7.000	
	X-VAL (ft) .000 10.000 20.000 25.000 32.000 40.000 50.000 60.000 90.000	8.200	.035 .035 .035 .035 .035 .035 .035 .035		·	
NOTE	DEPTH (ft) .000 1.200 1.600 4.800 4.900 8.800 9.000 9.200 9.200 9.900 10.600 15.600	.00 9.60 16.62 102.86 106.38 299.66 312.98 327.54 383.85 445.10 895.10	.00 16.19 19.41 36.36 37.19 66.81 73.00 73.00 73.00 73.00 73.00	19.11 34.79 35.59 63.53 69.71 75.88 85.00	.0 287.7 636.4 8734.8 9100.3 34603.3 35068.8 37829.5 49278.4	
NOTE:	BASED UPON	SCS CROSS-S	SECTION			

.....

.

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.							
ELLIGRAW BA 04-01-94	YOU - BASIN	MASTER PLAN	N (ALTERNAT	IVE 1)			
FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : OUTLET CONTROL : LENGTH (ft):	POSITIVE AN FREE 350.000 U/S	D NEGATIVE	FLOWS ALLOW	WED	(ft): 10.300		
MAX. DEPTH (ft):	X-VAL (ft) .000 22.000 24.000 31.000 37.000 38.000	17.100	.035 .035 .040 .040 .040 .040 .040				
	6.000 7.000	.00 4.55 17.46 24.24 156.18 178.60	.00 13.08 16.41 19.15 56.75 58.69 58.69	15.69 18.20 55.10 57.00	.0 83.6 676.3 1116.8 13460.6 16279.6 24992.5		

NOTE: BASED UPON PALMER RANCH RECORD DRWG

.

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94 >>REACH NAME : 164 FROM NODE : 164 : 163 TO NODE : IRREGULAR SECTION CHANNEL, MOMENTUM EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED OUTLET CONTROL : FREE LENGTH (ft):1700.000 U/S INVERT (ft): 14.630 D/S INVERT (ft): 12.970 MAX. DEPTH (ft): 2.000 X-VAL (ft) Y-VAL (ft) N-VAL .000 24.000 18.200 .035 13.100 .035 31.000 12.300 .060 37.000 13.300 .060 65.000 19.900 .035 89.000 22.800 .035 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE .00 .000 .00 .00 .0 .800 4.72 11.91 11.80 63.1 1.000 7.29 14.09 13.94 120.3 2.000 25.71 23.26 22.89 823.3 5.900 183.03 23.26 57.79 29075.2 7.600 287.40 23.26 65.00 67913.7 10.500 510.70 23.26 89.00 201421.7 15.500 955.70 23.26 89.00 647949.0

NOTE: BASED UPON PALMER RANCH RECORD DRWG

Advanced In Co	nterconnected opyright 1989] Channel & 9, Streamlin	Pond Routi ne Technolo	ng (adICPR) gies, Inc.	Ver 1.40)
ELLIGRAW BA 04-01-94	AYOU - BASIN	MASTER PLAN	N (ALTERNAT	IVE 1)	
FROM NODE TO NODE REACH TYPE FLOW DIRECTION OUTLET CONTROL	: 162 : IRREGULAR S : POSITIVE AN : FREE : 500.000 U/S	ND NEGATIVE	FLOWS ALLO	WED	(ft): 9.710
	.000 35.000 55.000	Y-VAL (ft) 17.000 10.000 9.999 17.000	.060 .060 .060		
	.000 .001 7.000 7.001	.00 .01 384.94	.00 20.00 91.38 91.38	20.00 89.99 90.00	.0 .0 30103.5 30115.5

NOTE:

.

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94

REACH SUMMARY

INDEX	RCHNAME	FRMNODE	TONODE	REACH TYPE
1	102A	102	101	
2	108A	108	106	TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ.
3	112	120	110	
4	140		130	
5	150		140	
6	160		159	
7	193	192	191	
8	170	170	157	====================================
9	104A	104	102	
	101	101	100	
11	102	102	101	CULVERT, RECTANGULAR w/ ROADWAY
12	104	104	102	CULVERT, RECTANGULAR W/ ROADWAY
13	108	108	102	CULVERT, ELLIPTICAL w/ ROADWAY
14	130	130	120	CULVERT, ELLIPTICAL w/ ROADWAY
15	151	151	150	CULVERT, RECTANGULAR w/ ROADWAY
16	158	158	157	CULVERT, RECTANGULAR W/ ROADWAY
17	163	163	162	CULVERT, CIRCULAR w/ ROADWAY
18	165	165	164	CULVERT, CIRCULAR w/ ROADWAY
19	182	182	181	CULVERT, CIRCULAR w/ ROADWAY
20	183	183	182	CULVERT, ELLIPTICAL w/ ROADWAY
21	183A		164	CULVERT, ELLIPTICAL w/ ROADWAY
22	184		164 183	CULVERT, CIRCULAR w/ ROADWAY
23	185A		181	CULVERT, ELLIPTICAL w/ ROADWAY
24	185B		185A	CULVERT, CIRCULAR w/ ROADWAY
25	186	186	181	CULVERT, CIRCULAR w/ ROADWAY
26	210	210	200	CULVERT, ELLIPTICAL w/ ROADWAY
27	220	220	200	CULVERT, ARCH w/ ROADWAY
28	120		210	CULVERT, ARCH w/ ROADWAY
29	171		102	DROP STRUCTURE W/ RECT. CULVERT
30	173	173	151	DROP STRUCTURE w/ CIRC. CULVERT
31	175	175	159 161 161 160	DROP STRUCTURE w/ CIRC. CULVERT
	180	180	161	DROP STRUCTURE W/ CIRC. CULVERT
	181A		160	DROP STRUCTURE W/ CIRC. CULVERT
	181B	181	180	
35	183B	183	183A	DROP STRUCTURE w/ CIRC. CULVERT
36	187	187		DROP STRUCTURE w/ CIRC. CULVERT
37	191	191	181	DROP STRUCTURE w/ CIRC. CULVERT
38	192	192	190	DROP STRUCTURE w/ ELLP. CULVERT
39	200	200	190	DROP STRUCTURE w/ ELLP. CULVERT
40	106	106	140	DROP STRUCTURE w/ ARCH CULVERT
41	110	110	104	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
42	157	157	108	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
43	159	159	151	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
44	161	161	158	IRREGULAR SECTION CHANNEL, MOMENTUM EO.
45	162	162	159	IRREGULAR SECTION CHANNEL, MOMENTUM EO.
46	164	164	161	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
40	190	190	163	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
• 7		170	162	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1) 04-01-94

INPUT SUMMARY

DATA TYPE	NUMBER READ
NODES	41
REACHES	
WEIRS	9

CULVERTS	18
DROP STRUCTURES	12
CHANNELS, ENERGY EQ.	0
CHANNELS, MOMENTUM EQ.	8
RATING CURVES	0
TOTAL REACHES	47

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1 - 2 YR) 04-01-94

NODE ID	STAGE (ft)	VOLUME (af)	< RUNOFF (cfs)	INFLOW OFFSITE (cfs)	> OTHER (cfs)	OUTFLOW (cfs)
		(af) 101.87 .19 .42 .01 .04 .10 .16 2.82 .86 6.64 1.35 1.58 1.44 1.14 2.03 4.63 .99 1.03 .12 .32 .40 .36 1.42 .35 1.18 .36 2.05	(cfs) .00 14.80 .00 10.92 .00 10.92 .00 18.18 63.09 21.88 36.86 .00 12.12 13.05 .00 6.45 8.83 1.17 .00 3.33 4.16 1.89 2.29 12.39 4.80 11.30 5.77 26.06	OFFSITE	OTHER	
183 183A 184 185A 185B 186 187 190 191 192 200 210 220	16.90 15.88 17.28 15.47 15.47 15.69 16.77 13.66 15.11 15.32 13.30 13.45 14.16	2.84 5.13 .01 .68 .01 .11 .87 .32 .84 1.53 7.08 3.42 1.85 1.73	8.55 29.81 .00 9.98 .00 .61 13.36 2.63 2.58 6.04 29.90 23.99 27.51 16.94	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	4.83 3.65 4.52 .00 .63 .00 .00 16.39 .00 .00 22.58 4.17 .00	2.90 8.26 4.52 3.65 1.53 .63 7.29 1.11 31.54 1.78 15.21 26.31 22.58 4.17

NODAL MAXIMUM CONDITIONS REPORT ________

and a second second

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1 - 5 YR)

NODE ID	STAGE (ft)	VOLUME (af)	Cfs)	INFLOW OFFSITE (cfs)	OTHER (cfs)	OUTFLOW (cfs)
		(af) 162.11 .21 .61 .04 .20 .25 4.15 1.23 8.52 1.43 1.67 1.52 1.23 2.17 5.97 1.06 1.16 .27 .36 .42 2.12 .44 1.81 .46 3.48 3.65 6.71 .01 .99	(cfs) .00 21.97 .00 .00 18.74 .00 28.79 101.43 34.45 58.47 .00 17.87 21.91 .00 9.84 13.76 2.08 .00 5.99 7.40 3.35 3.72 19.65 7.35 17.15 9.23 42.05 13.29 45.70 .00 15.84	OFFSITE	OTHER (cfs) 291.31 287.14 287.55 44.40 26.93 27.25 .00 186.03 169.91 141.77 104.76 91.27 73.84 73.11 102.11 4.99 67.99 63.61 9.88 6.81 .00 .00 .00 .00 .00 18.86 18.33 8.14 7.28 5.55 .00	
185B 186 187 190 191 192 200 210 220	15.81 15.80 16.03 16.91 13.92 15.17 15.51 14.16 14.50 14.69	.01 .18 1.12 .37 .93 1.69 8.73 5.08 2.84 3.05	.00 1.00 19.82 3.97 4.29 8.78 49.44 36.88 42.22 28.51	.00 .00 .00 .00 .00 .00 .00 .00 .00	.80 .00 .00 29.46 3.81 .00 34.29 11.93 .00	2.84 .80 11.30 1.85 53.90 2.87 30.76 43.25 34.29 11.93

NODAL MAXIMUM CONDITIONS REPORT

-

. .

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1 - 10 YR) 04-01-94

NODAL MAXIMUM CONDITIONS REPORT

NODE ID	STAGE (ft)	VOLUME (af)	<pre>{ RUNOFF (cfs)</pre>	INFLOW OFFSITE (cfs)	> OTHER (cfs)	OUTFLOW (cfs)
ID 100 101 102 104 106 108 110 120 130 140 150 151 157 158 159 160 161 162 163 164 165 170 171 173 175 180 181 182 183 183A 184 185A 185B				OFFSITE	(cfs) 359.10 354.09 354.12 55.45 33.50 33.42 .00 226.84 207.54 173.76 123.46 116.60 98.15 93.97 129.92 6.39 88.58 78.46 12.28 7.66 .00 .00 .00 .00 .00 .00 .00	(cfs) .00 359.10 354.09 55.39 55.45 33.50 33.42 304.96 226.84 207.54 123.08 123.46 108.18 94.14 93.97 3.27 127.90 60.09 17.61 12.28 2.09 4.12 8.70 4.36 4.93 26.98 30.02 9.10 15.59 5.92 9.56 2.75
186 187 190 191 192 200 210 220	16.22 16.98 14.22 15.50 15.54 14.59 14.98 15.12	1.26 .40 1.04 2.52 8.94 5.88 3.29 4.23	23.57 4.75 5.32 10.36 61.00 44.35 50.76 35.35	.00 .00 .00 .00 .00 .00 .00	.00 .00 38.72 19.42 .00 39.08 13.33 .00	.80 13.61 2.30 68.16 10.81 48.05 51.15 39.08 13.33

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1 - 25 YR)

NODE ID	STAGE (ft)	VOLUME (af)	<pre>Contended Contended C</pre>	INFLOW OFFSITE (cfs)	> OTHER (cfs)	OUTFLOW (cfs)
100	1.50	233.63	.00	.00		
101	2.44	.26	30.07	.00	422.66 416.83	.00
102	4.39	.78	.00	.00	416.58	422.66
104 106	8.81	.02	.00	.00	65.79	416.83
108	10.95	.05	28.08	.00	39.32	65.72
110	11.63	.23	.00	.00	40.00	65.79
120	11.71	. 28	41.23	.00	.00	39.32 40.00
130	12.81	6.18	146.09	.00	264.41	358.78
140	13.40	1.60	48.98	.00	243.22	264.41
150	14.10	10.62	83.56	.00	206.06	243.22
151	14.25	1.58	.00	.00	151.21	151.61
157	14.28 14.29	1.88	24.55	.00	140.60	151.21
158	14.29	1.73	32.43	.00	119.65	132.37
159	14.30	1.42	.00	.00	117.81	114.85
160	15.83	2.49	13.74	.00	163.22	117.81
161	14.43	6.81	19.58	.00	7.73	8.01
162	14.53	1.26	3.19	.00	108.66	159.37
163	15.07	1.47	.00	.00	96.78	71.46
164	16.01	. 47	9.21	.00	14.29	19.77
165	16.02	.46	11.33	.00	8.77	14.29
170	15.46	.58 .48	5.11	.00	.00	2.94
171	15.11	3.19	5.44	.00	.00	5.02
173	14.75	.55	28.08	.00	.00	9.39
175	14.84	2.76	10.27 23.92	.00	.00	4.87
180	15.27	.61	13.35	.00	•00	5.52
181	16.16	5.04	60.79	.00	31.40	35.41
182	17.70	4.48	18.77	.00	24.88	39.09
183	17.85	8.60	64.11	.00	12.40	11.59
183A	16.28	.01	.00	.00	11.44	18.06
184	18.01	1.31	22.67	.00	6.22	6.24
185A	16.15	.01	.00	.00	.00	11.44
185B	16.17	.26	1.47	.00	.80	2.45
186	16.42	1.40	27.35	.00 .00	.00	.80
187	17.05	.43	5.53	.00	.00	15.84
190	14.53	1.16	6.35	.00	.00 47.31	2.77
191 192	15.60	2.77	11.95	.00	33.75	77.95
200	15.61	9.53	72.71	.00	.00	13.86
210	14.95	6.57	51.86	.00	42.52	63.54
220	15.40	3.98	59.34	.00	42.52	55.52
240	15.54	5.63	42.26	.00	.00	42.52
					.00	14.70

NODAL MAXIMUM CONDITIONS REPORT _____________________________

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 1 - 100 YR) 04-01-94

NODAL MAXIMUM CONDITIONS REPORT

NODE ID	STAGE (ft)	VOLUME	<pre>RUNOFF (afa)</pre>	INFLOW - OFFSITE	OTHER	OUTFLOW
		(af)	(cfs)	(cfs)	(cfs)	(cfs)
100	1.50	306.83	.00	.00	528.07	.00
101	2.92	.30	38.10	.00	520.77	528.07
102	4.87	.90	.00	.00	520.69	520.07
104	9.23	.07	.00	.00	86.00	84.97
106	11.26	.11	37.58	.00	52.00	86.00
108	11.71	.25	.00	.00	52.73	52.00
110	11.84	.31	53.77	.00	.00	52.73
120	13.28	8.75	190.90	.00	337.20	444.54
130	14.12	2.08	63.49	.00	310.18	337.20
140	14.63	13.50	108.71	.00	262.72	310.18
150	14.77	1.75	.00	.00	202.41	202.43
151	14.81	2.12	31.28	.00	187.99	202.41
157 158	14.83	1.96	43.09	.00	163.58	180.72
159	15.01	1.66	.00	.00	156.54	156.90
160	15.04	2.87	17.63	.00	203.46	156.54
161	15.89 15.06	7.15	25.48	.00	11.79	18.01
162	15.11	1.49	4.32	.00	130.88	
163	15.37	1.79 .86	.00	.00	90.22	85.64
164	16.17	.00	12.50	.00	17.32	22.08
165	16.18	.54	15.35	.00	10.86	
170	15.51	.53	6.91 7.20	.00	.00	4.35
171	15.64	4.51	36.54	.00 .00	.00	6.80
173	15.07	.80	13.19	.00	.00	11.03
175	15.20	4.01	30.69	.00	.00	5.17
180	15.70	.93	17.54	.00	.00	6.46
181	16.42	6.18	79.65	.00	48.54 37.68	53.23 60.23
182	18.05	5.20	24.26	.00	16.07	16.60
183	18.36	10.49	82.55	.00	13.98	22.39
183A	16.50	.01	.00	.00	6.69	6.70
184	18.48	1.71	29.53	.00	.00	13.98
185A	16.42	.01	.00	.00	. 88	3.13
185B	16.44	.32	1.96	.00	.00	.88
186	16.83	1.71	34.94	.00	.00	19.72
187	17.19	.49	7.11	.00	.00	3.72
190	15.11	1.38	8.45	.00	63.38	70.94
191	15.79	3.25	15.12	.00	22.35	19.42
192	15.80	11.17	96.35	.00	.00	61.94
200	15.63	8.23	66.89	.00	48.20	64.45
210	16.16	5.44	76.54	.00	19.38	48.20
220	16.24	8.68	56.17	.00	.00	19.38

-

A CONTRACT OF A CONTRACT

.....

ALTERNATIVE 2

· · · ·

.

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94

CONTROL PARAMETERS ------

START TIME: .00 END TIME: 48.00

TO TIME (hours)	SIMULATION INC (secs)	PRINT INC (mins)
100.00	1.00	15.00

RUNOFF HYDROGRAPH FILE: DEFAULT OFFSITE HYDROGRAPH FILE: DEFAULT BOUNDARY DATABASE FILE: NONE

NOTE:

.....

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94

ب السور

NODE NAME	NODE I TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		AR/TM/STR ac/hr/af)
100	TIME	1.500	.000	.000	.000	1.500 1.500 1.500	.000 100.000
101	AREA	1.500	.000	.000	.000	1.500 9.000 10.000 11.000 12.000 13.000	.000 .060 .190 .870 2.500 4.750
102	AREA	1.500	.000	.000	.000	$\begin{array}{c} 1.500 \\ 8.300 \\ 9.000 \\ 10.000 \\ 11.000 \\ 12.000 \\ 13.000 \\ 14.000 \end{array}$.001 .002 .060 .120 .860 2.140 3.360 7.060
104	AREA	6.000	.000	.000	.000	9.000 10.000 11.000 12.000 13.000 14.000	.110 .230 .300 .400 1.110 2.470
106	AREA	8.500	.000	.000	.000	11.000 12.000 13.000 14.000	.030 .400 1.120 2.480
108	AREA	9.000	.000	.000	.000	11.000 12.000 13.000 14.000 15.000	.140 .170 .620 2.230 3.060
110	AREA	9.700	.000	.000	.000	8.500 9.700 11.000 12.000 13.000 14.000 15.000	.050 .070 .090 .180 .630 2.240 3.060

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94

لينتقر

- نمر

معجر

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)	STAGE # (ft) (a	R/TM/STR ac/hr/af)
120	AREA	10.500	.000	.000	.000	9.400 11.000 12.000 13.000 14.000 15.000 16.000	1.000 1.051 2.517 4.192 9.681 16.480 36.096
130	AREA	10.500	.000	.000	.000	9.000 11.000 14.000 15.000 15.500 16.000	.200 .247 .665 2.741 3.729 5.006
140	AREA	11.080	.000	.000	.000	11.000 14.000 15.000 16.000	2.380 4.338 6.464 13.794
150	AREA	12.000	.000	.000	.000	8.000 12.000 16.000 17.000	.126 .243 .371 .402
151	AREA	12.000	.000	.000	.000	16.600 17.600	.000
157	AREA	12.000	.000	.000	.000	16.600 17.600	.000
158	AREA	12.000	.000	.000	.000	17.000 18.000	.000
159	AREA	12.000	.000	.000	.000	17.000 18.000	.000
160	AREA	14.790	.000	.000	.000	14.000 15.000 15.500 16.000 16.500	2.090 3.785 4.719 5.727 6.603

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94

، سبر

. معنى

NODE NAME	NODE 1 TYPE	ÍNI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		R/TM/STR c/hr/af)
161	AREA	12.000	.000	.000	.000	17.000 18.000	.000 .000
162	AREA	12.000	.000	.000	.000	18.000 19.000	.000
163	AREA	12.970	.000	.000	.000	15.000 16.000 16.500 17.000	.540 1.000 1.240 1.520
164	AREA	14.630	.000	.000	.000	18.500 19.500	.000
165	AREA	14.730	.000	.000	.000	14.000 15.000 16.000 17.000	.020 .130 .820 1.930
170	AREA	15.000	.000	.000	.000	15.000 15.500 16.000 16.500	.842 1.235 1.635 2.984
171	AREA	13.720	.000	.000	.000	13.500 14.000 15.000 16.000 17.000	1.620 1.840 2.280 2.650 3.900
173	AREA	14.180	.000	.000	.000	14.000 15.000 16.000 17.000 18.000	.690 .780 .860 .940 1.110
175	AREA	14.000	.000	.000	.000	14.000 15.000 16.000 17.000	3.150 3.420 3.760 4.400

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94

، **بع**ر

_

NODE NAME	NODE I Type	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)	STAGE A (ft) (a	R/TM/STR c/hr/af)
180	AREA	14.520	.000	.000	.000	14.500 17.500	.606
181	AREA	14.730	.000	.000	.000	15.000 20.000	3.566
182	AREA	16.200	.000	.000	.000	15.500 20.000	1.621 2.452
183	AREA	16.200	.000	.000	.000	15.500 20.000	3.021 4.307
183 A	AREA	14.710	.000	.000	.000	1 4. 710 20.000	.000
184	AREA	16.500	.000	.000	.000	16.500 20.500	.706 1.019
185A	STRG	14.730	.000	.000	.000	14.730 19.000	.000 .001
185B	AREA	14.730	.000	.000	.000	15.000 20.000	.144 .305
186	AREA	14.730	.000	.000	.000	14.500 18.500	.490 .973
187	AREA	16.430	.000	.000	.000	16.000 17.500 17.800	.395 .423 .735
190	AREA	12.000	.000	.000	.000	18.000 19.000	.000
191	AREA	15.000	.000	.000	.000	14.500 18.000	2.130 2.890
192	AREA	14.910	.000	.000	.000	14.500 18.000	7.740 9.500
200	AREA	11.510	.000	.000	.000	11.500 15.000 16.000 17.000	1.614 2.183 2.803 5.465

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94

-

,

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		R/TM/STR c/hr/af)
210	AREA	11.510	.000	.000	.000	11.500 15.000 16.000 17.000 18.000	.589 1.286 2.073 3.690 30.610
220	AREA	13.400	.000	.000	.000	13.400 14.000 15.000 16.000 17.000	2.140 2.280 2.680 4.020 8.630

.

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.
ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94
<pre>>>REACH NAME : 102A FROM NODE : 102 TO NODE : 101 REACH TYPE : TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 11.500 BTM. WIDTH (ft): 35.000 LEFT SS (h/v): 15.000 RGHT SS (h/v): 15.000 OPENING (ft): 999.000 WEIR COEF.: 2.600 GATE COEF.: .600 NUMBER OF ELEM.: 1.000</pre>
<pre>>>REACH NAME : 108A FROM NODE : 108 TO NODE : 106 REACH TYPE : IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 11.400 NUMBER X-Y PTS: 6.000 OPENING (ft): 999.000 WEIR COEF.: 2.600 GATE COEF.: .600 NUMBER OF ELEM.: 1.000</pre>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

.

NOTE: PINEHURST STREET

. . .

Advanced In Co	terconnected pyright 1989	Channel & : , Streamline	Pond Routin e Technolog	ng (adICPR Ver 1 gies, Inc.	.40)
ELLIGRAW BA 04-01-94	YOU - BASIN	MASTER PLAN	(ALTERNAT)	IVE 2)	
FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : CREST EL. (ft):	110 IRREGULAR W POSITIVE AN 14.000 NU 2.000 X-VAL (ft) .000 50.000 130.000	D NEGATIVE 1 MBER X-Y PT GATE COEF Y-VAL (ft) 15.300 15.000 14.000	FLOWS ALLOW S: 5.000	זדה	: 999.000 : 1.000
	220.000 420.000	13.999 14.500			
	1.301	.00 .05 105.15 280.15 398.65 419432.20	.00 90.42 330.00 370.01 420.01 420.01	.00 90.42 330.00 370.00 420.00 420.00	

NOTE:

. معمر

Advanced In Co	terconnected pyright 1989	I Channel & P 9, Streamline	ond Routing Technologi	g (adICPR Ver les, Inc.	- 1.40)
ELLIGRAW BA 04-01-94	YOU - BASIN	MASTER PLAN	(ALTERNATIV	/E 2)	
FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : CREST EL. (ft):	POSITIVE AN	ND NEGATIVE F JMBER X-Y PTS	LOWS ALLOWE : 19.000	ED	t): 999.000 M.: 1.000
	X-VAL (ft) .000 15.000 29.000 34.000 39.000 39.010 40.500 40.510 44.000 44.010 52.000 53.500 55.510 58.000 65.000 85.000 105.000	Y-VAL (ft) 16.000 15.000 13.920 12.210 11.570 11.510 11.080 11.079 11.530 11.540 12.730 12.750 13.410 13.430 14.070 14.100 15.000 15.000			
	DEPTH (ft) .000 .001 .431 .451 .461 .491 1.131 1.651 1.671 2.331 2.351 2.841 2.991 3.021 3.921 4.421 4.921 999.000 1004.000	AREA (sf) P .00 .00 .65 .69 .75 1.01 9.01 17.45 17.88 36.24 36.86 53.21 58.45 59.55 99.15 136.02 186.65 104564.90 105089.90	ERIM (ft) T .00 1.49 2.35 4.04 8.36 10.89 16.57 19.58 27.67 32.46 34.56 37.39 38.39 41.05 53.19 100.72 108.23 108.23 108.23	COPWD (ft) .00 1.49 1.51 3.18 7.50 10.00 15.01 17.44 25.53 30.11 32.21 34.51 35.34 38.00 50.00 97.50 105.00 105.00	

NOTE: TUCKERSTOWN WEIR

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94 >>REACH NAME : 160 FROM NODE : 160 : 159 TO NODE : IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 15.700 NUMBER X-Y PTS: 5.000 OPENING (ft): 999.000 WEIR COEF .: 2.600 GATE COEF .: .600 NUMBER OF ELEM.: 1.000 X-VAL (ft) Y-VAL (ft) .000 250.000 16.800 16.000 350.000 15.700 450.000 16.000 580.000 17.000 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) .000 .00 .00 .00 .300 30.00 200.00 200.00 1.100 331.60 554.01 554.00 1.300 445.00 580.01 580.00 999.000 579111.00 580.01 580.00 1004.000 582011.00 580.01 580.00

NOTE:

Advanced	Interconnecte Copyright 198	d Channel & 9, Streamlir	Pond Routin Ne Technolog	ng (adICPR Ver gies, Inc.	1.40)
ELLIGRAW 04-01-94	BAYOU - BASIN	MASTER PLAN	I (ALTERNAT:	IVE 2)	
REACH TYPE FLOW DIRECTION CREST EL. (f	: 170 : 170 : 157 : IRREGULAR (: POSITIVE A) t): 15.200 N F.: 2.600 X-VAL (ft)	ND NEGATIVE JMBER X-Y PJ GATE COEF	FLOWS ALLOW S: 5.000	WED	t): 999.000 M.: 1.000
	.000	17.000			
		16.000			
		15.200 16.000			
	100.000				
	1.800 999.000	.00 20.00	.00 50.03 100.07 100.07	50.00	

.

.

NOTE:

, **. . .** .

Advanced In Co	terconnected Channel & Pond Routing (adICPR Ver 1.40) pyright 1989, Streamline Technologies, Inc.
ELLIGRAW BA 04-01-94	YOU - BASIN MASTER PLAN (ALTERNATIVE 2)
RGHT SS (h/v) :	192
CREST EL. (ft):	
CREST EL. (ft):	

.

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94 >>REACH NAME : 101 FROM NODE : 101 TO NODE : 100 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA • SPAN (in): 144.000 96.000 RISE (in): LENGTH (ft): 110.000 U/S INVERT (ft): -1.400 D/S INVERT (ft): -1.400 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 11.200 CREST LN. (ft): 100.000 WEIR COEF .: 2.800 RESERVED: ******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******** WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED: ******* NOTE: U.S. 41 CROSSING >>REACH NAME : 102 FROM NODE : 102 TO NODE : 101 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 84.000 RISE (in): 48.000 LENGTH (ft): 200.000 U/S INVERT (ft): 1.400 D/S INVERT (ft): .000 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 POSITION A : NOT USED POSITION B : NOT USED NOTE:

Advanced Interconnected Channel & Pond Routing Copyright 1989, Streamline Technologie	(adICPR Ver 1.40) s, Inc.
ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 04-01-94	2)
>>REACH NAME : 104 FROM NODE : 104 TO NODE : 102 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF	
CULVERT DATA : SPAN (in): 38.000 RISE (in): 24.000 U/S INVERT (ft): 6.000 D/S INVERT (ft): 2.000 ENTRNC LOSS: .500 # OF CULVERTS: 2.000	LENGTH (ft): 15.000 MANNING N: .013
POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):9999.000 CREST LN. (ft): .000 RESERVED:******* RESERVED:*******	WEIR COEF.: 2.800 RESERVED:*******
POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* RESERVED:******* RESERVED:*******	WEIR COEF.:******* RESERVED:*******
NOTE: >>REACH NAME : 108 FROM NODE : 108 TO NODE : 106 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA :	
SPAN (in): 38.000 RISE (in): 24.000 U/S INVERT (ft): 9.000 D/S INVERT (ft): 9.000 ENTRNC LOSS: .500 # OF CULVERTS: 2.000	LENGTH (ft): 56.000 MANNING N: .013
POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 999.000 CREST LN. (ft): .000 RESERVED:******* RESERVED:*******	WEIR COEF.: 2.800 RESERVED:*******
POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):****** RESERVED:****** RESERVED:******	WEIR COEF .: ******** RESERVED : *******
NOTE :	

العنعان

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94 >>REACH NAME : 130 FROM NODE : 130 TO NODE : 120 TO NODE : 120 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in):60.000RISE (in):48.000U/S INVERT (ft):8.400 D/S INVERT (ft):8.200 RISE (in): 48.000 LENGTH (ft): 80.000 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 14.300 CREST LN. (ft): 50.000 WEIR COEF.: 2.800 RESERVED: ******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* RESERVED:******* RESERVED:******* WEIR COEF .: ******* RESERVED: ******* NOTE: BILTMORE ROAD CROSSING >>REACH NAME : 151 - FROM NODE : 151 TO NODE : 150 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA :
 SPAN (in):
 96.000
 RISE (in):
 96.000

 U/S INVERT (ft):
 7.800 D/S INVERT (ft):
 7.670
 LENGTH (ft): 79.000 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 3.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR

 CREST EL. (ft):
 19.100
 CREST LN. (ft):
 50.000
 WEIR COEF.:
 2.800

 RESERVED:******
 RESERVED:*******
 RESERVED:*******

 POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* WEIR COEF .: ******** RESERVED: ******* RESERVED: ******* RESERVED: *******

NOTE: BENEVA ROAD CROSSING

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94 >>REACH NAME : 158 FROM NODE : 158 TO NODE : 157 REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED : OFF TURBO SWITCH CULVERT DATA • SPAN (in): 72.000 RISE (in): 72.000 LENGTH (ft): 40.000 U/S INVERT (ft): 7.970 D/S INVERT (ft): 8.030 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 16.500 CREST LN. (ft): 50.000 WEIR COEF .: 2.800 RESERVED: ******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):****** CREST LN. (ft):******* WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED: ******* NOTE: DATA BASED UPON PROJECT SURVEY >>REACH NAME : 163 FROM NODE : 163 TO NODE : 162 : CULVERT, CIRCULAR w/ ROADWAY REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 48.000 RISE (in): 48.000 LENGTH (ft): 230.000 U/S INVERT (ft): 12.970 D/S INVERT (ft): 12.810 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 19.000 CREST LN. (ft): 50.000 WEIR COEF .: 2.800 RESERVED: ******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):****** CREST LN. (ft):******* WEIR COEF .: ******* RESERVED: ******* RESERVED:******* RESERVED: ******* NOTE: PALMER RANCH PARKWAY CROSSING

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94 >>REACH NAME : 165 FROM NODE : 165 : 164 TO NODE REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA 1 SPAN (in): 48.000 RISE (in): 48.000 LENGTH (ft): 150.000 U/S INVERT (ft): 14.730 D/S INVERT (ft): 14.630 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 23.000 CREST LN. (ft): 50.000 WEIR COEF .: 2.800 RESERVED: ******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******** WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED: ******* NOTE: MIRA LAGO ENTRANCE >>REACH NAME : 182 FROM NODE : 182 TO NODE : 181 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 89.000 U/S INVERT (ft): 16.200 D/S INVERT (ft): 15.000 MANNING N: .013 .500 # OF CULVERTS: 1.000 ENTRNC LOSS: POSITION A : NOT USED POSITION B : NOT USED

NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.				
ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 04-01-94	2)			
>>REACH NAME : 183 FROM NODE : 183 TO NODE : 182 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF				
CULVERT DATA : SPAN (in): 38.000 RISE (in): 24.000 U/S INVERT (ft): 15.100 D/S INVERT (ft): 15.100 ENTRNC LOSS: .500 # OF CULVERTS: 1.000	LENGTH (ft): 104.000 MANNING N: .013			
POSITION A : NOT USED				
POSITION B : NOT USED				
NOTE :				
<pre>>>REACH NAME : 183A FROM NODE : 183A TO NODE : 164 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF</pre>				
CULVERT DATA : SPAN (in): 30.000 RISE (in): 19.000 U/S INVERT (ft): 14.710 D/S INVERT (ft): 14.100 ENTRNC LOSS: 1.100 # OF CULVERTS: 1.000	LENGTH (ft): 307.000 MANNING N: .013			
POSITION A : NOT USED				
POSITION B : NOT USED				
NOTE :				

.

.

NOTE :

Sec. 1

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.
ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94
>>REACH NAME : 184 FROM NODE : 184 TO NODE : 183 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF
CULVERT DATA : SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 94.000 U/S INVERT (ft): 16.500 D/S INVERT (ft): 15.100 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000
POSITION A : NOT USED
POSITION B : NOT USED
NOTE :
>>REACH NAME : 185A FROM NODE : 185A TO NODE : 181 REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF
CULVERT DATA : SPAN (in): 30.000 RISE (in): 30.000 LENGTH (ft): 160.000 U/S INVERT (ft): 13.960 D/S INVERT (ft): 13.480 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000
POSITION A : NOT USED
POSITION B : NOT USED
NOTE :

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94 >>REACH NAME : 185B FROM NODE : 185B TO NODE : 185A REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 15.000 RISE (in): 15.000 LENGTH (ft): 73.000 U/S INVERT (ft): 13.480 D/S INVERT (ft): 13.960 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED NOTE: >>REACH NAME : 186 FROM NODE : 186 TO NODE : 181 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 87.000 U/S INVERT (ft): 14.460 D/S INVERT (ft): 14.440 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED NOTE: PROPOSED CULVERT ENLARGEMENT

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94 >>REACH NAME : 210 FROM NODE : 210 : 200 TO NODE REACH TYPE : CULVERT, ARCH w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 65.000 RISE (in): 40.000 LENGTH (ft): 109.000 U/S INVERT (ft): 11.170 D/S INVERT (ft): 10.640 MANNING N: .024 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 16.560 CREST LN. (ft): 50.000 WEIR COEF .: 2.800 RESERVED:****** RESERVED:******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******** WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED: ******* NOTE: >>REACH NAME : 220 - FROM NODE : 220 TO NODE : 210 REACH TYPE : CULVERT, ARCH w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA 36.000 SPAN (in): RISE (in): 24.000 LENGTH (ft): 156.000 U/S INVERT (ft): 13.400 D/S INVERT (ft): 11.760 MANNING N: .024 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 17.500 CREST LN. (ft): 25.000 WEIR COEF.: 2.600 RESERVED:******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED: ******* NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94 >>REACH NAME : 120 FROM NODE : 120 TO NODE : 102 REACH TYPE : DROP STRUCTURE w/ RECT. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 84.000 RISE (in): 48.000 LENGTH (ft): 932.600 U/S INVERT (ft): 7.930 D/S INVERT (ft): 1.400 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 MANNING N: .013 .500 # OF CULVERTS: 2.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 10.500 CREST LN. (ft): 30.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000 : RECTANGULAR RISER SLOT POSITION B CREST EL. (ft):9999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: PROPOSED CULVERT AND WLCS >>REACH NAME : 171 - FROM NODE : 171 TO NODE : 151 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 18.000 RISE (in): U/S INVERT (ft): 12.510 D/S INVERT (ft): RISE (in): 18.000 LENGTH (ft): 32.000 12.100 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 13.720 CREST LN. (ft): 1.000 OPENING (ft): 1.550 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft):******* CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF .: 3.200 GATE COEF .: .660 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94 >>REACH NAME : 173 : 173 FROM NODE TO NODE : 159 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 15.000 RISE (in): 15.000 LENGTH (ft): U/S INVERT (ft): 12.950 D/S INVERT (ft): 12.580 32.000 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : CIRCULAR RISER SLOT INVERT EL. (ft): 14.180 SPAN (in): 8.000 RISE (in): 8.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft):9999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED >>REACH NAME : 175 - FROM NODE : 175 TO NODE : 161 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 15.000 RISE (in): 15.000 LENGTH (ft): 42.000 U/S INVERT (ft): 12.920 D/S INVERT (ft): 12.550 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : CIRCULAR RISER SLOT INVERT EL. (ft): 14.000 SPAN (in): 8.000 RISE (in): 8.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000

NOTE: WEIR/ORIFICE CONTROL MODIFIED

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94 >>REACH NAME : 180 : 180 FROM NODE TO NODE : 161 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 54.000 RISE (in): 54.000 LENGTH (ft): 119.000 U/S INVERT (ft): 9.400 D/S INVERT (ft): 9.260 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.520 CREST LN. (ft): 2.000 OPENING (ft): 2.480 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 17.000 CREST LN. (ft): 33.000 OPENING (ft):9999.000 WEIR COEF .: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED >>REACH NAME : 181A FROM NODE : 181 TO NODE : 160 : DROP STRUCTURE w/ ELLP. CULVERT REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 293.000 U/S INVERT (ft): 12.920 D/S INVERT (ft): 12.560 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1,000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.790 CREST LN. (ft): 6.000 OPENING (ft): 1.440 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 17.300 CREST LN. (ft): 26.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) يسعر 04-01-94 >>REACH NAME : 181B FROM NODE : 181 : 180 TO NODE REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 54.000 RISE (in): 54.000 LENGTH (ft): 220.000 U/S INVERT (ft): 8.990 D/S INVERT (ft): 8.830 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.730 CREST LN. (ft): 1.500 OPENING (ft): WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 3.000 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 17.500 CREST LN. (ft): 26.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED >>REACH NAME : 183B - FROM NODE : 183 TO NODE : 183A REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 18.000 RISE (in): 18.000 LENGTH (ft): 238.000 U/S INVERT (ft): 15.170 D/S INVERT (ft): 14.710 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 16.230 CREST LN. (ft): 1.250 OPENING (ft): WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: .500 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 19.000 CREST LN. (ft): 14.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94 >>REACH NAME : 187 FROM NODE : 187 TO NODE: 181REACH TYPE: DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA • SPAN (in): 18.000 RISE (in): 18.000 LENGTH (ft): 48.000 U/S INVERT (ft): 13.110 D/S INVERT (ft): 12.140 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 : RECTANGULAR RISER SLOT POSITION A CREST EL. (ft): 16.430 CREST LN. (ft): 1.750 OPENING (ft): 1.490 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 : RECTANGULAR RISER SLOT POSITION B CREST EL. (ft): 17.920 CREST LN. (ft): 10.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: DATA BASED UPON PROJECT SURVEY >>REACH NAME : 191 FROM NODE : 191 TO NODE : 190 : DROP STRUCTURE w/ ELLP. CULVERT REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 76.000 RISE (in): 48.000 LENGTH (ft): 40.000 U/S INVERT (ft): 10.290 D/S INVERT (ft): 10.210 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : CIRCULAR RISER SLOT INVERT EL. (ft): 15.000 SPAN (in): 12.000 RISE (in): 12.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 17.500 CREST LN. (ft): 33.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04 - 01 - 94>>REACH NAME : 192 FROM NODE: 192TO NODE: 190REACH TYPE: DROP STRUCTURE w/ ELLP. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA
 SPAN (in):
 15.000
 RISE (in):
 15.000
 LENGTH (ft):
 1.000

 U/S INVERT (ft):
 14.510
 D/S
 INVERT (ft):
 14.510
 MANNING N:
 .010
 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.910 CREST LN. (ft): 8.000 OPENING (ft): 2.590 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 : RECTANGULAR RISER SLOT POSITION B CREST EL. (ft): 17.500 CREST LN. (ft): 33.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED : 200 >>REACH NAME FROM NODE : 200 TO NODE: 140REACH TYPE: DROP STRUCTURE w/ ARCH CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 65.000 RISE (in): 40.000 LENGTH (ft): 94.000 U/S INVERT (ft): 9.780 D/S INVERT (ft): 9.900 MANNING N: .024 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 11.510 CREST LN. (ft): 5.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft):9999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94 >>REACH NAME : 106 FROM NODE : 106 TO NODE : 104 REACH TYPE : IRREGULAR SECTION CHANNEL, MOMENTUM EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED OUTLET CONTROL : FREE LENGTH (ft): 265.000 U/S INVERT (ft): 8.500 D/S INVERT (ft): 6.600 MAX. DEPTH (ft): 1.500 X-VAL (ft) Y-VAL (ft) N-VAL .000 8.700 .040 3.000 7.200 .040 7.000 8.700 .040 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE .00 .000 .00 .00 .0 1.500 5.25 7.63 7.00 152.0 1.500 5.25 7.63 7.00 152.0 6.500 40.25 7.63 7.00 4532.4 NOTE:

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94

FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION :	110 110 108 IRREGULAR SECTION CHANNEL, MOMENTUM EQ. POSITIVE AND NEGATIVE FLOWS ALLOWED FREE
LENGTH (ft): MAX. DEPTH (ft):	315.000 U/S INVERT (ft): 9.700 D/S INVERT (ft): 9.000
	X-VAL (ft) Y-VAL (ft) N-VAL .000 10.800 .040 7.500 9.200 .040 15.000 11.100 .040

DEPTH (ft) .000	AREA (sf) .00	PERIM (ft)	TOPWD (ft)	CONVEYANCE
1.500	9.71 11.05	13.30 13.30	12.95 13.82	.0 292.7 363.0
1.900 6.900	15.38 90.38	13.30 13.30	15.00	629.2 12045.8

NOTE:

-- "

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.				
ELLIGRAW BA	YOU - BASIN MASTER PL	AN (ALTERNATIVE	2)	
FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : OUTLET CONTROL :	650.000 U/S INVERT (E FLOWS ALLOWED	-	(ft): 7.800
	X-VAL (ft) Y-VAL (ft .000 16.50 15.000 11.80	0.035		
	20.000 10.30 30.000 10.10	0.035		
	40.000 9.00	0.035		
	54.000 11.90 62.000 16.90			·
	70.000 17.10			
	DEPTH (ft) AREA (sf) PERIM (ft) TO	PWD (ft) (CONVEYANCE
	.000 .0		.00	.0
	1.100 8.4 1.300 12.5		15.31	238.2
<u>~</u>	1.300 12.58 2.800 61.1		26.28	325.2
	2.900 65.0		38.52	3501.1
	7.500 296.6		39.32	3826.3
	7.900 321.3		62.00	35017.0
	8.000 327.7		66.00	
	8.100 334.5		70.00	
	13.100 684.5		70.00	
NOTE:	BASED UPON SCS CROSS	-SECTION		

.

NOTE: BASED UPON SCS CROSS-SECTION

Advanced In Co	Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.				
ELLIGRAW BA 04-01-94	YOU - BASIN MASTEI	R PLAN (ALTERNAT:	IVE 2)		
FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : OUTLET CONTROL :	FREE 650.000 U/S INVER	ATIVE FLOWS ALLOW	WED	(ft): 7.970	
	10.000 10 20.000 15 25.000 17 32.000 8 40.000 5 50.000 8 60.000 17	7.600 .035 5.200 .035 5.800 .035 1.900 .035 3.600 .035 7.000 .035 3.200 .035			
,	$\begin{array}{c} .000\\ 1.200\\ 1.600\\ 4.800\\ 10\\ 4.900\\ 10\\ 8.800\\ 29\\ 9.200\\ 32\\ 9.500\\ 35\\ 9.900\\ 38\\ 10.600\\ 44\\ 15.600\\ 89\end{array}$	(sf) PERIM (ft) .00 .00 9.60 16.19 16.62 19.41 02.86 36.36 06.38 37.19 99.66 66.81 27.54 79.20 50.89 83.15 33.85 83.15 45.10 83.15	.00 16.00 19.11 34.79 35.59 63.53 75.88 79.79 85.00	.0 287.7 636.4 8734.8 9100.3 34603.3 35829.4 38902.8 45181.6	
NOTE:	BASED UPON SCS CH	ROSS-SECTION			

Advanced In Co	Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.				
ELLIGRAW BA	YOU - BASIN MA	STER PLAN	(ALTERNAT)	(VE 2)	
FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : OUTLET CONTROL :	POSITIVE AND : FREE 350.000 U/S I	NEGATIVE	FLOWS ALLOW	VED -	(ft): 7.000
	X-VAL (ft) Y- .000 10.000 20.000 25.000 32.000 40.000 50.000 60.000 90.000	VAL (ft) 17.600 16.200 15.800 11.900 8.600 7.000 8.200 11.800 16.900	.035 .035 .035 .035 .035 .035 .035 .035	· ·	
	.000 1.200 1.600 4.800 4.900 8.800 9.000 9.200 9.900 10.600 15.600	.00 9.60 16.62 102.86 106.38 299.66 312.98 327.54 383.85 445.10 895.10	.00 16.19 19.41 36.36 37.19 66.81 73.00 73.00 73.00 73.00 73.00	19.11 34.79 35.59 63.53 69.71 75.88 85.00	.0 287.7 636.4 8734.8 9100.3 34603.3 35068.8 37829.5 49278.4
NOTE:	BASED UPON SC	S CROSS-S	ECTION		

.

Advanced In Co	terconnected Channel & pyright 1989, Streamlin	Pond Routing (a ne Technologies,	dICPR V Inc.	/er 1.40)
	YOU - BASIN MASTER PLAN	N (ALTERNATIVE 2)	
FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : OUTLET CONTROL :	350.000 U/S INVERT (ft	FLOWS ALLOWED		(ft): 10.300
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.035 .035 .040 .040 .040 .040 .035		.^
, -	.000 .00	13.08 16.41 19.15 56.75 58.69 58.69	(ft) .00 13.00 15.69 18.20 55.10 57.00 57.00 57.00	.0 83.6 676.3 1116.8 13460.6 16279.6

NOTE: BASED UPON PALMER RANCH RECORD DRWG

......

•

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04 - 01 - 94>>REACH NAME : 164 FROM NODE : 164 TO NODE : 163 : IRREGULAR SECTION CHANNEL, MOMENTUM EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED OUTLET CONTROL : FREE LENGTH (ft):1700.000 U/S INVERT (ft): 14.630 D/S INVERT (ft): 12.970 MAX. DEPTH (ft): 2.000 X-VAL (ft) Y-VAL (ft) N-VAL .000 18.200 .035 24.000 13.100 .035 31.000 12.300 .060 37.000 13.300 .060 65.000 19.900 .035 89.000 22.800 .035 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE .000 .00 .00 .00 .0 .800 4.72 11.91 11.80 63.1 1.000 7.29 14.09 13.94 120.3 2.000 25.71 23.26 22.89 823.3 5.900 183.03 23.26 57.79 29075.2 7.600 287.40 23.26 65.00 67913.7 10.500 510.70 23.26 89.00 201421.7 15.500 955.70 23.26 89.00 647949.0

NOTE: BASED UPON PALMER RANCH RECORD DRWG

1	Advanced	Interconnected Copyright 1989	l Channel & 9, Streamlin	Pond Routin ne Technolog	ng (adICPR N gies, Inc.	/er 1.40)
	ELLIGRAW 04-01-94	BAYOU - BASIN	MASTER PLAI	N (ALTERNAT	IVE 2)	
FROM NO TO NODI REACH S FLOW D OUTLET LI	E TYPE IRECTION CONTROL ENGTH (ft	: 190 : 162 : IRREGULAR S : POSITIVE AN : FREE	ND NEGATIVE	FLOWS ALLOW	WED	(ft): 9.710
		.000 35.000 55.000	Y-VAL (ft) 17.000 10.000 9.999 17.000	.060 .060 .060		
		7.001	00. 01. 384.94	20.00 91.38 91.38	00. 20.00 89.99 90.00	.0 .0 30103.5 30115.5

.

NOTE:

يد**سم**ر

- سر

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94

REACH SUMMARY

, **...**.

==================

INDEX	RCHNAME	FRMNODE	TONODE	REACH TYPE
1	102A	102	101	TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ.
2		108	106	IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ.
3		120	110	IRREGULAR WEIR/GATE/ORIFICE, FREAD EO.
4		140	130	IRREGULAR WEIR/GATE/ORIFICE, MAVIS EQ
5			159	IRREGULAR WEIR/GATE/ORIFICE, FREAD EO
6		170	157	IRREGULAR WEIR/GATE/ORIFICE, FREAD EO
7		192	191	TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EO.
8		104	102	RECTANGULAR WEIR/GATE/ORIFICE VILLEMONTE FO
9		150	140	RECTANGULAR WEIR/GATE/ORIFICE, VILLEMONTE EO
10	101	101	100	CULVERT, RECTANGULAR w/ ROADWAY
11		102	101	CULVERT, RECTANGULAR w/ ROADWAY
12	104	104	102	
13	108	108	106	CULVERT, ELLIPTICAL w/ ROADWAY
14	130	130	120	CULVERT, RECTANGULAR w/ ROADWAY
15	151	151	150	CULVERT, RECTANGULAR w/ ROADWAY
16	158	158	157	CULVERT, CIRCULAR w/ ROADWAY
17	163	163	162	CULVERT, CIRCULAR w/ ROADWAY
18	165	165	164	CULVERT, CIRCULAR w/ ROADWAY
19	182	182	181	CULVERT, ELLIPTICAL w/ ROADWAY
20	183	183	182	CULVERT, ELLIPTICAL w/ ROADWAY
21	183A	183A	164	CULVERT, ELLIPTICAL w/ ROADWAY
22	184	184	183	CULVERT, ELLIPTICAL w/ ROADWAY
23	185A	185A	181	CULVERT, ELLIPTICAL W/ ROADWAY CULVERT, ELLIPTICAL W/ ROADWAY CULVERT, RECTANGULAR W/ ROADWAY CULVERT, RECTANGULAR W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY CULVERT, ELLIPTICAL W/ ROADWAY CULVERT, ELLIPTICAL W/ ROADWAY CULVERT, ELLIPTICAL W/ ROADWAY CULVERT, ELLIPTICAL W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY CULVERT, CIRCULAR W/ ROADWAY CULVERT, ARCH W/ ROADWAY DROP STRUCTURE W/ CIRC. CULVERT DROP STRUCTURE W/ CIRC. CULVERT DROP STRUCTURE W/ CIRC. CULVERT
24	185B	185B	185A	CULVERT, CIRCULAR w/ ROADWAY
25	186	186	181	CULVERT, ELLIPTICAL w/ ROADWAY
20	210	210	200	CULVERT, ARCH w/ ROADWAY
21	220	220	210	CULVERT, ARCH w/ ROADWAY
28	120	120	102	DROP STRUCTURE w/ RECT. CULVERT
29		171	151	DROP STRUCTURE W/ CIRC. CULVERT DROP STRUCTURE W/ CIRC. CULVERT
30	173	173	159	DROP STRUCTURE w/ CIRC. CULVERT
31	175	175	161	DROP STRUCTURE w/ CIRC. CULVERT
32 33		180	161	DROP STRUCTURE w/ CIRC. CULVERT
34		181	160	DROP STRUCTURE w/ ELLP. CULVERT
35		181 183	180	DROP STRUCTURE w/ CIRC. CULVERT
36		187	103A 191	DROP STRUCTURE W/ CIRC. CULVERT
37				DROI DIROCIORE W/ CIRC. COLVERT
38	-	191 192	190	DROP STRUCTURE w/ ELLP. CULVERT
39	-		190	DROP STRUCTURE w/ ELLP. CULVERT
40	· - •	200	140	DROP STRUCTURE w/ ARCH CULVERT
41		106 110	104	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
42	• •	157	108	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
43		157	151	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
_ 44		161	158	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
45		162	159	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
46		164	161	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
47		190	163 162	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
- /		1.20	102	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2) 04-01-94

INPUT SUMMARY

DATA TYPE	NUMBER READ
NODES	 41
REACHES	
WEIRS CULVERTS DROP STRUCTURES CHANNELS, ENERGY EQ. CHANNELS, MOMENTUM EQ. RATING CURVES	9 18 12 0 8 0

TOTAL REACHES

....

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2 - 2 YR) 04-01-94

NODE ID	STAGE (ft)	VOLUME (af)	< RUNOFF (cfs)	INFLOW OFFSITE (cfs)	OTHER (cfs)	OUTFLOW (cfs)
ID 100 101 102 104 106 108 110 120 130 140 150 151 157 158 159 160 161 162 163 164 165 170 171	(ft) 1.50 1.61 3.94 7.66 10.85 10.95 11.31 11.61 11.71 12.66 13.66 13.66 13.67 13.68 15.74 13.68 13.68 13.68 15.74 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.52 15.52 15.52 15.35 14.58	(af) 92.30 .13 .28 .01 .04 .06 .27 2.76 .80 5.58 1.39 1.62 1.47 1.17 2.07 6.33 1.00 1.04 .10 .26 .32 .36 2.07		OFFSITE		(cfs) .00 142.99 138.63 27.65 27.67 17.63 17.64 112.11 69.90 61.79 24.30 74.46 35.86 29.72 30.24 .69 52.44 13.10 5.41 2.97 .23 1.62
173 175 180 181 182 183 183 183 183 185 186 185 186 187 190 191 192 200 210 220	14.72 14.54 15.30 15.74 16.97 16.98 15.58 17.28 15.76 15.74 15.74 15.74 15.63 15.63 15.63 13.31 13.46 14.16	.53 1.77 .63 3.23 2.99 5.43 .00 .68 .01 .17 .91 .32 .83 2.83 9.71 3.45 1.86 1.73	4.80 11.30 5.77 26.06 8.55 29.81 .00 9.98 .00 .61 13.36 2.63 2.58 6.04 29.90 23.99 27.51 16.94	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	$ \begin{array}{r} \\ \\ \\ $	2.56 .71 4.39 9.42 3.50 7.02 2.12 4.08 2.72 .40 7.30 1.11 12.68 1.31 14.16 26.15 22.79 4.18

NODAL MAXIMUM CONDITIONS REPORT

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2 - 5 YR) 04-01-94

NODAL MAXIMUM CONDITIONS REPORT

NODE ID	STAGE (ft)	VOLUME (af)	<pre> < RUNOFF (cfs)</pre>	INFLOW OFFSITE (cfs)	> OTHER (cfs)	OUTFLOW (cfs)
100	1.50	150.40	.00	.00	231.11	.00
101	1.79	.14	21.97	.00	226.67	231.11
102	4.92	. 39	.00	.00	226.50	226.67
1 04	8.24	.01	.00	.00	44.99	44.93
106	10.98	.05	18.74	.00	27.49	44.99
108	11.21	.10	.00	.00	27.63	27.49
110	11.57	. 31	28.79	.00	.00	27.63
120	12.14	3.94	101.43	.00	121.44	185.83
130	12.40	1.12	34.45	.00	106.71	121.44
140	13.12	7.14	58.47	.00	86.64	106.71
150	14.57	1.69	.00	.00	90.91	46.59
151	14.57	2.01	17.87	.00	69.68	90.91
157 158	14.60	1.86	21.91	.00	56.29	66.27
159	14.61	1.51	.00	.00	60.47	54.36
160	14.62	2.61	9.84	.00	91.29	60.47
161	15.85	6.89	13.76	.00	10.42	10.02
162	14.62 14.64	1.33	2.08	.00	33.86	84.93
163	14.67	1.53 .26	.00	.00	28.16	26.75
164	15.65	. 20	5.99 7.40	.00	7.64	11.70
165	15.66	.39	3.35	.00 .00	4.40	7.64
170	15.41	. 42	3.35	.00	.00 .00	1.57
171	15.07	3.10	19.65	.00	.00	3.17
173	15.00	.73	7.35	.00	.00	3.53
175	14.84	2.77	17.15	.00	.00	1.20
180	15.62	.87	9.23	.00	5.79	7.38
181	16.09	4.75	42.05	.00	15.67	15.30
182	17.35	3.77	13.29	.00	8.88	7.31
183	17.41	6.99	45.70	.00	7.28	11.43
183 A	15.73	.00	.00	.00	2.90	2.90
184	17.65	. 99	15.84	.00	.00	7.28
185A	16.11	.01	.00	.00	.57	2.88
185B	16.10	.25	1.00	.00	.00	.57
186	16.10	1.17	19.82	.00	.00	11.01
1 87	16.91	. 37	3.97	.00	00	1.85
190	14.66	1.18	4.29	.00	7.89	24.87
191	16.03	3.84	8.78	.00	10.63	2.55
192	16.03	13.20	49.44	.00	.00	13.53
200	14.12	4.98	36.88	.00	35.60	42.27
210	14.46	2.80	42.22	.00	11.89	35.60
220	14.67	3.00	28.51	.00	.00	11.89

. العار

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2 - 10 YR) 04-01-94

NODE ID	STAGE (ft)	VOLUME (af)	< RUNOFF (cfs)	INFLOW OFFSITE (cfs)	OTHER (cfs)	OUTFLOW (cfs)
100	1.50	184.46	.00	.00	281.96	
101	1.93	.15	26.03	.00	276.94	.00
102	5.43	. 44	.00	.00	276.80	281.96 276.94
104	8.54	.02	.00	.00	54.75	
106	11.08	.06	23.38	.00	33.12	54.78 54.75
108	11.40	.14	.00	.00	33.37	33.12
110 120	11.72	.34	34.99	.00	.00	33.37
	12.48	5.07	123.71	.00	149.76	226.23
130	12.86	1.33	41.71	.00	133.06	149.76
140 150	13.39	8.06	71.00	.00	106.25	133.06
151	15.02	1.84	.00	.00	123.74	58.03
157	15.03	2.22	21.20	.00	92.29	123.74
158	15.03	2.04	27.14	.00	62.94	89.13
159	15.04	1.67	.00	.00	70.38	61.13
160	15.05	2.87	11.79	.00	112.51	70.38
161	15.88	7.05	16.66	.00	12.42	14.69
162	15.05	1.49	2.63	.00	40.27	102.31
163	15.07	1.76	.00	.00	30.28	31.83
164	15.10 15.77	.51	7.58	.00	10.04	15.01
165	15.77	.35	9.35	.00	5.47	10.04
170	15.44	.45	4.23	.00	.00	2.28
171	15.38	.45	4.57	.00	.00	4.12
173	15.17	3.87	23.86	.00	.00	4.12
175	15.09	.88	8.81	.00	.00	1.31
180	15.83	3.60	20.53	.00	.00	1.43
181	16.36	1.02	11.28	.00	7.23	9.21
182	17.56	5.93	51.39	.00	19.39	18.58
183	17.67	4.20	16.03	.00	11.03	9.80
183A	15.87	7.94	54.89	.00	9.80	14.14
184	17.84	.01	.00	.00	3.27	3.28
185A	16.35	1.16	19.25	.00	.00	9.80
185B	16.37	.01	.00	.00	.80	3.03
186 ,	16.37	.31	1.24	.00	.00	.80
187	16 00	1.37	23.57	.00	.00	12.96
190	15.07	.40 1.34	4.75	.00	00	2.30
191	16.30	4.52	5.32	.00	9.56	25.55
192	16.30	4.52	10.36	.00	15.87	3.38
200	14.55	5.80	61.00	.00	.00	18.63
210	14.94	3.25	44.35	.00	40.34	49.69
220	15.10	3.25 4.15	50.76	.00	12.85	40.34
			35.35	.00	.00	12.85

NODAL MAXIMUM CONDITIONS REPORT

المجيم ا

. معمر ا

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2 - 25 YR) 04-01-94

.

NODE ID	STAGE (ft)	VOLUME (af)	<pre>Contended Contended C</pre>	INFLOW OFFSITE (cfs)	> OTHER (cfs)	OUTFLOW (cfs)
	(ft) 1.50 2.08 5.87 8.80 11.21 11.54 11.85 12.80 13.32 13.71 15.41 15.42 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.47 15.47 15.49 15.89 15.91 15.49 15.89 15.91 15.46 15.73 15.49 15.34 16.09 16.61 17.75 17.92	(af) 218.83 .16 .49 .02 .10 .16 .36 6.14 1.54 9.10 1.97 2.42 2.23 1.83 3.12 7.22 1.65 1.99 1.02 .41 .51 .48 4.72 1.13 4.50 1.22 7.04 4.59 8.89		OFFSITE		
184 185A 185B 186 187 190 191 192 200 210 220	16.00 18.02 16.63 16.63 16.63 17.05 15.47 16.57 16.57 14.91 15.36 15.51	.01 1.32 .01 .37 1.56 .43 1.50 5.20 17.85 6.50 3.92 5.53	.00 22.67 .00 1.47 27.35 5.53 6.35 11.95 72.71 51.86 59.34 42.26	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	3.61 .00 .73 .00 .00 11.12 14.30 .00 42.39 14.17 .00	3.62 11.62 3.30 .73 14.62 2.77 34.09 3.91 17.84 54.60 42.39 14.17

NODAL MAXIMUM CONDITIONS REPORT

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 2 - 100 YR) 04-01-94

NODAL MAXIMUM CONDITIONS REPORT

ID (ft) (af) (cfs) (cfs) (cfs) (c	
100 1.50 288.13 .00 .00 406.63	.00
101 2.38 .18 38.10 .00 399.14 40	6.63
102 6.54 .56 .00 .00 398.98 39	9.14
9.25 .07 .00 .00 86.06 8	5.82
106 11.51 .17 37.58 .00 51.15 8	6.06
108 11.69 .19 .00 .00 51.25 5	1.15
12.04 .41 53.77 .00 .00 5	1.25
120 13.28 8.73 190.90 .00 213.27 32	1.41
130 14.05 1.93 63.49 .00 190.21 21 140 14.30 11 71 108 71 00 140 72 140	3.27
150 15.00 148.78 19	0.21
150 15.99 2.16 .00 .00 155.77 8	5.51
157 16 01 0 17 20 .00 128.95 15	5.77
158 16.03 2.05 45.09 .00 84.16 12	5.09
159 16.03 2.02 10 102.81 7	7.28
	2.81
161 10.04 1.00 19.32 3	3.36
	5.35
	6.07
164 16.09 10.00 15.67 1	8.92
165 16 00 0.35 1	5.67
	4.31
171 16 21 6 40 26 71 .00 1	1.53
173 16.06 1.61 10.10	5.68
175 15 01 6 10 10 100 .00	1.49
	1.93
181 17.16 0.40 11.00 11.00 1	3.44
182 18.11 5.33 24.26 00 16.00 1	0.64
183 18.46 10.84 82.55 00 13.40	7.49 0.93
183A 16.23 .01 .00 .00 4.10	4.10
184 18.52 1.75 29.53 .00 00 1	3.40
185A 17.18 .01 .00 .00 70	3.33
185B 17.18 .49 1.96 00 00	.70
186 17.18 1.96 34.94 .00 00 1	7.87
187 17.20 .49 7.11 .00 .00	3.47
190 16.06 1.75 8.45 .00 14.20 4	6.07
191 17.17 6.71 15.12 .00 24.76	4.85
192 17.17 23.04 96.35 .00 .00 2	7.59
200 15.60 8.17 66.89 .00 47.72 6	3.56
16.14 5.40 76.54 .00 19.04 4	7.72
	9.04

.....

- 1944

ALTERNATIVE 3

. •

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94

CONTROL PARAMETERS

START TIME: END TIME:	.00 48.00	
TO TIME (hours)	SIMULATION INC (secs)	PRINT INC (mins)

100.00	1.00	15.00

RUNOFF HYDROGRAPH FILE: DEFAULT OFFSITE HYDROGRAPH FILE: DEFAULT BOUNDARY DATABASE FILE: NONE

NOTE:

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		AR/TM/STR ac/hr/af)
100	TIME	1.500	.000	.000	.000	1.500 1.500 1.500	.000 100.000
101	AREA	1.500	.000	.000	.000	1.500 9.000 10.000 11.000 12.000 13.000	.000 .060 .190 .870 2.500 4.750
102	AREA	1.500	.000	.000	.000	$\begin{array}{c} 1.500 \\ 8.300 \\ 9.000 \\ 10.000 \\ 11.000 \\ 12.000 \\ 13.000 \\ 14.000 \end{array}$.001 .002 .060 .120 .860 2.140 3.360 7.060
104	AREA	6.000	.000	.000	.000	9.000 10.000 11.000 12.000 13.000 14.000	.110 .230 .300 .400 1.110 2.470
106	AREA	8.500	.000	.000	.000	11.000 12.000 13.000 14.000	.030 .400 1.120 2.480
108	AREA	9.000	.000	.000	.000	11.000 12.000 13.000 14.000 15.000	.140 .170 .620 2.230 3.060
110	AREA	9.700	.000	.000	.000	8.500 9.700 11.000 12.000 13.000 14.000 15.000	.050 .070 .090 .180 .630 2.240 3.060

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		R/TM/STR c/hr/af)
120	AREA	10.500	.000	.000	.000	9.400 11.000 12.000 13.000 14.000 15.000 16.000	1.000 1.051 2.517 4.192 9.681 16.480 36.096
130 	AREA	10.500	.000	.000	.000	9.000 11.000 14.000 15.000 15.500 16.000	.200 .247 .665 2.741 3.729 5.006
140	AREA	11.080	.000	.000	.000	11.000 14.000 15.000 16.000	2.380 4.338 6.464 13.794
150	AREA	12.000	.000	.000	.000	8.000 12.000 16.000 17.000	.126 .243 .371 .402
151	AREA	12.000	.000	.000	.000	16.600 17.600	.000
157	AREA	12.000	.000	.000	.000	16.600 17.600	.000 .000
158	AREA	12.000	.000	.000	.000	17.000 18.000	.000
159	AREA	12.000	.000	.000	.000	17.000 18.000	.000
160	AREA	14.790	.000	.000	.000	14.000 15.000 15.500 16.000 16.500	2.090 3.785 4.719 5.727 6.603

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		R/TM/STR c/hr/af)
161	AREA	12.000	.000	.000	.000	17.000 18.000	.000 .000
162	AREA	12.000	.000	.000	.000	18.000 19.000	.000
163	AREA	12.970	.000	.000	.000	15.000 16.000 16.500 17.000	.540 1.000 1.240 1.520
164	AREA	14.630	.000	.000	.000	18.500 19.500	.000 .000
165	AREA	14.730	.000	.000	.000	14.000 15.000 16.000 17.000	.020 .130 .820 1.930
170	AREA	15.000	.000	.000	.000	15.000 15.500 16.000 16.500	.842 1.235 1.635 2.984
171	AREA	13.720	.000	.000	.000	13.500 14.000 15.000 16.000 17.000	1.620 1.840 2.280 2.650 3.900
173	AREA	14.180	.000	.000	.000	14.000 15.000 16.000 17.000 18.000	.690 .780 .860 .940 1.110
175	AREA	14.000	.000	.000	.000	14.000 15.000 16.000 17.000	3.150 3.420 3.760 4.400

M.115.8.1

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		R/TM/STR c/hr/af)
180	AREA	14.520	.000	.000	.000	14.500 17.500	.606 .862
181	AREA	14.730	.000	.000	.000	15.000 20.000	3.566 5.138
182	AREA	16.200	.000	.000	.000	15.500 20.000	1.621 2.452
183	AREA	16.200	.000	.000	.000	15.500 20.000	3.021 4.307
183A	AREA	14.710	.000	.000	.000	14.710 20.000	.000 .002
184	AREA	16.500	.000	.000	.000	16.500 20.500	.706 1.019
185 A	STRG	14.730	.000	.000	.000	14.730 19.000	.000 .001
185B	AREA	14.730	.000	.000	.000	15.000 20.000	.144 .305
186	AREA	14.730	.000	.000	.000	14.500 18.500	.490 .973
187	AREA	16.430	.000	.000	.000	16.000 17.500 17.800	.395 .423 .735
190	AREA	12.000	.000	.000	.000	18.000 19.000	.000 .000
191	AREA	15.000	.000	.000	.000	14.500 18.000	2.130 2.890
192	AREA	14.910	.000	.000	.000	14.500 18.000	7.740 9.500
200	AREA	11.510	.000	.000	.000	11.500 15.000 16.000 17.000	1.614 2.183 2.803 5.465

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)		R/TM/STR c/hr/af)
210	AREA	11.510	.000	.000	.000	11.500 15.000 16.000 17.000 18.000	.589 1.286 2.073 3.690 30.610
220	AREA	13.400	.000	.000	.000	13.400 14.000 15.000 16.000 17.000	2.140 2.280 2.680 4.020 8.630

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 : 102A >>REACH NAME FROM NODE : 102 : 101 TO NODE REACH TYPE : TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED REACH TYPE CREST EL. (ft): 11.500 BTM. WIDTH (ft): 35.000 LEFT SS (h/v): 15.000 RGHT SS (h/v): 15.000 **OPENING (ft): 999.000** WEIR COEF .: 2.600 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: >>REACH NAME : 108A FROM NODE : 108 TO NODE : 106 REACH TYPE : IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 11.400 NUMBER X-Y PTS: 6.000 **OPENING (ft): 999.000** WEIR COEF.: 2.600 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 X-VAL (ft) Y-VAL (ft) .000 14.000 100.000 13.000 280.000 11.900 330.000 11.700 430.000 11.400 730.000 14.400 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) .000 .00 .00 .00 19.50 .300 130.00 130.00 .500 52.50 200.00 200.00 1.600 432.00 490.01 490.00 2.600 1022.00 690.00 690.02 3.000 1306.00 730.03 730.00 999.000 728386.00 730.03 730.00 1004.000 732036.00 730.03 730.00

NOTE: PINEHURST STREET

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94

FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : CREST EL. (ft):	110 IRREGULAR W POSITIVE AN 14.000 NU	D NEGATIVE MBER X-Y PI	FLOWS ALLOW S: 5.000	VED	t): 999.000 M.: 1.000
	X-VAL (ft)	Y-VAL (ft)			
		15.300			
		15.000			
		14.000			
		13.999			
		14.500			
	DEPTH (ft)	AREA (sf)	PERIM (ft)	TOPWD (ft)	
	.000	.00	.00	.00	
	.001	.05	90.42	90.42	
	.501	105.15	330.00	330.00	
	1.001	280.15	370.01	370.00	
	1.301		420.01		
	999.000	419432.20	420.01	420.00	
	1004.000	421532.20	420.01	420.00	

NOTE:

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94

FROM NODE : TO NODE :	140 140 130 IRREGULAR W POSITIVE AN 11.080 NU 3.130	D NEGATIVE	FLOWS ALLOW S: 19.000	IED	: 999.000 : 1.000
	X-VAL (ft) .000 15.000 21.000 29.000 34.000 39.010 40.500 40.510 44.000 44.010 52.000 53.500 55.510 55.510 58.000 65.000 85.000	Y-VAL (ft) 16.000 15.000 13.920 12.210 11.570 11.510 11.079 11.530 11.540 12.750 12.750 13.410 13.430 14.070 14.100 15.000 15.500			
	105.000 DEPTH (ft) .000 .001 .431 .451 .461 .491 1.131 1.651 1.671 2.331 2.351 2.351 2.841 2.991 3.021 3.921 4.421 4.921 999.000 1004.000	15.000 AREA (sf) .00 .00 .65 .69 .75 1.01 9.01 17.45 17.88 36.24 36.86 53.21 58.45 59.55 99.15 136.02 186.65 104564.90 105089.90	PERIM (ft) .00 1.49 2.35 4.04 8.36 10.89 16.57 19.58 27.67 32.46 34.56 37.39 38.39 41.05 53.19 100.72 108.23 108.23	TOPWD (ft) .00 1.49 1.51 3.18 7.50 10.00 15.01 17.44 25.53 30.11 32.21 34.51 35.34 38.00 50.00 97.50 105.00 105.00	·

The service of the service distance with a service of the former of the service o

NOTE: TUCKERSTOWN WEIR

· ··· · · · · · ·

... 10700a.

- 100 - . .

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94

>>REACH NAME :	160				
FROM NODE :	160				-
	159				
	IRREGULAR W	ETR/GATE/OR	ישמה הגרע		
FLOW DIRECTION :	POSTTTVE AN	D NECATIVE	FICE, FREE	JED.	
CREST EL. (ft):	15 700 NU	MRED V_V DM	67042 VUTO		
					Et): 999.000
WEIR COEF .:	2.600	GATE COEF	.: .600	NUMBER OF ELI	EM.: 1.000
		<i>4</i> –			
	X-VAL (ft)	Y-VAL (ft)			
	.000	16.800			
	250.000	16.000			
	350.000	15.700			
		16.000			
	580.000	17.000			
	DEPTH (ft)	AREA (sf)	PERIM (ft)	TOPWD (ft)	
	.000	.00	.00	.00	
	.300		200.00		
	1.100	331.60			
	1.300	445.00	580.01	580.00	
	999.000	579111.00	580.01	580.00	
		582011.00		580.00	

NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 170 : 170 FROM NODE : 157 TO NODE : IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 15.200 NUMBER X-Y PTS: 5.000 OPENING (ft): 999.000 WEIR COEF .: 2.600 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 X-VAL (ft) Y-VAL (ft) .000 17.000 30.000 16.000 50.000 15.200 80.000 16.000 100.000 17.000 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) .00 .000 .00 .00 .800 20.00 50.03 50.00 1.800 95.00 100.07 100.00 999.000 99815.00 100.07 100.00 1004.000 100315.00 100.07 100.00

NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 : 193 >>REACH NAME : 192 FROM NODE : 191 TO NODE REACH TYPE : TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED REACH TYPE CREST EL. (ft): 15.500 BTM. WIDTH (ft):1025.000 LEFT SS (h/v): 5.000 RGHT SS (h/v): 5.000 OPENING (ft): 999.000 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 **OPENING** (ft): 999.000 WEIR COEF .: 2.600 NOTE: >>REACH NAME : 104A : 104 FROM NODE TO NODE : 102 REACH TYPE : RECTANGULAR WEIR/GATE/ORIFICE, VILLEMONTE EO. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 8.500 CREST LN. (ft): 4.900 OPENING (ft): 999.000 WEIR COEF.: 3.130 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: >>REACH NAME : 150 : 150 FROM NODE TO NODE : 140 : RECTANGULAR WEIR/GATE/ORIFICE, VILLEMONTE EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED CREST EL. (ft): 12.000 CREST LN. (ft): 4.000 **OPENING (ft): 999.000** WEIR COEF.: 3.130 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 101 : 101 FROM NODE TO NODE : 100 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA - 1 SPAN (in): 144.000 RISE (in): 96.000 LENGTH (ft): 110.000 U/S INVERT (ft): -1.400 D/S INVERT (ft): -1.400 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 11.200 CREST LN. (ft): 100.000 WEIR COEF.: RESERVED: ******* 2.800 RESERVED: ******* RESERVED:******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):****** CREST LN. (ft):******* WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED: ******* NOTE: U.S. 41 CROSSING >>REACH NAME : 102 FROM NODE : 102 TO NODE : 101 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 84.000 RISE (in): 48.000 LENGTH (ft): 200.000 U/S INVERT (ft): 1.400 D/S INVERT (ft): .000 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 POSITION A : NOT USED POSITION B : NOT USED

NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 104 : 104 FROM NODE : 102 TO NODE REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 15.000 U/S INVERT (ft): 6.000 D/S INVERT (ft): 2.000 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 : RECTANGULAR ROADWAY/BERM WEIR POSITION A CREST EL. (ft):9999.000 CREST LN. (ft): .000 WEIR COEF .: 2.800 RESERVED: ******* RESERVED: ******* RESERVED:******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):****** CREST LN. (ft):****** RESERVED:****** RESERVED:******* WEIR COEF :******* RESERVED: ******* NOTE: >>REACH NAME : 108 FROM NODE : 108 TO NODE : 106 REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 56.000 U/S INVERT (ft): 9.000 D/S INVERT (ft): 9.000 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 . POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 999.000 CREST LN. (ft): .000 WEIR COEF.: 2.800 RESERVED: ******* RESERVED: ******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):******* CREST LN. (ft):******* WEIR COEF .: ******* RESERVED: ******* RESERVED:******* RESERVED:******* NOTE:

weater and a set of the set of the

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 130 FROM NODE : 130 : 120 TO NODE REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED ' TURBO SWITCH : OFF CULVERT DATA 1 SPAN (in): 60.000 RISE (in): 48.000 LENGTH (ft): 80.000 U/S INVERT (ft): 8.400 D/S INVERT (ft): 8.200 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 MANNING N: .013 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 14.300 CREST LN. (ft): 50.000 RESERVED:******* RESERVED:******* WEIR COEF.: 2.800 RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR
 CREST EL. (ft):******
 CREST LN. (ft):******
 WEIR COEF.:*******

 RESERVED:******
 RESERVED:*******
 RESERVED:*******
 NOTE: BILTMORE ROAD CROSSING >>REACH NAME : 151 FROM NODE : 151 TO NODE : 150 REACH TYPE : CULVERT, RECTANGULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 96.000 RISE (in): 96.000 LENGTH (ft): 79.000 U/S INVERT (ft): 7.800 D/S INVERT (ft): 7.670 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 3.000 . POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 19.100 CREST LN. (ft): 50.000 WEIR COEF.: 2.800 RESERVED:******* RESERVED:******** RESERVED:******* RESERVED:******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):****** CREST LN. (ft):****** RESERVED:******* RESERVED:******* WEIR COEF .: ******* RESERVED: *******

NOTE: BENEVA ROAD CROSSING

and a second second second second second second second

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 158 : 158 FROM NODE : 157 TO NODE REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 72.000 RISE (in): 72.000 LENGTH (ft): 40.000 U/S INVERT (ft): 7.970 D/S INVERT (ft): 8.030 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 2.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 16.500 CREST LN. (ft): 50.000 RESERVED:******* RESERVED:******* WEIR COEF.: 2.800 RESERVED:******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):****** CREST LN. (ft):****** RESERVED:****** RESERVED:******* WEIR COEF .: ******* RESERVED: ******* NOTE: DATA BASED UPON PROJECT SURVEY >>REACH NAME : 163 FROM NODE : 163 TO NODE: 162REACH TYPE: CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in):48.000RISE (in):48.000U/S INVERT (ft):12.970 D/S INVERT (ft):12.810 LENGTH (ft): 230.000 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 . POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 19.000 CREST LN. (ft): 50.000 WEIR COEF.: RESERVED:******* RESERVED:******** RESERVED:*** 2.800 RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):****** CREST LN. (ft):****** RESERVED:******* RESERVED:******* WEIR COEF .: ******** RESERVED: *******

NOTE: PALMER RANCH PARKWAY CROSSING

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 165 FROM NODE : 165 : 164 TO NODE : CULVERT, CIRCULAR w/ ROADWAY REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 48.000 RISE (in): 48.000 LENGTH (ft): 150.000 U/S INVERT (ft): 14.730 D/S INVERT (ft): 14.630 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 23.000 CREST LN. (ft): 50.000 RESERVED:******* RESERVED:******* WEIR COEF.: 2.800 RESERVED:******* 11 POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):****** CREST LN. (ft):****** WEIR COEF.:******* RESERVED: ******* RESERVED: ******* RESERVED: ******* NOTE: MIRA LAGO ENTRANCE >>REACH NAME : 182 FROM NODE : 182 : 181 TO NODE REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 89.000 U/S INVERT (ft): 16.200 D/S INVERT (ft): 15.000 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 . POSITION A : NOT USED POSITION B : NOT USED NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 183 : 183 FROM NODE : 182 TO NODE REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 38.000 RISE (in): 24.000 LENGTH (ft): 104.000 U/S INVERT (ft): 15.100 D/S INVERT (ft): 15.100 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED NOTE : : 183A >>REACH NAME FROM NODE : 183a TO NODE : 164 : CULVERT, ELLIPTICAL w/ ROADWAY REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 30.000 RISE (in): 19.000 LENGTH (ft): 307.000 U/S INVERT (ft): 14.710 D/S INVERT (ft): 14.100 MANNING N: .013 ENTRNC LOSS: 1.100 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED NOTE:

Advanced Int Coj	terconnected Channel & Pond Routing (adICPR Ver 1.40) pyright 1989, Streamline Technologies, Inc.
ELLIGRAW BAT 04-01-94	YOU - BASIN MASTER PLAN (ALTERNATIVE 3)
FROM NODE : TO NODE : REACH TYPE :	184 184 183 CULVERT, ELLIPTICAL w/ ROADWAY POSITIVE AND NEGATIVE FLOWS ALLOWED OFF
U/S INVERT (ft):	38.000RISE (in):24.000LENGTH (ft):94.00016.500 D/S INVERT (ft):15.100MANNING N:.013.500# OF CULVERTS:1.000
POSITION A :	NOT USED
POSITION B :	NOT USED
NOTE :	
>>REACH NAME : FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : TURBO SWITCH :	185A 181 CULVERT, CIRCULAR w/ ROADWAY POSITIVE AND NEGATIVE FLOWS ALLOWED
CULVERT DATA : SPAN (in): U/S INVERT (ft): ENTRNC LOSS:	30.000RISE (in):30.000LENGTH (ft):160.00013.960 D/S INVERT (ft):13.480MANNING N:.013.500 # OF CULVERTS:1.000
POSITION A :	NOT USED
POSITION B :	NOT USED
NOTE:	

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 185B FROM NODE : 185B TO NODE : 185A REACH TYPE : CULVERT, CIRCULAR w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA 1 SPAN (in): 15.000 RISE (in): 15.000 LENGTH (ft): 73.000 U/S INVERT (ft): 13.480 D/S INVERT (ft): 13.960 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED NOTE: >>REACH NAME : 186 : 186 FROM NODE : 181 TO NODE REACH TYPE : CULVERT, ELLIPTICAL w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : 38.000 SPAN (in): RISE (in): 24.000 LENGTH (ft): 87.000 U/S INVERT (ft): 14.460 D/S INVERT (ft): 14.440 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : NOT USED POSITION B : NOT USED NOTE: PROPOSED CULVERT ENLARGEMENT

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04 - 01 - 94>>REACH NAME : 210 FROM NODE : 210 TO NODE : 200 . . REACH TYPE : CULVERT, ARCH w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA . . SPAN (in): 65.000 RISE (in): 40.000 LENGTH (ft): 109.000 U/S INVERT (ft): 11.170 D/S INVERT (ft): 10.640 MANNING N: .024 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 16.560 CREST LN. (ft): 50.000 WEIR COEF .: 2.800 RESERVED: ******* RESERVED: ******* RESERVED:******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):****** CREST LN. (ft):******* WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED:******* NOTE: >>REACH NAME : 220 FROM NODE : 220 TO NODE : 210 REACH TYPE : CULVERT, ARCH w/ ROADWAY FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 36.000 RISE (in): 24.000 LENGTH (ft): 156.000 U/S INVERT (ft): 13.400 D/S INVERT (ft): 11.760 MANNING N: .024 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft): 17.500 CREST LN. (ft): 25.000 WEIR COEF.: 2.600 RESERVED: ******* RESERVED:******* RESERVED: ******* POSITION B : RECTANGULAR ROADWAY/BERM WEIR CREST EL. (ft):****** CREST LN. (ft):******* WEIR COEF .: ******* RESERVED: ******* RESERVED: ******* RESERVED: ******* NOTE:

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 116 FROM NODE : 120 TO NODE : 110 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 18.000 RISE (in): 18.000 LENGTH (ft): 120.000 U/S INVERT (ft): 8.500 D/S INVERT (ft): 8.200 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 10.500 CREST LN. (ft): 14.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : NOT USED NOTE: >>REACH NAME : 120 FROM NODE: 120TO NODE: 102REACH TYPE: DROP STRUCTURE w/ RECT. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA :
 SPAN (in):
 84.000
 RISE (in):
 48.000
 LENGTH (ft):
 932.600

 U/S INVERT (ft):
 7.930 D/S INVERT (ft):
 1.400
 MANNING N:
 .013

 ENTRNC LOSS:
 .500
 # OF CULVERTS:
 2.000
 MANNING N:
 .013
 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 11.000 CREST LN. (ft): 30.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft):9999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: PROPOSED CULVERT AND WLCS

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 171 : 171 FROM NODE TO NODE : 151 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 18.000 RISE (in): 18.000 LENGTH (ft): 32.000 U/S INVERT (ft): 12.510 D/S INVERT (ft): 12.100 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 13.720 CREST LN. (ft): 1.000 OPENING (ft): 1.550 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft):****** CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .660 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED >>REACH NAME : 173 FROM NODE : 173 TO NODE: 159REACH TYPE: DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 15.000 RISE (in): 15.000 U/S INVERT (ft): 12.950 D/S INVERT (ft): 12.580 LENGTH (ft): 32.000 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : CIRCULAR RISER SLOT INVERT EL. (ft): 14.180 SPAN (in): 8.000 RISE (in): 8.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft):9999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000

NOTE: WEIR/ORIFICE CONTROL MODIFIED

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 175 FROM NODE : 175 TO NODE : 161 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA :

 SPAN (in):
 15.000
 RISE (in):
 15.000
 LENGTH (ft):
 42.000

 WERT (ft):
 12.920 D/S INVERT (ft):
 12.550
 MANNING N:
 .013

 U/S INVERT (ft): 12.920 D/S INVERT (ft): 12.550 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : CIRCULAR RISER SLOT INVERT EL. (ft): 14.000 SPAN (in): 8.000 RISE (in): 8.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 999.000 CREST LN. (ft): .000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED >>REACH NAME : 180 FROM NODE : 180 TO NODE: 161REACH TYPE: DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 54.000 RISE (in): 54.000 LENGTH (ft): 119,000 U/S INVERT (ft): 9.400 D/S INVERT (ft): 9.260 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.520 CREST LN. (ft): 2.000 OPENING (ft): 2.480 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 : RECTANGULAR RISER SLOT POSITION B CREST EL. (ft): 17.000 CREST LN. (ft): 33.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 181A FROM NODE : 181 TO NODE : 160 REACH TYPE : DROP STRUCTURE w/ ELLP. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in):38.000RISE (in):24.000LENGTH (ft):293.000U/S INVERT (ft):12.920 D/S INVERT (ft):12.560MANNING N:.013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.790 CREST LN. (ft): 6.000 OPENING (ft): 1.440 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 17.300 CREST LN. (ft): 26.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF .: .600 NUMBER OF ELEM .: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED >>REACH NAME : 181B : 181 FROM NODE TO NODE : 180 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 54.000 RISE (in): 54.000 LENGTH (ft): 220.000 U/S INVERT (ft): 8.990 D/S INVERT (ft): 8.830 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.730 CREST LN. (ft): 1.500 OPENING (ft): 3.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 17.500 CREST LN. (ft): 26.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 183B FROM NODE : 183 TO NODE: 183AREACH TYPE: DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 18.000 RISE (in): 18.000 LENGTH (ft): 238.000 U/S INVERT (ft): 15.170 D/S INVERT (ft): 14.710 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 16.230 CREST LN. (ft): 1.250 OPENING (ft): WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: .500 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 19.000 CREST LN. (ft): 14.000 OPENING (ft):9999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED >>REACH NAME : 187 FROM NODE : 187 TO NODE : 181 REACH TYPE : DROP STRUCTURE w/ CIRC. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA : SPAN (in): 18.000 RISE (in): 18.000 LENGTH (ft): 48.000 U/S INVERT (ft): 13.110 D/S INVERT (ft): 12.140 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 16.430 CREST LN. (ft): 1.750 OPENING (ft): 1.490 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 17.920 CREST LN. (ft): 10.000 **OPENING (ft): 999.000** WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000

NOTE: DATA BASED UPON PROJECT SURVEY

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 : 191 >>REACH NAME FROM NODE : 191 TO NODE: 190REACH TYPE: DROP STRUCTURE w/ ELLP. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 76.000 RISE (in): 48.000 LENGTH (ft): 40.000 U/S INVERT (ft): 10.290 D/S INVERT (ft): 10.210 MANNING N: .013 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : CIRCULAR RISER SLOT
 INVERT EL. (ft):
 15.000
 SPAN (in):
 12.000
 RISE (in):
 12.000

 WEIR COEF.:
 3.200
 GATE COEF.:
 .600 NUMBER OF ELEM.:
 1.000
 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 17.500 CREST LN. (ft): 33.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED : 192 >>REACH NAME FROM NODE: 192TO NODE: 190REACH TYPE: DROP STRUCTURE w/ ELLP. CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in):15.000RISE (in):15.000U/S INVERT (ft):14.510D/S INVERT (ft):14.510 LENGTH (ft): 1.000 MANNING N: .010 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 14.910 CREST LN. (ft): 8.000 OPENING (ft): 2.590 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 POSITION B : RECTANGULAR RISER SLOT CREST EL. (ft): 17.500 CREST LN. (ft): 33.000 **OPENING (ft): 999.000** WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 NOTE: WEIR/ORIFICE CONTROL MODIFIED

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 200 : 200 FROM NODE : 140 TO NODE REACH TYPE : DROP STRUCTURE w/ ARCH CULVERT FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED TURBO SWITCH : OFF CULVERT DATA SPAN (in): 65.000 RISE (in): 40.000 LENGTH (ft): 94.000 U/S INVERT (ft): 9.780 D/S INVERT (ft): 9.900 MANNING N: .024 ENTRNC LOSS: .500 # OF CULVERTS: 1.000 POSITION A : RECTANGULAR RISER SLOT CREST EL. (ft): 11.510 CREST LN. (ft): 5.000 OPENING (ft): 999.000 WEIR COEF.: 3.200 GATE COEF.: .600 NUMBER OF ELEM.: 1.000 SITION B: RECTANGULAR RISER SLOTCREST EL. (ft):9999.000CREST LN. (ft):.000OPENING (ft): 999.000CREST EL. (ft):9999.000GATE COEF.:.600 NUMBER OF ELEM.:1.000 POSITION B NOTE: WEIR/ORIFICE CONTROL MODIFIED

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 : 106 >>REACH NAME FROM NODE : 106 : 104 TO NODE REACH TYPE : IRREGULAR SECTION CHANNEL, MOMENTUM EQ. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED OUTLET CONTROL : FREE LENGTH (ft): 265.000 U/S INVERT (ft): 8.500 D/S INVERT (ft): 6.600 MAX. DEPTH (ft): 1.500 X-VAL (ft) Y-VAL (ft) N-VAL .000 8.700 .040 3.000 7.200 .040 7.000 8.700 .040 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE .00 .000 .00 .00 .0 7.63 1.500 5.25 7.00 152.0 7.63 1.500 5.25 7.00 152.0 6.500 40.25 7.63 7.00 4532.4

NOTE:

Advanced Int Cop	erconnected oyright 1989				Ver 1.40)
ELLIGRAW BAY 04-01-94	OU - BASIN	MASTER PLAN	(ALTERNATI	IVE 3)	
FROM NODE : TO NODE : REACH TYPE : FLOW DIRECTION : OUTLET CONTROL :	108 IRREGULAR S POSITIVE AN FREE 315.000 U/S	D NEGATIVE	FLOWS ALLOW	VED	(ft): 9.000
	7.500	Y-VAL (ft) 10.800 9.200 11.100	.040 .040		
	.000 1.500 1.600 1.900	.00 9.71 11.05	00. 13.30 13.30 13.30	12.95 13.82 15.00	.0 292.7 363.0

.

. .

NOTE:

÷.

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 157 FROM NODE : 157 : 151 TO NODE : IRREGULAR SECTION CHANNEL, MOMENTUM EQ. REACH TYPE FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED OUTLET CONTROL : FREE LENGTH (ft): 650.000 U/S INVERT (ft): 8.030 D/S INVERT (ft): 7.800 MAX. DEPTH (ft): 8.000 X-VAL (ft) Y-VAL (ft) N-VAL .000 16.500 .035 15.000 11.800 .035 20.000 10.300 .035 30.000 10.100 .035 40.000 9.000 .035 54.000 11.900 .035 62.000 16.900 .035 70.000 17.100 .035 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE .00 .000 .00 .00 .0 1.100 8.42 15.48 15.31 238.2 1.300 12.58 26.47 26.28 325.2 2.800 61.17 39.09 38.52 3501.1 2.900 65.07 39.92 39.32 3826.3 7.500 296.63 63.98 61.36 35017.0 7.900 321.30 64.73 62.00 39693.1 8.000 327.70 68.74 66.00 39411.8 8.100 334.50 70.00 68.74 40784.2 13.100 684.50 68.74 70.00 134520.3

NOTE: BASED UPON SCS CROSS-SECTION

Advanced In Coj	terconnected pyright 1989	l Channel &), Streamlin	Pond Routin Technolog	ng (adICPR N gies, Inc.	Ver 1.40)
ELLIGRAW BA 04-01-94	YOU - BASIN	MASTER PLAN	I (ALTERNAT	EVE 3)	
FROM NODE :	POSITIVE AN FREE 650.000 U/S	ND NEGATIVE	FLOWS ALLOW	∛ED	(ft): 7.970
	X-VAL (ft) .000 10.000 20.000 25.000 32.000 40.000 50.000 60.000 90.000	11.900 8.600 7.000 8.200 11.800	.035 .035 .035 .035 .035 .035 .035 .035		
**	.000 1.200 1.600 4.800 4.900 8.800 9.200 9.500 9.500 9.900 10.600 15.600	.00 9.60 16.62 102.86 106.38 299.66 327.54 350.89 383.85 445.10 895.10	.00 16.19 19.41 36.36 37.19 66.81 79.20 83.15 83.15 83.15 83.15	16.00 19.11 34.79 35.59 63.53 75.88 79.79 85.00	.0 287.7 636.4 8734.8 9100.3 34603.3 35829.4 38902.8 45181.6 57825.8
NOTE :	BASED UPON	SCS CROSS-S	SECTION		

.

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.					
ELLIGRAW BAY 04-01-94	OU - BASIN N	MASTER PLAN	(ALTERNATI	VE 3)	
	161 159 IRREGULAR SI POSITIVE AND FREE 350.000 U/S	D NEGATIVE	FLOWS ALLOW	IED	(ft): 7.000
	X-VAL (ft) Y .000 10.000 20.000 25.000 32.000 40.000 50.000 60.000 90.000	17.600 16.200 15.800 11.900 8.600 7.000 8.200	.035 .035 .035 .035 .035 .035 .035		
	DEPTH (ft) .000 1.200 1.600 4.800 4.900 8.800 9.000 9.200 9.200 9.900 10.600 15.600	.00 9.60 16.62 102.86 106.38 299.66 312.98 327.54 383.85 445.10 895.10	.00 16.19 19.41 36.36 37.19 66.81 73.00 73.00 73.00 73.00 73.00	19.11 34.79 35.59 63.53 69.71 75.88 85.00	.0 287.7 636.4 8734.8 9100.3 34603.3
NOTE:	BASED UPON	SCS CROSS-S	ECTION		

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.					
ELLIGRAW BAY	YOU - BASIN I	MASTER PLAN	(ALTERNATI	VE 3)	
	IRREGULAR S	ECTION CHAN D NEGATIVE	NEL, MOMENI FLOWS ALLOW	TUM EQ. NED	
LENGTH (ft): MAX. DEPTH (ft):	350.000 U/S	INVERT (ft	:): 11.740	D/S INVERT	(ft): 10.300
	22.000 24.000 31.000 37.000 38.000	Y-VAL (ft) 17.100 13.100 12.200 11.500 12.200 13.500 17.500	.035 .035 .040 .040 .040 .040 .040		
η.	.000 .700 1.600 2.000 5.600 6.000	.00 4.55 17.46 24.24 156.18 178.60 235.60	13.08 16.41 19.15	.00 13.00 15.69 18.20 55.10 57.00 57.00	.0 83.6 676.3 1116.8 13460.6 16279.6

NOTE: BASED UPON PALMER RANCH RECORD DRWG

.

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94

>>REACH NAME : 164
FROM NODE : 164
TO NODE : 163
REACH TYPE : IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED
OUTLET CONTROL : FREE
LENGTH (ft):1700.000 U/S INVERT (ft): 14.630 D/S INVERT (ft): 12.970
MAX. DEPTH (ft): 2.000

X-VAL (ft) .000 24.000 31.000 37.000 65.000 89.000	Y-VAL (ft) 18.200 13.100 12.300 13.300 19.900 22.800	N-VAL .035 .035 .060 .060 .035 .035		
DEPTH (ft) .000 .800 1.000 2.000 5.900 7.600 10.500 15.500	AREA (sf) .00 4.72 7.29 25.71 183.03 287.40 510.70 955.70	PERIM (ft) .00 11.91 14.09 23.26 23.26 23.26 23.26 23.26 23.26 23.26	TOPWD (ft) .00 11.80 13.94 22.89 57.79 65.00 89.00 89.00	CONVEYANCE .0 63.1 120.3 823.3 29075.2 67913.7 201421.7 647949.0

NOTE: BASED UPON PALMER RANCH RECORD DRWG

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc. ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94 >>REACH NAME : 190 : 190 FROM NODE : 162 TO NODE REACH TYPE : IRREGULAR SECTION CHANNEL, MOMENTUM EO. FLOW DIRECTION : POSITIVE AND NEGATIVE FLOWS ALLOWED OUTLET CONTROL : FREE LENGTH (ft): 500.000 U/S INVERT (ft): 10.210 D/S INVERT (ft): 9.710 MAX. DEPTH (ft): 7.000 X-VAL (ft) Y-VAL (ft) N-VAL .000 .060 17.000 35.000 10.000 .060 .060 55.000 9.999 90.000 17.000 .035 DEPTH (ft) AREA (sf) PERIM (ft) TOPWD (ft) CONVEYANCE .000 .00 .00 .00 .0 .001 7.000 20.00 .01 20.00 .0 384.94 91.38 89.99 30103.5 7.001 385.03 91.38 90.00 30115.5 12.001 835.03 91.38 90.00 112281.8

NOTE:

.

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94

REACH SUMMARY

================

INDEX	RCHNAME	FRMNODE	TONODE	REACH TYPE
	102A		101	TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ.
				IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ.
3	112	120	110	IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ.
4	140	140	130	IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ. IRREGULAR WEIR/GATE/ORIFICE, MAVIS EQ.
5		160	150	IRREGULAR WEIR/GATE/ORIFICE, MAVIS EQ. IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ.
6	170	170	157	IRREGULAR WEIR/GATE/ORIFICE, FREAD EQ.
7	193	192	191	TRAPEZOIDAL WEIR/GATE/ORIFICE, FREAD EQ.
	104A	104	102	RECTANGULAR WEIR/GATE/ORIFICE, VILLEMONTE EQ
	150	150	140	RECTANGULAR WEIR/GATE/ORIFICE, VILLEMONTE EQ
	101		100	CULVERT, RECTANGULAR w/ ROADWAY
11	102	102	101	CULVERT, RECTANGULAR W/ ROADWAY
	104		102	CULVERT, ELLIPTICAL W/ ROADWAY
	108	108	106	CULVERT, ELLIPTICAL W/ ROADWAY
	130	130	120	CULVERT, RECTANGULAR w/ ROADWAY
15	151	151	150	CULVERT, RECTANGULAR W/ ROADWAY
16	158	158	157	CULVERT, CIRCULAR W/ ROADWAY
17	163	163	162	CILVERT CIRCULAR W ROADWAY
18	165	165	164	CULVERT CIRCULAR W/ ROADWAY
19	182	182	181	CHLVERT, ELLIPTICAL W/ ROADWAY
20	183	183	182	CULVERT, ELLIPTICAL W/ ROADWAY
21	183A	183A	164	CULVERT, ELLIPTICAL W/ ROADWAY
22	184	184	183	CULVERT, ELLIPTICAL W/ ROADWAY
23	185A	185A	181	CULVERT, CIRCULAR w/ ROADWAY
24	185B	185B	185A	CULVERT, CIRCULAR w/ ROADWAY CULVERT, CIRCULAR w/ ROADWAY CULVERT, CIRCULAR w/ ROADWAY CULVERT, ELLIPTICAL w/ ROADWAY CULVERT, ELLIPTICAL w/ ROADWAY CULVERT, ELLIPTICAL w/ ROADWAY CULVERT, ELLIPTICAL w/ ROADWAY CULVERT, CIRCULAR w/ ROADWAY CULVERT, CIRCULAR w/ ROADWAY CULVERT, CIRCULAR w/ ROADWAY CULVERT, ELLIPTICAL w/ ROADWAY CULVERT, ARCH w/ ROADWAY CULVERT, ARCH w/ ROADWAY CULVERT, ARCH w/ ROADWAY CULVERT, ARCH w/ ROADWAY DROP STRUCTURE w/ CIRC. CULVERT DROP STRUCTURE w/ CIRC. CULVERT
25	186	186	181	CULVERT, ELLIPTICAL W/ ROADWAY
26	210	210	200	CULVERT, ARCH w/ ROADWAY
27	220	220	210	CULVERT, ARCH w/ ROADWAY
28	116	120	110	DROP STRUCTURE w/ CIRC. CULVERT
29	120	120	102	DROP STRUCTURE w/ RECT. CULVERT
30	171	171	151	DROP STRUCTURE w/ CIRC. CULVERT
31	173	173	159	DROP STRUCTURE w/ CIRC. CULVERT
32	175	175	161	DROP STRUCTURE w/ CIRC. CULVERT
33	180	180	161	DROP STRUCTURE w/ CIRC. CULVERT
34	181A	181	160	DROP STRUCTURE w/ ELLP. CULVERT
35	181B	181	180	DROP STRUCTURE w/ CIRC. CULVERT
36	183B	183	183A	DROP STRUCTURE w/ CIRC. CULVERT
37	187	187	181	DROP STRUCTURE w/ CIRC. CULVERT
38	191	191	190	DROP STRUCTURE w/ ELLP. CULVERT
39	192	192	190	DROP STRUCTURE w/ ELLP. CULVERT
40	200	200	140	DROP STRUCTURE w/ ARCH CULVERT
41	106	106	104	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
42	110	110	108	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
43	157	157	151	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
44	159	159	158	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
45	161	161	159	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
46	162	162	161	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
47	164	164	163	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.
48	190	190	162	IRREGULAR SECTION CHANNEL, MOMENTUM EQ.

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3) 04-01-94

INPUT SUMMARY

DATA TYPE	NUMBER READ
NODES	41
REACHES	
WEIRS	9
CULVERTS	18
DROP STRUCTURES	13
CHANNELS, ENERGY EQ.	0
CHANNELS, MOMENTUM EQ.	8
RATING CURVES	Ō

TOTAL REACHES

· · · · · · · · · · · ·

-an is more and

NATION COMPANY AVAILABLE IN LONG

.

48

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3 - 2 YR) 04-01-94

NODE ID	STAGE (ft)	VOLUME (af)	<pre>Contended Contended C</pre>	INFLOW OFFSITE (cfs)	OTHER (cfs)	OUTFLOW (cfs)
100	1.50	91.69	.00	.00	137.08	.00
101	1.60	.13	14.80	.00	133.06	137.08
102	3.87	.28	.00	.00	133.02	133.06
104	7.83	.01	.00	.00	32.70	32.71
106	10.88	.04	10.92	.00	22.37	32.70
108	11.03	.06	.00	.00	22.56	22.37
110 120	11.45 12.04	.29	18.18	.00	6.34	22.56
130	12.04	3.61 .99	63.09 21.88	.00	69.28	108.23
140	12.74	5.85	36.86	.00 .00	61.40 49.37	69.28 61.40
150	13.68	1.39	.00	.00	76.43	24.19
151	13.68	1.63	12.12	.00	37.80	76.43
157	13.69	1.48	13.05	.00	27.92	35.34
158	13.70	1.17	.00	.00	30.29	27.09
159	13.70	2.08	6.45	.00	51.78	30.29
160	15.74	6.33	8.83	.00	6.64	.69
161	13.70	1.01	1.17	.00	20.32	51.16
162	13.72	1.06	.00	.00	16.04	15.55
163	14.05	.10	3.33	.00	2.97	5.41
164	15.51	.26	4.16	.00	2.27	2.97
165	15.51	.32	1.89	.00	.00	.23
170	15.35	.36	2.29	.00	.00	1.62
171 173	14.58	2.07	12.39	.00	.00	2.55
175	14.72 14.54	.53 1.77	4.80	.00	.00	.71
180	15.30	.63	11.30 5.77	.00	.00	.71
181	15.74	3.23	26.06	.00 .00	3.95	4.39
182	16.97	2.99	8.55	.00	9.63 5.38	9.42
183	16.98	5.43	29.81	.00		3.50 7.02
183A	15.57	.00	.00	.00		2.12
184	17.28	. 68	9.98	.00		4.08
185A	15.76	.01	.00	.00		2.72
185B	15.74	.17	.61	.00	.00	.40
186	15.74	.91	13.36	.00	.00	7.30
187	16.77	.32	2.63	.00	.00	1.11
190	13.72	.84	2.58	.00	4.58	13.26
191	15.63	2.83	6.04	.00		1.31
192	15.63	9.71	29.90	.00	.00	14.16
200	13.34	3.51	23.99	.00		25.78
210	13.49	1.88	27.51	.00		22.55
220	14.16	1.73	16.94	.00	.00	4.18

NODAL MAXIMUM CONDITIONS REPORT

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3 - 5 YR) 04-01-94

NODE ID	STAGE (ft)	VOLUME (af)	< RUNOFF (cfs)	INFLOW OFFSITE (cfs)	OTHER (cfs)	OUTFLOW (cfs)
100	1.50	149.72	.00	.00	229.36	.00
101	1.79	.14	21.97	.00	225.09	229.36
102	4.91	. 39	.00	.00	224.85	225.09
104	8.41	.02	.00	.00	50.26	50.29
106	11.03	.05	18.74	.00	32.91	50.26
108	11.35	.13	.00	.00	33.23	32.91
110 120	11.70	.34	28.79	.00	6.89	33.23
130	12.51	5.18	101.43	.00	120.30	183.93
140	12.75	1.28	34.45	.00	106.10	120.30
150	13.21	7.44	58.47	.00	85.96	106.10
151	14.61	1.70	.00	.00	108.21	46.75
157	14.61	2.03	17.87	.00	76.46	108.21
158	14.63	1.87	21.91	.00	56.40	73.09
159	14.64	1.52	.00	.00	56.97	54.35
160	14.63	2.62	9.84	.00	86.02	56.97
161	15.85	6.89	13.76	.00	10.42	10.02
162	14.64	1.33	2.08	.00	35.57	77.98
163	14.64 14.69	1.53	.00	.00	27.98	28.12
164	15.65	.27	5.99	.00	7.64	11.71
165	15.66	.31	7.40	.00	4.41	7.64
170	15.41	. 39	3.35	.00	.00	1.57
171	15.07	. 42	3.72	.00	.00	3.17
173	15.00	3.10	19.65	.00	.00	3.50
175	14.85	.73	7.35	.00	.00	1.17
180	15.62	2.78	17.15	.00	.00	1.20
181	16.09	.87	9.23	.00	5.78	7.38
182	17.35	4.75	42.05	.00	15.67	15.30
183	17.41	3.77	13.29	.00	8.88	7.31
183A	15.73	6.99 .00	45.70	.00	7.28	11.43
184	17.65	.00	.00	.00	2.90	2.90
185A	16.11	. 99	15.84	.00	.00	7.28
185B	16.10	.25	.00	.00	.56	2.88
186	16.10	1.17	1.00	.00	.00	.56
187	16.91	.37	19.82	.00	.00	11.01
190	14.64	1.17	3.97	.00	.00	1.85
191	16.03	3.84	4.29	.00	7.89	25.13
192	16.03	13.21	8.78	.00	10.63	2.55
200	14.16	5.06	49.44 36.88	.00	.00	13.53
210	14.49	2.83	42.22	.00	35.16	41.76
220	14.69	3.03	42.22 28.51	.00	11.61	35.16
		5.05	20.31	.00	.00	11.61

NODAL MAXIMUM CONDITIONS REPORT

.

.....

4

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3 - 10 YR) 04-01-94

1 - 14- LTF -

			<	INFLOW	>	
NODE	STAGE	VOLUME	RUNOFF	OFFSITE	OTHER	OUTFLOW
ID	(ft)	(af)	(cfs)	(cfs)	(cfs)	(cfs)
100	1.50	183.72	.00			
101	1.92	.15	26.03	.00	279.22	.00
102	5.40	. 44	.00	.00	274.22	279.22
104	8.68	.02	.00	.00 .00	274.15	274.22
106	11.15	.08	23.38	.00	60.19	60.11
108	11.51	.16	.00	.00	38.77 38.85	60.19
110	11.83	.36	34.99	.00	7.62	38.77
120	12.77	6.06	123.71	.00	148.54	38.85
130	13.14	1.46	41.71	.00	132.42	224.61
140	13.52	8.47	71.00	.00	105.41	148.54
150	15.04	1.85	.00	.00	122.44	132.42
151	15.05	2.24	21.20	.00	85.73	58.02 122.44
157	15.07	2.06	27.14	.00	62.42	82.36
158	15.08	1.68	.00	.00	72.38	60.53
159	15.08	2.89	11.79	.00	142.41	72.38
160	15.88	7.05	16.66	.00	12.42	14.69
161	15.08	1.50	2.63	.00	42.47	127.43
162	15.08	1.77	.00	.00	31.52	33.73
163	15.12	.53	7.58	.00	10.04	15.12
164	15.77	.35	9.35	.00	5.48	10.04
165	15 .79	. 45	4.23	.00	.00	2.28
170	15.44	.45	4.57	.00	.00	4.12
171	15 .39	3.89	23.86	.00	.00	4.18
173	15.18	.88	8.81	.00	.00	1.31
175	15.10	3.63	20.53	.00	.00	1.44
180	15.83	1.02	11.28	.00	7.21	9.19
181	16.36	5.93	51.39	.00	19.39	18.58
182	17.56	4.20	16.03	.00	11.03	9.80
183	17.67	7.94	54.89	.00	9.80	14.14
183A	15.87	.01	.00	.00	3.27	3.28
184	17.84	1.16	19.25	.00	.00	9.80
185A	16.34	.01	.00	.00	.80	2.64
185B	16.37	.31	1.24	.00	.00	.80
186	16.37	1.37	23.57	.00	.00	12.96
187	16.98	.40	4.75	.00	00	2.30
190	15.09	1.35	5.32	.00	9.55	26.17
191	16.30	4.52	10.36	.00	15.87	3.39
192	16.30	15.54	61.00	.00	.00	18.63
200 210	14.60	5.90	44.35	.00	39.48	48.88
	14.98	3.29	50.76	.00	12.67	39.48
220	15.12	4.22	35.35	.00	.00	12.67
					-	

NODAL MAXIMUM CONDITIONS REPORT

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3 - 25 YR) 04-01-94

NODE ID	STAGE (ft)	VOLUME	RUNOFF	INFLOW OFFSITE	OTHER	OUTFLOW
		(af)	(cfs)	(cfs)	(cfs)	(cfs)
100	1.50	218.07	.00	.00	324.98	
101	2.07	.16	30.07	.00	318.47	.00 324.98
102	5.82	. 49	.00	.00	318.30	318.47
104	8.93	.02	.00	.00	71.13	71.15
106	11.29	.12	28.08	.00	44.45	71.13
108	11.60	.18	.00	.00	45.03	44.45
110	11.93	.38	41.23	.00	8.29	45.03
120 130	13.03	7.05	146.09	.00	173.03	259.85
140	13.54	1.65	48.98	.00	154.31	173.03
150	13.84	9.56	83.56	.00	122.31	154.31
151	15.44 15.45	1.98	.00	.00	136.70	69.14
157	15.45	2.43	24.55	.00	103.61	136.70
158	15.45	2.23	32.43	.00	75.93	100.72
159	15.47	1.84	.00	.00	87.33	72.87
160	15.91	3.13 7.22	13.74	.00	144.87	87.33
161	15.48	1.65	19.58	.00	15.08	20.92
162	15.50	2.01	3.19	.00	51.12	131.11
163	15.51	1.05	.00 9.21	.00	36.68	41.76
164	15.89	.41	11.33	.00	12.24	17.69
165	15.91	.51	5.11	.00 .00	6.24	12.24
170	15.48	. 50	5.44	.00	.00	2.69
171	15.74	4.74	28.08	.00	.00 .00	5.02
173	15.51	1.15	10.27	.00	.00	4.63
175	15.35	4.52	23.92	.00	.00	1.39
180	16.10	1.22	13.35	.00	8.49	1.64 10.62
181	16.62	7.04	60.79	.00	23.17	23.53
182	17.75	4.59	18.77	.00	13.14	12.34
183	17.92	8.89	64.11	.00	11.62	16.56
183A	16.00	.01	.00	.00	3.61	3.62
184	18.02	1.32	22.67	.00	.00	11.62
185A	16.64	.01	.00	.00	.73	3.30
185B 186	16.63	. 37	1.47	.00	.00	.73
187	16.63	1.56	27.35	.00	.00	14.62
190	17.05	.43	5.53	.00	.00	2.77
191	15.50	1.52	6.35	.00	11.11	29.76
192	16.57	5.20	11.95	.00	14.32	3.91
200	16.57 14.97	17.85	72.71	.00	.00	17.82
210	15.40	6.61	51.86	.00	41.66	53.71
220	15.54	3.98 5.63	59.34	.00	14.00	41.66
-	10101	5.03	42.26	.00	.00	14.00

NODAL MAXIMUM CONDITIONS REPORT

× *

A

ELLIGRAW BAYOU - BASIN MASTER PLAN (ALTERNATIVE 3 - 100 YR) 04-01-94

NODAL MAXIMUM CONDITIONS REPORT

			<	INFLOW	>	
NODE	STAGE	VOLUME	RUNOFF	OFFSITE	OTHER	OUTFLOW
ID	(ft)	(af)	(cfs)	(cfs)	(cfs)	(cfs)
100	1.50	287.27	.00	.00	399.93	.00
101	2.35	.18	38.10	.00	392.65	399.93
102	6.48	.56	.00	.00	392.56	392.65
104	9.40	.10	.00	.00	92.73	93.12
106	11.61	.19	37.58	.00	57.98	92.73
108	11.74	. 20	.00	.00	58.13	57.98
110	12.13	. 45	53.77	.00	9.49	58.13
120	13.45	9.92	190.90	.00	209.42	315.07
130	14.18	2.17	63.49	.00	186.89	209.42
140	14.40	12.26	108.71	.00	146.48	186.89
150	15.99	2.16	.00	.00	152.89	85.00
151	16.00	2.71	31.28	.00	130.94	152.89
157	16.05	2.51	43.09	.00	87.22	127.09
158	16.05	2.07	.00	.00	107.49	80.29
159	16.05	3.54	17.63	.00	206.25	107.49
160	16.06	8.09	25.48	.00	19.25	30.80
161	16.06	1.91	4.32	.00	61.75	177.31
162	16.08	2.36	.00	.00	52.87	50.11
163	16.09	1.84	12.50	.00	15.67	18.87
164	16.09	. 50	15.35	.00	8.43	15.67
165	16.09	.68	6.91	.00	.00	4.39
170	16.03	1.30	7.20	.00	.00	16.03
171	16.32	6.43	36.54	.00	.00	5.64
173	16.07	1.62	13.19	.00	.00	1.49
175	15.82	6.22	30.69	.00	.00	1.94
180	16.62	1.60	17.54	.00	11.34	13.38
181	17.16	9.43	79.65	.00	28.96	30.55
182	18.11	5.33	24.26	.00	16.90	17.49
183	18.46	10.84	82.55	.00	13.40	20.93
183A	16.24	.01	.00	.00	4.09	4.09
184	18.52	1.75	29.53	.00	.00	13.40
185A	17.15	.01	.00	.00	.79	2.52
185B	17.18	. 49	1.96	.00	.00	.79
186	17.18	1.97	34.94	.00	.00	17.87
187	17.20	. 49	7.11	.00	.00	3.47
190	16.09	1.77	8.45	.00	14.22	42.60
191	17.18	6.72	15.12	.00	24.76	4.86
192	17.18	23.08	96.35	.00	.00	` 27.5 9
200 210	15.65	8.29	66.89	.00	46.83	61.78
220	16.16	5.46	76.54	.00	18.86	46.83
440	16.24	8.71	56.17	.00	.00	18.86

y- -

ELLIGRAW BAYOU - SUBBASIN POLLUTANT LOADING ANALYSIS INVENTORY

EXISTING CONDITIONS ALTERNATIVE

WATER QUALITY SUBBASIN NO. 1 (LOWER ELLIGRAW BAYOU)

SUBBASIN	LANDUSE	AREA	BMP #1	BMP #2	BMP #3
NO.	(ID No.)	(acres)	(%)	(%)	(%)
05100	7	3.26	25	0	Ì.
05101	7	3.78	0	0	Ō
05102	5	21.79	0	100	0
05110	5/7	16.79/4.2	0/100	100/0	Ō
05120	5	69.92	D	Ö	Ō
05130	5	20.92	0	0	Ő
05140	5/6	35.19/1.5	0	0	0

WATER QUALITY SUBBASIN NO. 2 (UPPER ELLIGRAW BAYOU)

SUBBASIN	LANDUSE	AREA	BMP #1	BMP #2	BMP #3
NO.	(ID No.)	(acres)	((%)	(&)
05150	6/8/12	2.18/1.58	0	Ö	Ó
05151	12	2.52	0	0	0
05160	11	8.43	100	0	0
05161	1	2.40	0	0	0
05163	6/11	1.38/3.13	0	0	0
05164	11	3.97	0	0	0
05165	11	1.62	0	0	0
05170	11	5.12	100	0	0
05171	6	12.70	0	0	100
05172	6	3.55	0	0	0
05173	6	2.66	0	0	100
05174	1/5/6	1.15/7.35	0	0	0
05175	6	8.95	0	0	100
05180	1/12	2.38/2.0	0	0	100
05181	6/12	18.54/1.2	0	0	100
05182	5/6	1.72/4.06	0	0	100
05183	5/6	16.32/3.2	0	0	100
05184	5/6	0.86/6.34	0	0	100
05185	10	0.51	0	0	100
05186	6/12	6.94/1.24	0	0	100
05187	5	1.46	100	0	Ó
05190	10	2.22	0	0	100
05191	11	2.97	0	0	100
05192	1/5/12	31.03/18.	0	0	100

WATER QUALITY SUBBASIN NO. 3 (GULF GATE LATERAL)

-

SUBBASIN	LANDUSE	AREA BMP #1	BMP #2	BMP #3
NO.	(ID No.)	(acres) (%)	(୫)	(%)
05200	5/7	10.66/9.1 0	0	Ŏ
05110	1/5/7/8/12	2.07/17.9 0	0	0
		1.29/14.92/1.77		
05120	1/5	15.87/3.3 0	0	0

RESULTS FROM CDM WATERSHED MANAGEMENT	MODEL FOR ELLIGRAW	BAYOU BASIN	1 UNDER EXISTING
CONDITIONS.			

Drainage Imperv		ge Imperv %					No BMP (Average)	With Wet Po Average A	n ser dadaha a da		% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
		inin en eveni Malan en eveni	ana na ka											an an an an an an an an Astronomian an an an An an Anglan air an Antar ag British an Anna An Anna Anna Anna Anna Anna Ann
5100	4	3	85.0%	Runoff	(ac-ft/yr)	15	0	0	15	15	0	о	15	
5100	4	3	85.0%	BOD	(lbs/yr)	384	0	0	384	298	0	0	298	-22.5%
5100	4	3	85.0%	COD	(lbs/yr)	2,414	0	0	2,414	1,871	0	0	1,871	-22.5%
5100	4	3	85.0%	TSS	(lbs/yr)	3,573	0	0	3,573	2,769	0	0	2,769	-22.5%
5100	4	3	85.0%	TDS	(lbs/yr)	3,946	0	0	3,946	3,058	0	0	3,058	-22.5%
5100	4	3	85.0%	Total P	(lbs/yr)	6	0	0	6	5	0	0	5	-22.5%
5100	4	3	85.0%	Dissolved	• • •	4	0	0	4	3	0	0	3	-22.5%
5100	4	3	85.0%	TKN	(lbs/yr)	42	0	0	42	32	0	0	32	-22.5%
5100	4	3	85.0%	$NO_2 + NO_3$	(lbs/yr)	5	ō	Ō	5	4	Ō	0	4	-22,5%
5100	4	3	85.0%	Lead	(lbs/yr)	9	0	ō	9	7	ō	Ó	7	-22.5%
5100	4	3	85.0%	Copper	(lbs/yr)	1	õ	õ	1	1	Ō	Ō	1	-22.5%
5100	4	3	85.0%	Zinc	(lbs/yr)	5	õ	ŏ	5	4	ō	0	4	-22.5%
5100	4	3	85.0%	Cadmium	(lbs/yr)	õ	õ	õ	õ	o	õ	õ	ò	-22.5%
100	4	5	49.070	Cauman	(iba) yr f	Ũ	J	v	Ŭ	•	·	•	-	
5101	4	3	85.0%	Runoff	(ac-ft/yr)	15	0	0	15	15	0	0	15	
5101	4	з	85.0%	BOD	(ibs/yr)	401	0	0	401	401	0	0	401	0.0%
5101	4	3	85.0%	COD	(lbs/yr)	2,521	0	0	2,521	2,521	0	0	2,521	0.0%
101	4	3	85.0%	TSS	(lbs/yr)	3,731	0	0	3,731	3,731	0	0	3,731	0.0%
i101	4	3	85.0%	TDS	(lbs/yr)	4,120	0	0	4,120	4,120	0	0	4,120	0.0%
101	4	3	85.0%	Total P	(lbs/yr)	6	0	0	6	6	0	0	6	0.0%
101	4	3	85.0%	Dissolved I	P (lbs/yr)	4	0	0	4	4	0	0	4	0.0%
101	4	3	85.0%	TKN	(lbs/yr)	44	0	0	44	44	0	0	44	0.0%
101	4	3	85.0%	$NO_2 + NO_3$	(lbs/yr)	5	0	0	5	5	0	0	5	0.0%
101	4	3	85.0%	Lead	(lbs/yr)	10	0	0	10	10	0	0	10	0.0%
101	4	3	85.0%	Copper	(lbs/yr)	2	0	0	2	2	0	0	2	0.0%
101	4	3	85.0%	Zinc	(lbs/yr)	5	0	0	5	5	0	0	5	0.0%
101	4	3	85.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
102	22	7	30.0%	Runoff	(ac-ft/yr)	41	0	0	41	41	0	0	41	
102	22	7	30.0%	BOD	(lbs/yr)	1,206	0	0	1,206	1,206	0	0	1,206	0.0%
102	22	, 7	30.0%	COD	(lbs/yr)	9,297	Ō	Ō	9,297	9,297	0	0	9,297	0.0%
102	22	7	30.0%	TSS	(lbs/yr)	15,624	0	ō.	5,624	15,624	Ō	Ó	15,624	0.0%
102	22	, 7	30.0%	TDS	(lbs/yr)	11,159	õ		1,159	11,159	ō		11,159	0.0%
102	22	, 7	30.0%	Total P	(lbs/yr)	44	õ	ŏ	44	44	õ	õ	44	0.0%
102	22	7	30.0%	Dissolved f		18	0	ŏ	18	18	Ö	õ	18	0.0%

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 1 UNDER EXISTING	É
CONDITIONS (Continued).	

1 	Drainage	mperv	%			And a section of the	No BMP (Average	 A strategic statute 		۱ ۱ ۱	With Wet Po Average			% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
i i nyitor	en de Alega	Chengalan Ungagi nga								-		19, 11, 11, 11, 14, 14, 14 11, 14, 14, 14, 14, 14, 14, 14, 14, 14,		
102	22	7	30.0%	TKN	(lbs/yr)	167	0	0	167	167	0	0	167	0.0%
102	22	7	30.0%	$NO_2 + NO_3$	(lbs/yr)	41	0	0	41	41	0	0	41	0.0%
102	22	7	30.0%	Lead	(lbs/yr)	6	0	0	6	6	0	0	6	0.0%
102	22	7	30.0%	Copper	(lbs/yr)	5	0	0	5	5	0	0	5	0.0%
102	22	7	30.0%	Zinc	(lbs/yr)	6	0	0	6	6	0	0	6	0.0%
102	22	7	30.0%	Cadmium	(fbs/yr)	0	0	0	0	0	0	0	0	0.0%
110	21	9	41.1%	Runoff	(ac-ft/yr)	49	0	0	49	49	0	0	49	
110	21	9	41.1%	BOD	(lbs/yr)	1,381	0	0	1,381	975	0	0	975	-29.5%
110	21	9	41.1%	COD	(lbs/yr)	10,005	0		10,005	7,448	0	0	7,448	-25.6%
110	21	9	41.1%	TSS	(lbs/yr)	16,244	0	0	16,244	12,459	0		12,459	-23.3%
110	21	9	41.1%	TDS	(lbs/yr)	13,242	0	0	13,242	9,063	0	0	9,063	-31.6%
110	21	9	41.1%	Total P	(lbs/yr)	40	0	0	40	34	0	0	34	-15.5%
110	21	9	41.1%	Dissolved I	P (Ibs/yr)	18	0	0	18	14	0	0	14	-22.7%
110	21	9	41.1%	TKN	(lbs/yr)	178	0	0	178	134	0	0	134	-24.9%
110	21	9	41.1%	$NO_2 + NO_3$	(lbs/yr)	37	0	0	37	32	0	0	32	-13.4%
110	21	9	41.1%	Lead	(lbs/yr)	15	0	0	15	5	0	0	5	-64.6%
110	21	9	41.1%	Copper	(lbs/yr)	6	0	0	6	4	0	0	4	-27.2%
110	21	9	41.1%	Zinc	(lbs/yr)	10	0	0	10	5	0	0	5	-50.8%
110	21	9	41.1%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-31.6%
120	70	21	30.0%	Runoff	(ac-ft/yr)	132	0	0	132	132	0	0	132	
120	70	21	30.0%	BOD	(lbs/yr)	3,870	0	0	3,870	3,870	0	0	3,870	0.0%
120	70	21	30.0%	COD	(lbs/yr)	29,833	0		29,833	29,833	0		29,833	0.0%
120	70	21	30.0%	TSS	(lbs/yr)	50,135	0		50,135	50,135	0		50,135	0.0%
120	70	21	30.0%	TDS	(lbs/yr)	35,808	0	0	35,808	35,808	0		35,808	0.0%
120	70	21	30.0%	Total P	(lbs/yr)	140	0	0	140	140	0	0	140	0.0%
120	70	21	30.0%	Dissolved I	♀ (lbs/yr)	56	0	0	56	56	0	0	56	0.0%
120	70	21	30.0%	TKN	(lbs/yr)	537	0	0	537	537	0	0	537	0.0%
120	70	21	30.0%	$NO_2 + NO_3$	(lbs/yr)	132	0	0	132	132	0	0	132	0.0%
120	70	21	30.0%	Lead	(lbs/yr)	18	0	0	18	18	0	0	18	0.0%
120	70	21	30.0%	Copper	(lbs/yr)	17	0	0	17	17	0	0	17	0.0%
120	70	21	30.0%	Zinc	(lbs/yr)	18	0	0	18	18	0	0	18	0.0%
120	70	21	30.0%	Cadmium	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 1 UNDER EXISTI	NG
CONDITIONS (Continued).	

	Drainage	Imperv	%				No BMP Average			Ŷ	Vith Wet Po Average A			% Reduction Surface
Basin	Агеа	Area	Imperv	Constituent	(units)	Surface	and the second se	Point		Surface	Baseflow	Point	Total	NPS Loads
ann 19 Anns 19								Source				Source		an dan karang bertakan dari Arabiyan dan bertakan dari
	an a' Channach. Thatairte	al a la classificad.	- Sector Andreas - An Andreas - Andreas - An Andreas - Andreas - An	na de la contra de Interna de la contra de	la fa ratanania - a 						-officiestes at a set	en 1 dom with 1 		anda di di Shijingi (jerengang) Tana di tan
5130	21	6	30.0%	Runoff	(ac-ft/yr)	39	0	0	39	39	0	0	39	
5130	21	6	30.0%	BOD	(lbs/yr)	1,158	0	0	1,158	1,158	0	0	1,158	0.0%
5130	21	6	30.0%	COD	(lbs/yr)	8,926	0	0	8,926	8,926	0	0	8,926	0.0%
5130	21	6	30.0%	TSS	(lbs/yr)	15,000	0	0	15,000	15,000	0	0	15,000	0.0%
5130	21	6	30.0%	TDS	(lbs/yr)	10,714	0	0	10,714	10,714	0	0	10,714	0.0%
5130	21	6	30.0%	Total P	(lbs/yr)	42	0	0	42	42	0	0	42	0.0%
5130	21	6	30.0%	Dissolved I	P (lbs/yr)	17	0	0	17	17	0	0	17	0.0%
5130	21	6	30.0%	TKN	(lbs/yr)	161	0	0	161	161	0	0	16 1	0.0%
5130	21	6	30.0%	$NO_2 + NO_3$	(lbs/yr)	40	0	0	40	40	0	0	40	0.0%
5130	21	6	30.0%	Lead	(lbs/yr)	5	0	0	5	5	0	0	5	0.0%
5130	21	6	30.0%	Copper	(lbs/yr)	5	0	0	5	5	0	0	5	0.0%
5130	21	6	30.0%	Zinc	(lbs/yr)	5	0	0	5	5	0	0	5	0.0%
5130	21	6	30.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
5140	37	11	30.4%	Runoff	(ac-ft/yr)	70	0	0	70	70	0	0	70	
5140	37	11	30.4%	BOD	(lbs/yr)	2,051	0	0	2,051	2,051	0	0	2,051	0.0%
5140	37	11	30.4%	COD	(lbs/yr)	15,812	0	0	15,812	15,812	0	0	15,812	0.0%
5140	37	11	30.4%	TSS	(lbs/yr)	26,572	0	0	26,572	26,572	0	0	26,572	0.0%
5140	37	11	30.4%	TDS	(lbs/yr)	18,979	0	0	18, 97 9	18,979	0	0	18,979	0.0%
5140	37	11	30.4%	Total P	(lbs/yr)	73	0	0	73	73	0	0	73	0.0%
5140	37	11	30.4%	Dissolved F	? (lbs/yr)	30	0	0	30	30	0	0	30	0.0%
5140	37	11	30.4%	TKN	(lbs/yr)	283	0	0	283	283	0	0	283	0.0%
5140	37	11	30.4%	$NO_2 + NO_3$	(lbs/yr)	70	0	0	70	70	0	0	70	0.0%
5140	37	11	30.4%	Lead	(lbs/yr)	10	0	0	10	10	0	0	10	0.0%
5140	37	11	30.4%	Copper	(lbs/yr)	9	0	0	9	9	0	0	9	0.0%
5140	37	11	30.4%	Zinc	(lbs/yr)	10	0	0	10	10	0	0	10	0.0%
5140	37	11	30.4%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
Total Su	ım 178	60	33.7%	Runoff	(ac-ft/yr)	360	0	0	360	360	0	0	360	
Total Su	ım 178	60	33.7%	BOD	(lbs/yr)	10,452	0	0	10,452	9,959	0	0	9,959	
Total Su	ım 178	60	33.7%	COD	(lbs/yr)	78,807	0	0	78,807	75,707	0	0	75,707	
Total Su	m 178	60	33.7%	TSS	(lbs/yr)	130,878	0	0 1	30,878	126,290	0	0 1	26,290	
Total Su	m 178	60	33.7%	TDS	(lbs/yr)	97,968	0	0	97,968	92,901	0		92,901	
Total Su	m 178	60	33.7%	Total P	(lbs/yr)	351	0	0	351	343	0	0	343	
Total Su	m 178	60	33.7%	Dissolved P	(lbs/yr)	147	0	0	147	142	0	0	142	

	Drainage	Imperv	%				No BMP (Average		la de la la della de la deseria 1944 - Englis III de la della 1944 - Englis III de la della del 1944 - Englis III della del	V	Vith Wet Po Average A			% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
Total Sur	m 178	60	33.7%	TKN	(lbs/yr)	1,412	0	0	1,412	1,358	0	0	1,358	
Total Sur		60	33.7%	$NO_2 + NO_3$	(lbs/yr)	330	0	0	330	324	0	0	324	
Total Sur		60	33.7%	Lead	(lbs/yr)	73	0	0	73	61	0	0	61	
Total Sur		60	33.7%	Copper	(lbs/yr)	44	0	0	44	42	0	0	42	
Total Sur		60	33.7%	Zinc	(lbs/yr)	58	0	0	58	52	0	0	52	
Total Sur	m 178	60	33.7%	Cadmium	(lbs/yr)	2	0	0	2	2	0	0	2	
EMC	178	60	33.7%	BOD	(mg/L)	10.67	0.00	0.00	10.67	10.16	0.00	0.00	10.16	
MC	178	60	33.7%	COD	(mg/L)	80.43	0.00	0.00	80.43	77.27	0.00	0.00	77.27	
EMC	178	60	33.7%	TSS	(mg/L)	133.58	0.00	0.00	133.58	128.90	0.00	0.00	128.90	
МС	178	60	33.7%	TDS	(mg/L)	99.99	0.00	0.00	99.99	94.82	0.00	0.00	94.82	
MC	178	60	33.7%	Total P	(mg/L)	0.36	0.00	0.00	0.36	0.35	0.00	0.00	0.35	
МС	178	60	33.7%	Dissolved P	(mg/L)	0.15	0.00	0.00	0.15	0.14	0.00	0.00	0.14	
MC	178	60	33.7%	TKN	(mg/L)	1.44	0.00	0.00	1.44	1.39	0.00	0.00	1.39	
MC	178	60	33.7%	$NO_2 + NO_3$	(mg/L)	0.34	0.00	0.00	0.34	0.33	0.00	0.00	0.33	
MC	178	60	33.7%	Lead	(mg/L)	0.07	0.00	0.00	0.07	0.06	0.00	0.00	0.06	
МС	178	60	33.7%	Copper	(mg/L)	0.05	0.00	0.00	0.05	0.04	0.00	0.00	0.04	
MC	178	60	33.7%	Zinc	(mg/L)	0.06	0.00	0.00	0.06	0.05	0.00	0.00	0.05	
MC	178	60	33.7%	Cadmium	(mg/L)	0.002		0.000		0.002		0.000	0.002	

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 1 UNDER EXISTING CONDITIONS (Continued).

	Drainage	e Imperv	%				No BMP (Average	e - 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	With Wet Po Average /	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point	Total	Surface	Baseflow	Point	Total	NPS Loads
								Source				Source		
5150	9	6	73.7%	Runoff	(ac-ft/yr)	31	0	0	31	31	0	0	31	
5150	9	6	73.7%	BOD	(lbs/yr)	829	0	0	829	829	0	0	829	0.0%
5150	9	6	73.7%	COD	(lbs/yr)	7,754	0	0	7,754	7,754	0	0	7,754	0.0%
5150	9	6	73.7%	TSS	(lbs/yr)	11,142	0	0	11,142	11,142	0	0	11,142	0.0%
5150	9	6	73.7%	TDS	(lbs/yr)	8,382	0	0	8,382	8,382	0	0	8,382	0.0%
5150	9	6	73.7%	Total P	(lbs/yr)	15	0	0	15	15	0	0	15	0.0%
5150	9	6	73.7%	Dissolved	P (lbs/yr)	9	0	0	9	9	0	0	9	0.0%
5150	9	6	73.7%	TKN	(lbs/yr)	92	0	0	92	92	0	0	92	0.0%
5150	9	6	73.7%	$NO_2 + NO_3$	(lbs/yr)	13	0	0	13	13	0	0	13	0.0%
5150	9	6	73.7%	Lead	(lbs/yr)	18	0	0	18	18	0	0	18	0.0%
5150	9	6	73.7%	Copper	(lbs/yr)	4	0	0	4	4	0	0	4	0.0%
5150	9	6	73.7%	Zinc	(lbs/yr)	9	0	0	9	9	0	0	9	0.0%
5150	9	6	73.7%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
5151	3	2	90.0%	Runoff	(ac-ft/yr)	11	0	0	11	11	0	0	11	
5151	3	2	90.0%	BOD	(lbs/yr)	279	0	0	279	279	0	0	279	0.0%
5151	3	2	90.0%	COD	(lbs/yr)	2,966	0	0	2,966	2,966	0	0	2,966	0.0%
5151	3	2	90.0%	TSS	(lbs/yr)	4,101	0	0	4,101	4,101	0	0	4,101	0.0%
5151	3	2	90.0%	TDS	(lbs/yr)	2,879	0	0	2,879	2,879	0	0	2,879	0.0%
5151	3	2	90.0%	Total P	(lbs/yr)	4	0	0	4	4	0	0	4	0.0%
5151	3	2	90.0%	Dissolved I		3	0	Ō	3	3	0	0	3	0.0%
5151	3	2	90.0%	TKN	(lbs/yr)	31	Ō	ō	31	31	Ō	0	31	0.0%
5151	3	2	90.0%	NO,+NO	(lbs/yr)	3	ŏ	õ	3	3	ō	õ	3	0.0%
5151	3	2	90.0%	Lead	(lbs/yr)	7	õ	ŏ	7	7	Ō	ō	7	0.0%
5151	3	2	90.0%	Copper	(lbs/yr)	, 1	õ	ŏ	1	, 1	ŏ	õ	1	0.0%
5151	3	2	90.0%	Zinc	(lbs/yr)	3	õ	ŏ	3	3	ŏ	õ	3	0.0%
5151	3	2	90.0%	Cadmium	(lbs/yr)	õ	õ	ŏ	o	ő	ŏ	õ	õ	0.0%
5160	8	2	25.0%	Runoff	(ac-ft/yr)	14	0	0	14	14	0	0	14	
5160	8	2	25.0%	BOD	(lbs/yr)	120	0	0	120	12	0	0	12	-90.0%
5160	8	2	25.0%	COD	(ibs/yr)	737	Ō	ō	737	74	0	Ó	74	-90.0%
5160	8	2	25.0%	TSS	(lbs/yr)	3,509	ō	ō	3,509	351	0	0	351	-90.0%
5160	8	2	25.0%	TDS	(lbs/yr)	3,874	õ	õ	3,874	387	0	ō	387	-90.0%
5160	8	2	25.0%	Total P	(lbs/yr)	7	õ	õ	7	1	ō	ō	1	-90.0%
5160	8	2	25.0%	Dissolved F		5	õ	ŏ	5	ò	õ	ŏ	ò	-90.0%

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER EXISTING CONDITIONS.

1

	Drainage	Imperv	%				No BMP (Average			1	Vith Wet Po Average A			% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
160	8	2	25.0%	TKN	(lbs/yr)	19	0	0	19	2	0	0	2	-90.0%
160	8	2	25.0%	$NO_2 + NO_3$	(lbs/yr)	19	0	0	19	2	0	0	2	-90.0%
160	8	2	25.0%	Lead	(lbs/yr)	0	0	0	0	0	0	0	0	-90.0%
160	8	2	25.0%	Copper	(lbs/yr)	2	0	0	2	0	0	0	0	-90.0%
160	8	2	25.0%	Zinc	(lbs/yr)	6	0	0	6	1	0	0	1	-90.0%
160	8	2	25.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-90.0%
161	2	0	1.0%	Runoff	(ac-ft/yr)	2	0	0	2	2	0	0	2	
161	2	0	1.0%	BOD	(lbs/yr)	40	0	0	40	40	0	0	40	0.0%
161	2	0	1.0%	COD	(lbs/yr)	253	0	0	253	253	0	0	253	0.0%
161	2	0	1.0%	TSS	(lbs/yr)	1,076	0	0	1,076	1,076	0	0	1,076	0.0%
161	2	0	1.0%	TDS	(lbs/yr)	498	0	0	498	498	0	0	498	0.0%
161	2	0	1.0%	Total P	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%
161	2	0	1.0%	Dissolved F	P (lbs/yr)	0	0	0	0	0	0	0	0	0.0%
161	2	0	1.0%	TKN	(lbs/yr)	4	0	0	4	4	0	0	4	0.0%
161	2	0	1.0%	$NO_2 + NO_3$	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%
161	2	0	1.0%	Lead	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
161	2	0	1.0%	Copper	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
161	2	0	1.0%	Zinc	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
161	2	0	1.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
163	5	1	29.6%	Runoff	(ac-ft/yr)	8	0	0	8	8	0	0	8	
163	5	1	29.6%	BOD	(lbs/yr)	137	0	0	137	137	0	0	137	0.0%
163	5	1	29.6%	COD	(lbs/yr)	983	0	0	983	983	0	0	983	0.0%
163	5	1	29.6%	TSS	(lbs/yr)	2,495	0	0	2,495	2,495	0	0	2,495	0.0%
163	5	1	29.6%	TDS	(lbs/yr)	2,290	0	0	2,290	2,290	0	0	2,290	0.0%
163	5	1	29.6%	Total P	(lbs/yr)	5	0	0	5	5	0	0	5	0.0%
163	5	1	29.6%	Dissolved F		3	0	0	3	3	0	0	3	0.0%
163	5	1	29.6%	TKN	(ibs/yr)	18	0	0	18	18	0	0	18	0.0%
163	5	1	29.6%	$NO_2 + NO_3$	(lbs/yr)	10	0	0	10	10	0	0	10	0.0%
163	5	1	29.6%	Lead	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%
163	5	1	29.6%	Copper	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%
163	5	1	29.6%	Zinc	(lbs/yr)	3	0	0	3	3	0	0	3	0.0%
163	5	1	29.6%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER EXISTING CONDITIONS (Continued).

.

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER EXISTING CONDITIONS.

	Drainage	Impery	%				No BMP (Average	013.04 W. MAN		v	Vith Wet Po Average A			% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
			n de se false en la seg		9 (1)) ()) 9 (1				na shini kara					
5164	4	1	25.0%	Runoff	(ac-ft/yr)	7	0	0	7	7	0	0	7	
6164	4	1	25.0%	BOD	(lbs/yr)	56	0	0	56	56	0	0	56	0.0%
5164	4	1	25.0%	COD	(lbs/vr)	347	0	0	347	347	0	0	347	0.0%
164	4	1	25.0%	TSS	(lbs/yr)	1,652	0	0	1,652	1,652	0	0	1,652	0.0%
164	4	t	25.0%	TDS	(lbs/yr)	1,825	0	0	1,825	1,825	0	0	1,825	0.0%
164	4	1	25.0%	Total P	(lbs/yr)	3	0	0	3	3	0	0	3	0.0%
164	4	1	25.0%	Dissolved		2	0	0	2	2	0	0	2	0.0%
164	4	1	25.0%	TKN	(lbs/yr)	9	0	0	9	9	0	0	9	0.0%
164	4	1	25.0%	$NO_2 + NO_3$		9	0	0	9	9	0	0	9	0.0%
164	4	1	25.0%	Lead	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
164	4	1	25.0%	Copper	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%
164	4	1	25.0%	Zinc	(lbs/yr)	3	0	0	3	3	0	0	З	0.0%
164	4	1	25.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
165	2	0	25.0%	Runoff	(ac-ft/yr)	3	0	0	3	3	0	0	3	
165	2	0	25.0%	BOD	(lbs/yr)	23	0	0	23	23	0	0	23	0.0%
165	2	0	25.0%	COD	(lbs/yr)	142	0	0	142	142	0	0	142	0.0%
165	2	0	25.0%	TSS	(lbs/yr)	674	0	0	674	674	0	0	674	0.0%
165	2	0	25.0%	TDS	(lbs/yr)	745	0	0	745	745	0	0	745	0.0%
165	2	0	25.0%	Total P	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%
165	2	0	25.0%	Dissolved	P (Ibs/yr)	1	0	0	1	1	0	0	1	0.0%
165	2	0	25.0%	TKN	(lbs/yr)	4	0	0	4	4	0	0	4	0.0%
165	2	0	25.0%	$NO_2 + NO_3$	(lbs/yr)	4	0	0	4	4	0	0	4	0.0%
165	2	0	25.0%	Lead	(ibs/yr)	0	0	0	0	0	0	0	0	0.0%
165	2	0	25.0%	Copper	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
165	2	0	25.0%	Zinc	(lbs/γr)	1	0	0	1	1	0	0	1	0.0%
165	2	0	25.0%	Cadmium	(lbs/yr)	0	0	. 0	0	0	0	0	0	0.0%
170	5	1	25.0%	Runoff	(ac-ft/yr)	9	0	0	9	9	0	0	9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
170	5	1	25.0%	BOD	(lbs/yr)	73	0	0	73	7	0	0	7	-90.0%
170	5	1	25.0%	COD	(lbs/yr)	448	0	0	448	45	0	0	45	-90.0%
170	5	1	25.0%	TSS	(lbs/yr)	2,131	0	0	2,131	213	0	0	213	-90.0%
170	5	1	25.0%	TDS	(lbs/yr)	2,353	0	0	2,353	235	0	0	235	-90.0%
170	5	1	25.0%	Total P	(lbs/yr)	4	0	0	4	0	0	0	0	-90.0%
170	5	1	25.0%	Dissolved I	P (Ibs/yr)	3	0	0	3	0	0	0	0	-90.0%

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER EXI	STING
CONDITIONS (Continued).	

	Drainage	Imperv	%				No BMP (Average	54 G.CO.CO.G		ý	Vith Wet Po Average /			% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
5170	5	1	25.0%	TKN	(lbs/yr)	12	0	0	12	1	0	0	1	-90.0%
5170	5	1	25.0%	$NO_2 + NO_3$	(lbs/yr)	11	Ō	0	11	1	0	0	1	-90.0%
5170	5	1	25.0%	Lead	(lbs/yr)	0	Ō	Ó	0	0	0	0	0	-90.0%
5170	5	1	25.0%	Copper	(lbs/yr)	1	ō	ō	1	0	0	0	0	-90.0%
5170	5	1	25.0%	Zinc	(lbs/yr)	4	ŏ	õ	4	õ	Ő	ō	Ō	-90.0%
5170	5	1	25.0% 25.0%	Cadmium	(lbs/yr)	Ŏ	õ	õ	0	Ō	0	0	0	-90.0%
5171	13	5	40 .0%	Runoff	(ac-ft/vr)	29	0	0	29	29	0	0	29	
5171	13	5	40.0%	BOD	(lbs/yr)	847	0	0	847	593	0	0	593	-30.0%
5171	13	5	40.0%	COD	(lbs/yr)	6,530	0	0	6,530	3,265	0	0	3,265	-50.0%
5171	13	5	40.0%	TSS	(lbs/yr)	10,974	0	0	10,974	3,292	0	0	3,292	-70.0%
5171	13	5	40.0%	TDS	(lbs/yr)	7,838	0	0	7,838	7,838	0	0	7,838	0.0%
5171	13	5	40.0%	Total P	(lbs/yr)	26	0	0	26	13	0	0	13	-50.0%
5171	13	5	40.0%	Dissolved F	(lbs/yr)	12	0	0	12	2	0	0	2	-80.0%
5171	13	5	40.0%	TKN	(lbs/yr)	103	0	0	103	72	0	0	72	-30.0%
5171	13	5	40.0%	$NO_2 + NO_3$	(lbs/yr)	26	0	0	26	5	0	0	5	-80.0%
5171	13	5	40.0%	Lead	(lbs/yr)	6	0	0	6	1	0	0	1	-80.0%
5171	13	5	40.0%	Copper	(ibs/yr)	4	0	0	4	1	0	0	1	-75.0%
5171	13	5	40.0%	Zinc	(lbs/yr)	5	0	0	5	2	0	0	2	-50.0%
5171	13	5	40.0%	Cadmium	(ibs/yr)	0	0	0	0	0	0	0	0	-50.0%
5172	4	1	40.0%	Runoff	(ac-ft/yr)	8	0	0	8	8	0	0	8	
5172	4	1	40.0%	BOD	(lbs/yr)	237	0	0	237	237	0	0	237	0.0%
5172	4	1	40.0%	COD	{lbs/yr}	1,825	0	0	1,825	1,825	0	0	1,825	0.0%
5172	4	1	40.0%	TSS	(lbs/yr)	3,068	0	0	3,068	3,068	0	0	3,068	0.0%
5172	4	1	40.0%	TDS	(lbs/yr)	2,191	0	0	2,191	2,191	0	0	2,191	0.0%
5172	4	1	40.0%	Total P	(lbs/yr)	7	0	0	7	7	0	0	7	0.0%
5172	4	1	40.0%	Dissolved F	(lbs/yr)	3	0	0	3	3	0	0	3	0.0%
5172	4	1	40.0%	TKN	(lbs/yr)	29	0	0	29	29	0	0	29	0.0%
5172	4	1	40.0%	NO₂+NO₃	(lbs/yr)	7	0	0	7	7	0	0	7	0.0%
5172	4	1	40.0%	Lead	(ibs/yr)	2	0	0	2	2	0	0	2	0.0%
5172	4	1	40.0%	Copper	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%
5172	4	1	40.0%	Zinc	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%
5172	4	1	40.0%	Cadmium	(ibs/yr)	0	0	0	0	0	0	0	0	0.0%

ι,

	Drainage	Imperv	%				No BMP (Average			.	Vith Wet Po Average /	Annual	l sagari <u>mana ang sagar</u> a	% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
							<u>`</u>			6	0	0	e	
5173	3	1	40.0%	Runoff	(ac-ft/yr)	6	0	0 0	6 177	6 124	0 0	0 0	6 124	-30.0%
5173	3	1	40.0%	BOD	(lbs/yr)	177	0	0	1,368	684	0	0	684	-50.0%
5173	3	1	40.0%	COD	(lbs/yr)	1,368	0	-		690	0	0	690	-30.0%
173	3	1	40.0%	TSS	(lbs/yr)	2,299	0	0	2,299		-	0		-70.0%
173	3	1	40.0%	TDS	(lbs/yr)	1,642	0	0	1,642	1,642	0	-	1,642	
173	3	1	40.0%	Total P	(ibs/yr)	5	0	0	5	3	0 0	0	3 1	-50.0% -80.0%
173	3	1	40.0%	Dissolved		3	0	0	3	1	-	0		
5173	3	1	40.0%	TKN	(lbs/yr)	22	0	0	22	15	0 0	0	15 1	-30.0%
5173	3	1	40.0%	NO ₂ + NO ₃	(lbs/yr)	5	0	0	5	1	0	0	-	-80.0%
5173	3	1	40.0%	Lead	(lbs/yr)	1	0	0	1	0	0	0	0	-80.0% -75.0%
173	3	1	40.0%	Copper	(lbs/yr)	1	0	0	1 1	0	0	0	0	-75.0%
173	3	1	40.0%	Zinc	(lbs/yr)	1	0	0	0	0	0	0	0	-50.0%
173	3	1	40.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-50,076
174	16	5	32.5%	Runoff	(ac-ft/yr)	31	0	0	31	31	0	0	31	
174	16	5	32.5%	BOD	(lbs/yr)	909	0	0	909	909	0	0	909	0.0%
174	16	5	32.5%	COD	(lbs/yr)	6,980	0	0	6,980	6,980	0	0	6,980	0.0%
174	16	5	32.5%	TSS	(lbs/yr)	12,042	0		2,042	12,042	0	0	12,042	0.0%
174	16	5	32.5%	TDS	(lbs/yr)	8,471	0	0	8,471	8,471	0	0	8,471	0.0%
174	16	5	32.5%	Total P	(lbs/yr)	30	0	0	30	30	0	0	30	0.0%
174	16	5	32.5%	Dissolved I		13	0	0	13	13	0	0	13	0.0%
174	16	5	32.5%	TKN	(lbs/yr)	117	0	0	117	117	0	0	117	0.0%
174	16	5	32.5%	NO2+NO3	(lbs/yr)	29	0	0	29	29	0	0	29	0.0%
174	16	5	32.5%	Lead	(lbs/yr)	5	0	0	5	5	0	0	5	0.0%
174	16	5	32.5%	Copper	(lbs/yr)	4	0	0	4	4	0	0	4	0.0%
174	16	5	32.5%	Zinc	(lbs/yr)	5	0	0	5	5	0	0	5	0.0%
174	16	5	32.5%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
175	9	4	40.0%	Runoff	(ac-ft/yr)	20	0	0	20	20	0	0	20	
175	9	4	40.0%	BOD	(lbs/yr)	597	Ō	0	597	418	0	0	418	-30.0%
175	9	4	40.0%	COD	(lbs/yr)	4,602	0	ō	4,602	2,301	0	0	2,301	-50.0%
175	9	4	40.0%	TSS	(lbs/yr)	7,734	0	-	7,734	2,320	Ō	0	2,320	-70.0%
175	9	4	40.0%	TDS	(lbs/yr)	5,524	õ		5,524	5,524	ō	ō	5,524	0.0%
175	9	4	40.0%	Total P	(lbs/yr)	18	õ	ō	18	9	Ō	0	9	-50.0%
175	9	4	40.0%	Dissolved f		9	õ	ō	9	2	Ō	ō	2	-80.0%

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER EXISTING CONDITIONS (Continued).

	Drainage	Imperv	%				No BMP Average				Vith Wet Po Average /			% Reduction Surface
8asin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total 9	Surface	Baseflow	Point Source	Total	NPS Loads
5175	9	4	40.0%	TKN	(lbs/yr)	73	0	0	73	51	0	0	51	-30.0%
5175	9	4	40.0%	$NO_2 + NO_3$	(lbs/yr)	18	0	0	18	4	0	0	4	-80.0%
5175	9	4	40.0%	Lead	(lbs/yr)	4	0	0	4	1	0	0	1	-80.0%
5175	9	4	40.0%	Copper	(lbs/yr)	3	0	0	3	1	0	0	1	-75.0%
5175	9	4	40.0%	Zinc	(lbs/yr)	3	0	0	3	2	0	0	2	-50.0%
5175	9	4	40.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-50.0%
5180	4	2	42.4%	Runoff	(ac-ft/yr)	11	0	0	11	11	0	0	11	
5180	4	2	42.4%	BOD	(lbs/yr)	269	0	0	269	188	0	0	188	-30.0%
5180	4	2	42.4%	COD	(lbs/yr)	2,687	0	0	2,687	1,343	0	0	1,343	-50.0%
5180	4	2	42.4%	TSS	(lbs/yr)	4,435	0	0	4,435	1,331	0	0	1,331	-70.0%
5180	4	2	42.4%	TDS	(lbs/yr)	2,859	0	0	2,859	2,85 9	0	0	2,859	0.0%
5180	4	2	42.4%	Total P	(lbs/yr)	4	0	0	4	2	0	0	2	-50.0%
5180	4	2	42.4%	Dissolved F	° (lbs/yr)	3	0	0	3	1	0	0	1	-80.0%
5180	4	2	42.4%	TKN	(lbs/yr)	29	0	0	29	20	0	0	20	-30.0%
5180	4	2	42.4%	$NO_2 + NO_3$	(lbs/yr)	4	0	0	4	1	0	0	1	-80.0%
5180	4	2	42.4%	Lead	(Ibs/yr)	6	0	0	6	1	0	0	1	-80.0%
5180	4	2	42.4%	Copper	(lbs/yr)	1	0	0	1	0	0	0	0	-75.0%
5180	4	2	42.4%	Zinc	(lbs/yr)	3	0	0	3	1	0	0	1	-50.0%
5180	4	2	42.4%	Cadmium	(ibs/γr)	0	0	0	0	0	0	0	0	-50.0%
5181	20	9	43.1%	Runoff	(ac-ft/yr)	47	0	0	47	47	0	0	47	
5181	20	9	43.1%	BOD	(lbs/yr)	1,374	0	0	1,374	962	0	0	962	-30.0%
5181	20	9	43.1%	COD	(lbs/yr)	10,993	0	0	10,993	5,496	0	0	5,496	-50.0%
5181	20	9	43.1%	TSS	(lbs/yr)	18,038	0	0	18,038	5,412	0	0	5,412	-70.0%
5181	20	9	43.1%	TDS	(ibs/yr)	12,859	0	0	12,859	12,859	0	0	12,859	0.0%
5181	20	9	43.1%	Total P	(lbs/yr)	40	0	0	40	20	0	0	20	-50.0%
5181	20	9	43.1%	Dissolved F	(lbs/yr)	19	0	0	19	4	0	0	4	-80.0%
5181	20	9	43.1%	ΤΚΝ	(lbs/yr)	166	0	0	166	116	0	0	116	-30.0%
5181	20	9	43.1%	$NO_2 + NO_3$	(lbs/yr)	39	0	0	39	8	0	0	8	-80.0%
5181	20	9	43.1%	Lead	(lbs/yr)	12	0	0	12	2	0	0	2	-80.0%
5181	20	9	43.1%	Copper	(lbs/yr)	6	0	0	6	2	0	0	2	-75.0%
5181	20	9	43.1%	Zinc	(lbs/yr)	9	0	0	9	4	0	0	4	-50.0%
5181	20	9	43.1%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-50.0%

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER EXISTING CONDITIONS (Continued).

Í

, .

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER EXISTING **CONDITIONS** (Continued).

	Drainage	Imperv	%			en en finsersjoe en eksternet	No BMP (Average	energia de la construir de la c			With Wet Po Average A			% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
					ar de la classica de Construir de la classica de la classi Construir de la classica de la classi Construir de la classica de la classi Construir de la classica de			Source				Source		
5182	6	2	37.0%	Runoff	(ac-ft/yr)	12	0	0	12	12	0	0	12	
5182	6	2	37.0%	BOD	(lbs/yr)	366	0	0	366	256	0	0	256	-30.0%
5182	6	2	37.0%	COD	(lbs/yr)	2,822	0	0	2,822	1,411	0	0	1,411	-50.0%
5182	6	2	37.0%	TSS	(lbs/yr)	4,742	0	0	4,742	1,422	0	0	1,422	-70.0%
5182	6	2	37.0%	TDS	(lbs/yr)	3,387	0	0	3,387	3,387	0	0	3,387	0.0%
5182	6	2	37.0%	Total P	(lbs/yr)	12	0	0	12	6	0	0	6	-50.0%
5182	6	2	37.0%	Dissolved	P (lbs/yr)	5	0	0	5	1	0	0	1	-80.0%
5182	6	2	37.0%	TKN	(lbs/yr)	46	0	0	46	32	0	0	32	-30.0%
5182	6	2	37.0%	$NO_2 + NO_3$	•	12	0	0	12	2	0	0	2	-80.0%
5182	6	2	37.0%	Lead	(lbs/yr)	2	0	0	2	0	0	0	0	-80.0%
5182	6	2	37.0%	Copper	(lbs/yr)	2	0	0	2	0	0	0	0	-75.0%
5182	6	2	37.0%	Zinc	(lbs/yr)	2	0	0	2	1	0	0	1	-50.0%
182	6	2	37.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-50.0%
5183	20	6	31.6%	Runoff	(ac-ft/yr)	38	0	0	38	38	0	0	38	
5183	20	6	31.6%	BÓD	(lbs/yr)	1,117	0	0	1,117	782	0	0	782	-30.0%
183	20	6	31.6%	COD	(lbs/yr)	8,614	0	0	8,614	4,307	0	0	4,307	-50.0%
183	20	6	31.6%	TSS	(lbs/yr)	14,476	0	0	14,476	4,343	0	0	4,343	-70.0%
5183	20	6	31.6%	TDS	(lbs/yr)	10,339	0	0	10,339	10,339	0	0	10,339	0.0%
183	20	6	31.6%	Total P	(lbs/yr)	39	0	0	39	20	0	0	20	-50.0%
183	20	6	31.6%	Dissolved I	P (lbs/yr)	16	0	0	16	3	0	0	3	-80.0%
5183	20	6	31.6%	TKN	(lbs/yr)	152	0	0	152	106	0	0	106	-30.0%
5183	20	6	31.6%	NO ₂ + NO ₂	(lbs/yr)	37	0	0	37	7	0	0	7	-80.0%
5183	20	6	31.6%	Lead	(lbs/yr)	6	0	0	6	1	0	0	1	-80.0%
5183	20	6	31.6%	Copper	(tbs/yr)	5	Õ	Ō	5	1	0	0	1	-75.0%
5183	20	6	31.6%	Zinc	(lbs/yr)	5	Ō	ō	5	3	0	0	3	-50.0%
5183	20	6	31.6%	Cadmium	(lbs/yr)	Ō	0	0	0	0	0	0	0	-50.0%
i 184	7	3	38.8%	Runoff	(ac-ft/yr)	16	0	0	16	16	0	0	16	
5184	7	3	38.8%	BOD	(lbs/yr)	471	0	0	471	329	0	0	329	-30.0%
184	7	3	38.8%	COD	(lbs/yr)	3,627	0	0	3,627	1,813	0	0	1,813	-50.0%
184	7	3	38.8%	TSS	(lbs/yr)	6,095	0	0	6,095	1,829	0	0	1,829	-70.0%
184	7	3	38.8%	TDS	(lbs/yr)	4,353	ō	Ō	4,353	4,353	0	0	4,353	0.0%
184	7	3	38.8%	Total P	(lbs/yr)	15	ō	Ō	15	7	0	0	. 7	~50.0%
184	7	3	38.8%	Dissolved F		7	ō	ō	7	1	Ō	Ó	1	-80.0%

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER EXISTING CONDITIONS (Continued).

	Drainage	Imperv	%				No BMP (Average	2000 - COURSENS		V	Vith Wet Po Average A			% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point	Total	Surface	Baseflow	Point	Total	NPS Loads
								Source				Source		
5184	7	3	38.8%	TKN	(lbs/yr)	58	0	0	58	41	0	0	41	-30.0%
5184	7	3	38.8%	$NO_2 + NO_3$	(lbs/yr)	15	0	0	15	3	0	0	3	-80.0%
5184	7	3	38.8%	Lead	(lbs/yr)	3	0	0	3	1	0	0	1	-80.0%
5184	7	3	38.8%	Copper	(lbs/yr)	2	0	0	2	1	0	0	1	-75.0%
5184	7	3	38.8%	Zinc	(lbs/yr)	3	0	0	3	1	0	0	1	-50.0%
5184	7	3	38.8%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	о	-50.0%
5185	1	0	25.0%	Runoff	(ac-ft/yr)	1	0	0	1	1	0	0	1	
5185	1	0	25.0%	BOD	(lbs/yr)	7	0	0	7	5	0	0	5	-30.0%
5185	1	0	25.0%	COD	(lbs/yr)	45	0	0	45	22	0	0	22	-50.0%
5185	1	0	25.0%	TSS	(lbs/yr)	212	0	0	212	64	0	0	64	-70.0%
5185	1	0	25.0%	TDS	(lbs/yr)	234	0	0	234	234	0	0	234	0.0%
5185	1	0	25.0%	Total P	(lbs/yr)	0	0	0	0	0	0	0	0	-50.0%
5185	1	0	25.0%	Dissolved I	(lbs/yr)	0	0	0	0	0	0	0	0	-80.0%
5185	1	Ō	25.0%	TKN	(ibs/yr)	1	0	0	1	1	0	0	1	-30.0%
5185	1	Ó	25.0%	$NO_2 + NO_3$	(lbs/yr)	1	0	0	1	0	0	0	0	-80.0%
5185	1	õ	25.0%	Lead	(lbs/yr)	0	0	0	0	0	0	0	0	-80.0%
5185	1	ō	25.0%	Copper	(lbs/yr)	0	0	0	0	0	0	0	0	-75.0%
5185	1	ō	25.0%	Zinc	(lbs/yr)	0	0	0	0	0	0	0	0	-50.0%
5185	1	ō	25.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-50.0%
5186	8	4	47.6%	Runoff	(ac-ft/yr)	21	0	0	21	21	0	0	21	
5186	8	4	47.6%	BOD	(lbs/yr)	600	0	0	600	420	0	0	420	-30.0%
5186	8	4	47.6%	COD	(lbs/yr)	5,028	0	0	5,028	2,514	0		2,514	-50.0%
5186	8	4	47.6%	TSS	(lbs/yr)	8,015	0	0	8,015	2,404	0	0	2,404	-70.0%
5186	8	4	47.6%	TDS	(ibs/yr)	5,700	0	0	5,700	5,700	0	0	5,700	0.0%
186	8	4	47.6%	Total P	(lbs/yr)	16	0	0	16	8	0	0	8	-50.0%
186	8	4	47.6%	Dissolved F		8	0	0	8	2	0	0	2	-80.0%
186	8	4	47.6%	TKN	(lbs/yr)	72	0	0	72	50	0	0	50	-30.0%
186	8	4	47.6%	$NO_2 + NO_3$	(lbs/yr)	16	0	0	16	3	0	0	3	-80.0%
186	8	4	47.6%	Lead	(lbs/yr)	7	0	0	7	1	0	0	1	-80.0%
186	8	4	47.6%	Copper	(ibs/yr)	3	0	0	3	1	0	0	1	-75.0%
186	8	4	47.6%	Zinc	(lbs/yr)	4	0	0	4	2	0	0	2	-50.0%
5186	8	4	47.6%	Cadmium	(lbs/yr)	Ó	õ	Ō	0	0	0	0	0	-50.0%

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER EXISTING CONDITIONS (Continued).

	Drainage	utmperv	%				No BMP Average	the second second				Nith Wet Po Average A	en frankrige och i fra fr	uer Albert (1919) Albert Albert	% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point	Total		Surface	Baseflow	Point	Total	NPS Loads
								Source					Source		
5187	1	0	30.0%	Runoff	(ac-ft/yr)	3	0	0	3		3	0	0	3	
5187	1	õ	30.0%	BOD	(lbs/yr)	81	0	Ō	81		8	0	0	8	-90.0%
5187	1	ŏ	30.0%	COD	(lbs/yr)	623	Ō	Ō	623		62	0	0	62	-90.0%
5187	1	õ	30.0%	TSS	(lbs/yr)	1,047	0	Ō	1,047		105	0	0	105	-90.0%
5187	1	ŏ	30.0%	TDS	(lbs/yr)	748	ō	õ	748		75	0	0	75	-90.0%
5187	1	ŏ	30.0%	Total P	(lbs/yr)	3	ō	ō	3		0	0	0	0	-90.0%
5187	1	ŏ	30.0%	Dissolved		1	ō	0	1		0	0	0	0	-90.0%
5187	1	õ	30.0%	TKN	(lbs/yr)	11	0	0	11		1	0	0	1	-90.0%
5187	1	ō	30.0%	$NO_2 + NO_3$		3	0	0	3		0	0	0	0	-90.0%
5187	1	ō	30.0%	Lead	(lbs/yr)	0	0	0	0		0	0	0	0	-90.0%
5187	1	Ó	30.0%	Copper	(lbs/yr)	0	0	0	0		0	0	0	0	-90.0%
5187	1	Ó	30.0%	Zinc	(lbs/yr)	0	0	0	0		0	0	0	0	-90.0%
5187	1	0	30.0%	Cadmium	(lbs/yr)	0	0	0	0		0	0	0	0	-90.0%
5190	2	1	25.0%	Runoff	(ac-ft/yr)	4	0	0	4		4	0	0	4	
5190	2	1	25.0%	BÓD	(lbs/yr)	32	0	0	32		22	0	0	22	-30.0%
5190	2	1	25.0%	COD	(lbs/yr)	194	0	0	194		97	0	0	97	-50.0%
5190	2	1	25.0%	TSS	(lbs/yr)	924	0	0	924		277	0	0	277	-70.0%
5190	2	1	25.0%	TDS	(lbs/yr)	1,020	0	0	1,020	1,	.020	0	0	1,020	0.0%
5190	2	1	25.0%	Total P	(lbs/yr)	2	0	0	2		1	0	0	1	-50.0%
5190	2	1	25.0%	Dissolved	P (lbs/yr)	1	0	0	1		0	0	0	0	-80.0%
5190	2	1	25.0%	TKN	(lbs/yr)	5	0	0	5		4	0	0	4	-30.0%
5190	2	1	25.0%	$NO_2 + NO_3$	(lbs/yr)	5	0	0	5		1	0	0	1	-80.0%
5190	2	1	25.0%	Lead	(lbs/yr)	0	0	0	0		0	0	0	0	-80.0%
5190	2	1	25.0%	Copper	(lbs/yr)	0	0	0	0		0	0	0	0	-75.0%
5190	2	1	25.0%	Zinc	(lbs/yr)	2	0	0	2		1	0	0	1	-50.0%
5190	2	1	25.0%	Cadmium	(lbs/yr)	0	0	0	0		0	0	0	0	-50.0%
5191	3	1	25.0%	Runoff	(ac-ft/yr)	5	0	0	5		5	0	0	5	
5191	3	1	25.0%	BOD	(lbs/yr)	42	0	0	42		30	0	0	30	-30.0%
5191	3	1	25.0%	COD	(lbs/yr)	260	0	0	260		130	0	0	130	-50.0%
5191	3	1	25.0%	TSS	(lbs/yr)	1,236	0		1,236		371	0	0	371	-70.0%
5191	3	1	25.0%	TDS	(lbs/yr)	1,365	0		1,365	1,	365	0	0	1,365	0.0%
5191	3	1	25.0%	Total P	(lbs/yr)	2	0	0	2		1	0	0	1	-50.0%
5191	3	1	25.0%	Dissolved I	P (lbs/yr)	2	0	0	2		0	0	0	0	-80.0%

. •

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER EXISTING CONDITIONS (Continued).

L Basin	плагладе.	Inner	%				No BMP (Average	AND ADDIDED			Vith Wet Po Average A	Contract Contract		% Reduction Surface
	Drainage Imperv asin Area Area		™ Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
														jaa marin dhadi i da
5191	3	1	25.0%	TKN	(lbs/yr)	7	0	0	7	5	0	0	5	-30.0%
5191	3	1	25.0%	$NO_2 + NO_3$	(lbs/yr)	7	0	0	7	1	0	0	1	-80.0%
5191	3	1	25.0%	Lead	(lbs/yr)	0	0	0	0	0	0	0	0	-80.0%
5191	3	1	25.0%	Copper	(lbs/yr)	1	0	0	1	0	0	0	0	-75.0%
5191	3	1	25.0%	Zinc	(lbs/yr)	2	0	0	2	1	0	0	1	-50.0%
5191	3	1	25.0%	Cadmium	(lbs/yr)	ō	0	0	0	0	0	0	0	-50.0%
192	52	8	15.7%	Runoff	(ac-ft/yr)	69	0	0	69	69	0	о	69	
5192 5192	52	8	15.7%	BOD	(lbs/yr)	1,815	0	0	1,815	1,270	0	0	1,270	-30.0%
5192	52	8	15.7%	COD	(lbs/yr)	14,132	0	0	14,132	7,066	0	0	7,066	-50.0%
5192	52	8	15.7%	TSS	(lbs/yr)	31,252	0	0	31,252	9,376	0	0	9,376	-70.0%
192	52	8	15.7%	TDS	(lbs/yr)	18,773	0	0	18,773	18,773	0	0	18,773	0.0%
192 192	52	8	15.7%	Total P	(ibs/yr)	51	0	0	51	26	0	0	26	-50.0%
192	52	8	15.7%	Dissolved F	•	22	0	0	22	4	0	0	4	-80.0%
5192	52	8	15.7%	TKN	(lbs/yr)	225	ō	0	225	157	0	0	157	-30.0%
5192 5192	52 52	8	15.7%	$NO_2 + NO_3$	(lbs/yr)	51	ō	0	51	10	0	0	10	-80.0%
5192 5192	52 52	8	15.7%	Lead	(lbs/yr)	12	0	0	12	2	0	0	2	-80.0%
5192	52 52	8	15.7%	Copper	(lbs/yr)	6	0	0	6	1	0	0	1	-75.0%
	52 52	8	15.7%	Zinc	(lbs/yr)	8	Ō	0	8	4	0	0	4	-50.0%
5192 5192	52 52	8	15.7%	Cadmium	(ibs/yr)	õ	ō	0	0	0	0	0	0	-50.0%
fotal Sum	- 205	66	32.5%	Runoff	(ac-ft/yr)	405	0	0	405	405	0	0	405	
		66	32.5%	BOD	(lbs/yr)	10,497	ō	Ō	10,497	7,937	0	0	7, 9 37	
Fotal Sun		00 66	32.5% 32.5%	COD	(lbs/yr)	83,959	Ő	ō	83,959	51,881	0	0	51,881	
fotal Sun		66 66	32.5% 32.5%	TSS	(lbs/yr)	153,368	ŏ		53,368	70,048	0	Ō	70,048	
otal Sun			32.5%	TDS	(Ibs/yr)	110,150	ŏ		10,150	103,872	0	0 1	03,872	
Fotal Sun		66 66	32.5% 32.5%	Total P	(lbs/yr) (lbs/yr)	311	Ö	õ	311	184	õ	0	184	
Fotal Sun		66 66		Dissolved F		151	ŏ	õ	151	57	ō	0	57	
Total Sun		66	32.5%	TKN	(lbs/yr) (lbs/yr)	1,306	ŏ	ŏ	1,306	980	ō	ō	980	
otal Sun		66	32.5%	$NO_2 + NO_3$	(lbs/yr) (lbs/yr)	344	ŏ	ŏ	344	126	õ	Ó	126	
Total Sun		66 66	32.5%	Lead	(Ibs/yr) (Ibs/yr)	92	ŏ	õ	92	44	ō	ō	44	
Total Sun		66	32.5%		(lbs/yr) (lbs/yr)	48	ŏ	ŏ	48	21	Ō	Ō	21	
fotal Sun		66 60	32.5%	Copper	(lbs/yr) (lbs/yr)	82	ŏ	ŏ	82	50	õ	Ō	50	
Total Sum Total Sum		66 66	32.5% 32.5%	Zinc Cadmium	(lbs/yr) (lbs/yr)	2	0	ŏ	2	1	õ	ŏ		

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER EXISTING	G
CONDITIONS (Continued).	

	Drainage	Imperv	%				No BMP (Average	en en meneske uwer		v	Vith Wet Po Average /	nd BMPs Annual		% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Totał	NPS Loads
EMC	205	66	32.5%	BOD	(mg/L)	9.53	0.00	0.00	9.53	7.20	0.00	0.00	7.20	
EMC	205	66	32.5%	COD	(mg/L)	76.21	0.00	0.00	76.21	47.10	0.00	0.00	47.10	
EMC	205	66	32.5%	TSS	(mg/L)	139.22	0.00	0.00	139.22	63.59	0.00	0.00	63.59	
EMC	205	66	32.5%	TDS	(mg/L)	99.99	0.00	0.00	99.99	94.29	0.00	0.00	94.29	
EMC	205	66	32.5%	Total P	(mg/L)	0.28	0.00	0.00	0.28	0.17	0.00	0.00	0.17	
EMC	205	66	32.5%	Dissolved P	(mg/L)	0.14	0.00	0.00	0.14	0.05	0.00	0.00	0.05	
EMC	205	66	32.5%	TKN	(mg/L)	1.19	0.00	0.00	1.19	0.89	0.00	0.00	0.89	
EMC	205	66	32.5%	$NO_2 + NO_3$	(mg/L)	0.31	0.00	0.00	0.31	0.11	0.00	0.00	0.11	
EMC	205	66	32.5%	Lead	(mg/L)	0.08	0.00	0.00	0.08	0.04	0.00	0.00	0.04	
EMC	205	66	32.5%	Copper	(mg/L)	0.04	0.00	0.00	0.04	0.02	0.00	0.00	0.02	
EMC	205	66	32.5%	Zinc	(mg/L)	0.07	0.00	0.00	0.07	0.05	0.00	0.00	0.05	
EMC	205	66	32.5%	Cadmium	(mg/L)	0.002	0.000	0.000	0.002	0.001	1 0.000	0.000	0.001	

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 3 UNDER EXISTING CONDITIONS.

Drainage Imperv %							No BMP (Average	sur title steru		With Wet Pond BMPs Average Annual				% Reduction Surface	
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point	Total	Surface	Baseflow	Point	Total	NPS Loads	
								Source				Source			
				nan Bad <u>h Jah</u> r Ban Benerik 	a da ha di sa di sa	an an tha an	- 21	69400 - 111.46 <i>2</i> .4	und (Sector of Control of Sector	na i taun yang bili kuatikan ing bila.	· · · ·	1999 C		1,277,177,177,177,177,177,177,177,177,17	
5200	20	7	34.6%	Runoff	(ac-ft/yr)	41	0	0	41	41	0	0	41		
5200	20	7	34.6%	BOD	(lbs/yr)	1,202	0	0	1,202	1,202	0	0	1,202	0.0%	
5200	20	7	34.6%	COD	(lbs/yr)	9,269	0	0	9,269	9,269	0	0	9,269	0.0%	
5200	20	7	34.6%	TSS	(lbs/yr)	15,576	0	0	15,576	15,576	0	0	15,576	0.0%	
5200	20	7	34.6%	TDS	(lbs/yr)	11,125	0	0	11,125	11,125	0	0	11,125	0.0%	
5200	20	7	34.6%	Total-P	(lbs/yr)	40	0	0	40	40	0	0	40	0.0%	
5200	20	7	34.6%	Dissolved-	P (ibs/yr)	18	0	0	18	18	0	0	18	0.0%	
5200	20	7	34.6%	TKN	(ibs/yr)	157	0	0	157	157	0	0	157	0.0%	
5200	20	7	34.6%	$NO_2 + NO_3$	(lbs/yr)	39	0	0	39	39	0	0	39	0.0%	
5200	20	7	34.6%	Lead	(lbs/yr)	7	0	0	7	7	0	0	7	0.0%	
5200	20	7	34.6%	Copper	(lbs/yr)	5	0	0	5	5	0	0	5	0.0%	
5200	20	7	34.6%	Zinc	(lbs/yr)	6	0	0	6	6	0	0	6	0.0%	
5200	20	, 7	34.6%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%	
			40.00	D	(64 (····)	99	0	0	99	99	0	0	99		
5210	38	19	48.8%	Runoff	(ac-ft/yr)		0	ŏ	2,714	2,714	ŏ	ŏ	2,714	0.0%	
5210	38	19	48.8%	BOD	(lbs/yr)	2,714	0	o	19,318	19,318	ŏ	ŏ	19,318	0.0%	
5210	38	19	48.8%	COD	(lbs/yr)	19,318		0	30,528	30,528	0	ŏ	30,528	0.0%	
5210	38	19	48.8%	TSS	(lbs/yr)	30,528	0	0	26,946	26,946	0	0	26,946	0.0%	
5210	38	19	48.8%	TDS	(lbs/yr)	26,946	0			20,940	0	ŏ	62	0.0%	
5210	38	19	48.8%	Total-P	(lbs/yr)	62	0	0	62 32	32	0	0	32	0.0%	
5210	38	19	48.8%	Dissolved-		32	0	-		325	0	ŏ	325	0.0%	
5210	38	19	48.8%	TKN	(lbs/yr)	325	0	0 0	325 56	325 56	0	ŏ	56	0.0%	
5210	38	19	48.8%	$NO_2 + NO_3$	· ·	56	0	0	56 45	45	0	0	45	0.0%	
5210	38	19	48.8%	Lead	(lbs/yr)	45	+	0	45 11	45	0	õ	11	0.0%	
5210	38	19	48.8%	Copper	(lbs/yr)	11	0	-		25	0	0	25	0.0%	
5210	38	19	48.8%	Zinc	(lbs/yr)	25	0	0	25	25 1	0	0	20	0.0%	
5210	38	1 9	48.8%	Cadmium	(lbs/yr)	1	0	0	1	1	0	. 0	I	0.078	
5220	19	1	6.1%	Runoff	(ac-ft/yr)	18	0	0	18	18	0	0	18		
5220	19	1	6.1%	BOD	(lbs/yr)	451	0	0	451	451	0	0	451	0.0%	
5220	19	1	6.1%	COD	(lbs/yr)	3,113	0	0	3,113	3,113	0	0	3,113	0.0%	
5220	19	1	6.1%	TSS	(lbs/yr)	9,538	0	0	9,538	9,538	0	0	9,538	0.0%	
5220	19	1	6.1%	TDS	(lbs/yr)	5,024	0	0	5,024	5,024	0	0	5,024	0.0%	
5220	19	1	6.1%	Total-P	(lbs/yr)	12	0	0	12	12	0	0	12	0.0%	
5220	19	1	6.1%	Dissolved-	•	5	Ō	0	5	5	0	0	5	0.0%	

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 3 UNDER EXISTING
CONDITIONS (Continued).

	Drainage	Imperv	%				No BMP Average	an a			Vith Wet Po Average /	and a single of		% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
						ne venero de la compositione de la				n unavjet u navuji in nisprisnoj unu nel	000 - 2000 00 - 2010 00 000			and had her an in data de la fin <u>al year</u> .
5220	19	1	6.1%	TKN	(lbs/yr)	53	0	ο	53	53	0	0	53	0.0%
5220	19	1	6.1%	$NO_2 + NO_3$	(lbs/yr)	13	0	0	13	13	0	0	13	0.0%
5220	19	1	6.1%	Lead	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%
5220	19	1	6.1%	Copper	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%
5220	19	1	6.1%	Zinc	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%
5220	19	1	6.1%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
Total Sur	n 77	27	34.5%	Runoff	(ac-ft/yr)	158	0	0	158	158	0	0	158	
Total Sun	n 77	27	34.5%	BOD	(lbs/yr)	4,367	0	0	4,367	4,367	0	0	4,367	
Total Sun	n 77	27	34.5%	COD	(lbs/yr)	31,699	0	0	31,699	31,699	0	0	31,699	
Total Sun		27	34.5%	TSS	(lbs/yr)	55,641	0	0	55,641	55,641	0	0	55,641	
Total Sun		27	34.5%	TDS	(lbs/yr)	43,095	0		43,095	43,095	0	0	43,095	
Total Sun	n 77	27	34.5%	Total-P	(lbs/yr)	114	0	0	114	114	0	0	114	
Total Sun	n 77	27	34.5%	Dissolved-P	(lbs/yr)	54	0	0	54	54	0	0	54	
Fotal Sun	n 77	27	34.5%	ΤΚΝ	(lbs/yr)	535	0	0	535	535	0	0	535	
Total Sun	n 77	27	34.5%	$NO_2 + NO_3$	(lbs/yr)	108	0	0	108	108	0	0	108	
Fotal Sun	n 77	27	34.5%	Lead	(lbs/yr)	53	0	0	53	53	0	0	53	
Total Sun	n 77	27	34.5%	Copper	(ibs/yr)	17	0	0	17	17	0	0	17	
Fotal Sun	า 77	27	34.5%	Zinc	(lbs/yr)	32	0	0	32	32	0	0	32	
Fotal Sun	ו 77	27	34.5%	Cadmium	(lbs/yr)	1	0	0	1	1	0	0	1	
EMC	77	27	34.5%	BOD	(mg/L)	10.13	0.00	0.00	10.13	10.13	0.00	0.00	10.13	
MC	77	27	34.5%	COD	(mg/L)	73.55	0.00	0.00	73.55	73.55	0.00	0.00	73.55	
MC	77	27	34.5%	TSS	(mg/L)	129.10	0.00	0.00	129.10	129.10	0.00	0.00	129.10	
MC	77	27	34.5%	TDS	(mg/L)	99.99	0.00	0.00	99.99	99.99	0.00	0.00	99.99	
MC	77	27	34.5%	Total-P	(mg/L)	0.27	0.00	0.00	0.27	0.27	0.00	0.00	0.27	
MC	77	27	34.5%	Dissolved-P		0.13	0.00	0.00	0.13	0.13	0.00	0.00	0.13	
MC	77	27	34.5%	τκν	(mg/L)	1.24	0.00	0.00	1.24	1.24	0.00	0.00	1.24	
MC	77	27	34.5%	$NO_2 + NO_3$	(mg/L)	0.25	0.00	0.00	0.25	0.25	0.00	0.00	0.25	
MC	77	27	34.5%	Lead	(mg/L)	0.12	0.00	0.00	0.12	0.12	0.00	0.00	0.12	
мс	77	27	34.5%	Copper	(mg/L)	0.04	0.00	0.00	0.04	0.04	0.00	0.00	0.04	
MC	77	27	34.5%	Zinc	(mg/L)	0.08	0.00	0.00	0.08	0.08	0.00	0.00	0.08	
MC	77	27	34.5%	Cadmium	(mg/L)	0.002	0.000	0.000		0.002		0.000		

ELLIGRAW BAYOU - SUBBASIN POLLUTANT LOADING ANALYSIS INVENTORY

PROPOSED CONDITIONS ALTERNATIVE

WATER QUALITY SUBBASIN NO. 1 (LOWER ELLIGRAW BAYOU)

SUBBASIN	LANDUSE	AREA	BMP #1	BMP #2	BMP #3
NO.	(ID No.)	(acres)	(ት)	(%)	(움)
05100	7	3.26	25	0	0
051 0 1	7	3.78	0	0	0
05102	5	21.79	0	100	0
05110	5/7	16.79/4.2	0/100	100/0	0/100
05120	5	69.92	0	0	2
05130	5	20.92	0	0	0
05140	5/6	35.19/1.5	0	0	0

WATER QUALITY SUBBASIN NO. 2 (UPPER ELLIGRAW BAYOU)

SUBBASIN	LANDUSE	AREA	BMP #1	BMP #2 (ጜ)	BMP #3 (%)
NO.	(ID NO.)	(acres)	(ቄ) 0	(*)	(%)
05150	6/8/12	2.18/1.58	0	-	-
05151	12	2.52	100	0	0
05160	11	8.43	100	0	0
051 6 1	1	2.40	0	0	0 0 0 0
051 6 3	6/11	1.38/3.13	0	0	U
05164	11	3.97	0	0	0
05165	11	1.62	0	0	0
05170	11	5.12	100	0	0
05171	6	12.70	0	0	100
05172	6	3.55	0	0	100
05173	6	2.66	0	0	100
05174	1/5/6	1.15/7.35	0	0	100
05175	6	8.95	0	0	100
05180	1/12	2.38/2.0	0	0	100
05 18 1	6/12	18.54/1.2	0	0	100
05182	5/6	1.72/4.06	0	0	100
05183	5/6	16.32/3.2	0	0	100
05184	5/6	0.86/6.34		0	100
05185	10	0.51	0	0	100
05186	6/12	6.94/1.24	0	0	100
05187	5	1.46	100	0	0
05190	10	2.22	0	0	100
05191	11	2.97	Ō	0	100
05192	1/5/12	31.03/18.	Ō	Ō	100

WATER QUALITY SUBBASIN NO. 3 (GULF GATE LATERAL)

SUBBASIN	LANDUSE	AREA BMP #1	BMP #2	BMP #3
NO.	(ID No.)	(acres) (%)	(%)	(%)
05200	5/7	10.66/9.1 0	0	100
05110	1/5/7/8/12	2.07/17.9 0 1.29/14.92/1.77	0	100
05120	1/5	15.87/3.3 0	0	100

Drainage Imperv		%				No BMP (Average			1	Nith Wet Po Average /			% Reduction Surface	
Basin	Area	Area	n Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
5100	4	3	85.0%	Runoff	(ac-ft/yr)	15	0	0	15	15	0	0	15	_
5100	4	3	85.0%	BOD	(lbs/yr)	384	0	0	384	298	0	0	298	-22.5%
5100	4	3	85.0%	COD	(lbs/yr)	2,414	0	0	2,414	1,871	0	0	1,871	-22.5%
100	4	3	85.0%	TSS	(lbs/yr)	3,573	0	0	3,573	2,769	0	0	2,769	-22.5%
100	4	3	85.0%	TDS	(lbs/yr)	3,946	0	0	3,946	3,058	0	0	3,058	-22.5%
100	4	3	85.0%	Total-P	(lbs/yr)	6	0	0	6	5	0	0	5	-22.5%
100	4	3	85.0%	Dissolved-		4	0	0	4	3	0	0	3	-22.5%
100	4	3	85.0%	TKN	(lbs/yr)	42	0	0	42	32	0	0	32	-22.5%
100	4	3	85.0%	NO ₂ +NO ₃		5	0	0	5	4	0	0	4	-22.5%
100	4	3	85.0%	Lead	(lbs/yr)	9	0	0	9	7	0	0	7	-22.5%
100	4	3	85.0%	Copper	(ibs/yr)	1	0	0	1	1	0	0	1	-22.5%
	4	3	85.0%	Zinc	(lbs/yr)	5	0	0	5	4	0	0	4	-22.5%
i100 i100	4	3	85.0%	Cadmium	(ibs/yr)	0	Ō	0	0	0	0	0	0	-22.5%
100	4	3	00.074	Cadmann	(120, 31)	•	-							
101	4	3	85.0%	Runoff	{ac-ft/yr}	15	0	0	15	15	0	0	15	
101	4	3	85.0%	BOD	(ibs/yr)	401	0	0	401	401	0	0	401	0.0%
101		3	85.0%	COD	(lbs/yr)	2,521	ō	0	2,521	2,521	0	0	2,521	0.0%
101	4	3	85.0%	TSS	(lbs/yr)	3,731	ō	0	3,731	3,731	0	0	3,731	0.0%
101	4	3	85.0%	TDS	(lbs/yr)	4,120	õ	Ō	4,120	4,120	0	0	4,120	0.0%
101	4	3	85.0%	Total-P	(lbs/yr)	6	õ	ō	6	6	0	0	6	0.0%
101	4	3	85.0%	Dissolved-		4	ō	ō	4	4	0	0	4	0.0%
101	4	3	85.0%	TKN	(lbs/yr)	44	ō	Ō	44	44	0	0	44	0.0%
101	4		85.0%	$NO_2 + NO_3$		5	ŏ	ō	5	5	0	0	5	0.0%
5101	4	3	85.0% 85.0%		(Ibs/yr)	10	ŏ	ō	10	10	0	0	10	0.0%
101	4	3	85.0% 85.0%	Copper	(lbs/yr)	2	Ö	ŏ	2	2	0	0	2	0.0%
5101	4	3	85.0%	Zinc	(ibs/yr) (ibs/yr)	5	õ	ŏ	5	5	0	0	5	0.0%
5101	4	3 3	85.0%	Cadmium	(lbs/yr)	ŏ	ŏ	ŏ	ō	Ō	0	0	0	0.0%
101	4	3	00.070	Caulifion	(100/91)	Ŭ	-	-	-					
102	22	7	30.0%	Runoff	(ac-ft/vr)	41	0	0	41	41	0	0	41	
102	22	7	30.0%	BOD	(lbs/yr)	1,206	ō	õ	1,206	1,206	0	0	1,206	0.0%
102	22	7	30.0%	COD	(lbs/yr)	9,297	ō	Ō	9,297	9,297	0	0	9,297	0.0%
	22	7	30.0%	TSS	(lbs/yr)	15,624	õ	õ	15,624	15,624	0	0	15,624	0.0%
i102		7	30.0%	TDS	(lbs/yr)	11,159	Ö		11,159	11,159	0		11,159	0.0%
i102	22	-		Total-P	(Ibs/yr) (Ibs/yr)	44	õ	ŏ	44	44	Ō	0	44	0.0%
5102 5102	22 22	7 7	30.0% 30.0%	Dissolved-		18	õ	0	18	18	õ	Ō	18	0.0%

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 1 UNDER PROPOSED ALTERNATIVE.

Ĩ

	Drainage Imperv %				No BMP Average			With Wet Pond BMPs Average Annual				% Reduction Surface		
Basin	Drainage Area	Imperv Area	% Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
							400 <u>9,200,0000000000000000000000000000000</u>	-					167	0.0%
5102	22	7	30.0%	TKN	(lbs/yr)	167	0	0	167	167	0	0	167	0.0%
5102	22	7	30.0%	$NO_2 + NO_3$	(lbs/yr)	41	0	0	41	41	0	0	41 6	0.0%
5102	22	7	30.0%	Lead	(ibs/yr)	6	0	0	6	6	0	0		0.0%
5102	22	7	30.0%	Copper	(lbs/yr)	5	0	0	5	5	0	0	5	0.0%
	22	7	30.0%	Zinc	(lbs/yr)	6	0	0	6	6	0	0	6	
5102 5102	22	7	30.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
,,,,,,							•	0	49	49	0	0	49	
5110	21	9	41.1%	Runoff	(ac-ft/yr)	49	0	0	1,381	839	õ	õ	839	-39.3%
5110	21	9	41.1%	BOÐ	(lbs/yr)	1,381	0	-		6,028	ŏ	õ	6,028	-39.8%
5110	21	9	41.1%	COD	(lbs/yr)	10,005	0	0	10,005	9,516	ŏ	õ	9,516	-41.4%
5110	21	9	41.1%	TSS	(lbs/yr)	16,244	0	-	16,244	9,063	ŏ	ŏ	9,063	-31.6%
5110	21	9	41.1%	TDS	(lbs/yr)	13,242	0		13,242	3,003	ŏ	ŏ	31	-24.1%
5110	21	9	41.1%	Total-P	(lbs/yr)	40	0	0	40	10	ŏ	ŏ	10	-42.8%
5110	21	9	41.1%	Dissolved-l	P (ibs/yr)	18	0	0	18		0	ŏ	119	-33.1%
5110	21	9	41.1%	TKN	(lbs/yr)	178	0	0	178	119		ŏ	28	-25.3%
5110	21	9	41.1%	$NO_2 + NO_3$	(lbs/yr)	37	0	0	37	28	0	0	(3)	-121.9%
5110	21	9	41.1%	Lead	(lbs/yr)	15	0	0	15	(3)	0	-	3	-49.9%
5110	21	9	41.1%	Copper	(lbs/yr)	6	0	0	6	3	0	0		-49.9%
5110	21	9	41.1%	Zinc	(lbs/yr)	10	0	0	10	2	0	0	2	
5110	21	9	41.1%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-49.1%
						400	0	0	132	132	0	0	132	
5120	70	21	30.0%	Runoff	(ac-ft/yr)	132	0	0	3,870	3,847	ŏ	Ō	3,847	-0.6%
5120	70	21	30.0%	BOD	(lbs/yr)	3,870	0	ŏ	29,833	29,535	Ō	0	29,535	-1.0%
5120	70	21	30.0%	COD	(lbs/yr)	29,833	0	-		49,433	ŏ	ō	49,433	-1.4%
5120	70	21	30.0%	TSS	(lbs/yr)	50,135	0	0	50,135	35,808	õ	ō	35,808	0.0%
5120	70	21	30.0%	TDS	(lbs/yr)	35,808	0	+	35,808	138	ŏ	ō	138	-1.0%
5120	70	21	30.0%	Total-P	(lbs/yr)	140	0	0	140	55	ŏ	õ	55	-1.6%
5120	70	21	30.0%	Dissolved-		56	0	0	56	534	ŏ	Ö	534	-0.6%
5120	70	21	30.0%	TKN	(lbs/yr)	537	0	0	537		0	ŏ	130	-1.6%
5120	70	21	30.0%	NO2+NO3	(lbs/yr)	132	0	0	132	130	0	ŏ	18	-1.6%
5120	70	21	30.0%	Lead	(lbs/yr)	18	0	0	18	18	0	0	16	-1.5%
5120	70	21	30.0%	Copper	(lbs/yr)	- 17	0	0	17	16		ŏ	18	-1.0%
5120	70	21	30.0%	Zinc	(lbs/yr)	18	0	0	18	18	0	0	10	-1.0%
5120	70	21	30.0%	Cadmium	(lbs/yr)	1	0	0	1	1	0	U	I	-1.070

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 1 UNDER PROPOSED ALTERNATIVE (Continued).

RESULTS FROM CDM WATERSHED MANAGEMENT M	ODEL FOR ELLIGRAW BAYOU BASIN 1 UNDER PROPOSED
ALTERNATIVE (Continued).	

							No BMP			١	Vith Wet Po Average A			% Reduction Surface
Basin	Drainage Area	Imperv Area	% Imperv	Constituent	(units)	Surface	<u>Average</u> Baseflow	Annual Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
												0	39	
5130	21	6	30.0%	Runoff	(ac-ft/yr)	39	0	0	39	39	0	0	39 1,158	0.0%
5130	21	6	30.0%	BOD	(lbs/yr)	1,158	0	0	1,158	1,158	0	ŏ	8,926	0.0%
5130	21	6	30.0%	COD	(lbs/yr)	8,926	0	0	8,926	8,926	0	0 0	15,000	0.0%
5130	21	6	30.0%	TSS	(lbs/yr)	15,000	0	0	15,000	15,000	0	-		0.0%
5130	21	6	30.0%	TDS	(lbs/yr)	10,714	0	0	10,714	10,714	0	0	10,714	0.0%
	21	6	30.0%	Total-P	(lbs/yr)	42	0	0	42	42	0	0	42	0.0%
5130		6	30.0%	Dissolved-	•••	17	0	0	17	17	0	0	17	0.0%
5130	21	6	30.0%	TKN	(lbs/yr)	161	0	0	161	161	0	0	161	
5130	21		30.0%	NO ₂ +NO ₃		40	0	0	40	40	0	0	40	0.0%
5130	21	6	-	Lead	(lbs/yr)	5	0	0	5	5	0	0	5	0.0%
5130	21	6	30.0%	Copper	(ibs/yr)	5	0	0	5	5	0	0	5	0.0%
5130	21	6	30.0%	Zinc	(lbs/yr)	5	Ō	0	5	5	0	0	5	0.0%
5130	21	6	30.0%	Cadmium	(Ibs/yr)	0	Ō	0	0	0	0	0	0	0.0%
5130	21	6	30.0%	Caumium	(iba/yi)	· ·								
			00 40/	Runoff	(ac-ft/yr)	70	0	0	70	70	0	0	70	
5140	37	11	30.4%	BOD	(lbs/yr)	2,051	Ō	0	2,051	2,051	0	0	2,051	0.0%
5140	37	11	30.4%	COD	(ibs/yr)	15,812	Õ	Ō	15,812	15,812	0	0	15,812	0.0%
5140	37	11	30.4%	-	(lbs/yr) (lbs/yr)	26,572	ō	ō	26,572	26,572	0	0	26,572	0.0%
5140	37	11	30.4%	TSS		18,979	õ	Ō	18,979	18,979	0	0	18,979	0.0%
5140	37	11	30.4%	TDS	(lbs/yr) (lbs/yr)	73	ő	ō	73	73	0	0	73	0.0%
5140	37	11	30.4%	Total-P		30	ŏ	ŏ	30	30	0	0	30	0.0%
5140	37	11	30.4%	Dissolved		283	õ	ō	283	283	0	0	283	0.0%
5140	37	11	30.4%	TKN	(lbs/yr)	70	õ	ŏ	70	70	0	0	70	0.0%
5140	37	11	30.4%	NO _z +NO ₃			Ö	ŏ	10	10	0	0	10	0.0%
5140	37	11	30.4%	Lead	(lbs/yr)	10	ŏ	ŏ	9	9	0	0	9	0.0%
5140	37	11	30.4%	Copper	(lbs/γr)	9	0	0	10	10	0	0	10	0.0%
5140	37	11	30.4%	Zinc	(lbs/yr)	10	0	0	0	0	0	0	0	0.0%
5140	37	11	30.4%	Cadmium	(lbs/yr)	0	U	v	v	•	_			
						~~~	~	0	360	360	0	0	360	
Total S	Sum 178	60	33.7%	Runoff	(ac-ft/yr)	360	0	ŏ	10,452	9,800	ō	Ō	9,800	
	Sum 178	60	33.7%	BOD	(lbs/yr)	10,452	0	-		73,989	ŏ	õ	73,989	
	Sum 178	60	33.7%	COD	(lbs/yr)	78,807	0	0	78,807		0	-	122,645	
	Sum 178	60	33.7%	TSS	(lbs/yr)	130,878	0		130,878	122,645	0	0	92,901	
	Sum 178	60	33.7%	TDS	(lbs/yr)	97,968	0	0	97,968	92,901		ŏ	339	
	Sum 178	60	33.7%	Total-P	(lbs/yr)	351	0	0	351	339	0	0	137	
	Sum 178	60	33.7%		-P (lbs/yr)	147	0	0	147	137	U		(3)	

			%				No BMP ( Average			N	/ith Wet Po Average A			% Reduction Surface
Basin	Drainage Area	Area	mperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
Total C	um 178	60	33.7%	TKN	(lbs/yr)	1,412	0	0	1,412	1,340	0	0	1,340	
	um 178	60	33.7%	NO ₂ +NO ₃	(lbs/yr)	330	0	0	330	318	0	0	318	
	um 178	60	33.7%	Lead	(lbs/yr)	73	0	0	73	52	0	0	52	
	um 178	60	33.7%	Copper	(lbs/yr)	44	0	0	44	41	0	0	41	
	um 178	60	33.7%	Zinc	(lbs/yr)	58	0	0	58	49	0	0	49	
	um 178	60	33.7%	Cadmium	(lbs/yr)	2	0	0	2	2	0	0	2	
	170	60	33.7%	BOD	(mg/L)	10.67	0.00	0.00	10.67	10.00	0.00	0.00	10.00	
MC	178 178	60	33.7% 33.7%	COD	(mg/L)	80.43	0.00	0.00	80.43	75.52	0.00	0.00	75.52	
MC		60	33.7%	TSS	(mg/L)	133.58	0.00	0.00	133.58	125.18	0.00	0.00	125.18	
MC	178	60 60	33.7%	TDS	(mg/L)	99.99	0.00	0.00	99.99	94.82	0.00	0.00	94.82	
MC	178	60 60	33.7%	Total-P	(mg/L)	0.36	0.00	0.00	0.36	0.35	0.00	0.00	0.35	
MC	178	60 60	33.7%	Dissolved-P	-	0.15	0.00	0.00	0.15	0.14	0.00	0.00	0.14	
MC	178	60 60	33.7% 33.7%	TKN	(mg/L)	1.44	0.00	0.00	1.44	1.37	0.00	0.00	1.37	
EMC	178	60 60	33.7%	NO ₂ +NO ₃	(mg/L)	0.34	0.00	0.00	0.34	0.32	0.00	0.00	0.32	
MC	178	60 60	33.7%	Lead	(mg/L)	0.07	0.00	0.00	0.07	0.05	0.00	0.00	0.05	
MC	178 178	60 60	33.7%	Copper	(mg/L)	0.05	0.00	0.00	0.05	0.04	0.00	0.00	0.04	
MC		60 60	33.7%	Zinc	(mg/L)	0.06		0.00	0.06	0.05	0.00	0.00	0.05	
emc Emc	178 178	60	33.7%	Cadmium	(mg/L)	0.00		0.000	0.002	0.002	2 0.000	0.000	0.002	

### RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 1 UNDER PROPOSED ALTERNATIVE (Continued).

÷.

							No BMP			Y	Vith Wet Po Average A			% Reduction Surface
Basin	Drainage Area	Imperv Area	% Imperv	Constituent	(units)	Surface	<u>Average</u> Baseflow	Annual Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
	-						-		21	31	0	0	31	
5150	9	6	73.7%	Runoff	(ac-ft/yr)	31	0	0	31	829	ŏ	ŏ	829	0.0%
150	9	6	73.7%	BOD	(lbs/yr)	829	0	0	829	7,754	ŏ	ŏ	7,754	0.0%
150	9	6	73.7%	COD	(ibs/yr)	7,754	0	0	7,754	11,142	ŏ	ŏ	11,142	0.0%
150	9	6	73.7%	TSS	(lbs/yr)	11,142	0		11,142		ŏ	ŏ	8,382	0.0%
150	9	6	73.7%	TDS	(lbs/yr)	8,382	0	0	8,382	8,382	0	0	15	0.0%
150	9	6	73.7%	Total-P	(lbs/yr)	. 15	0	0	15	15	0	0	9	0.0%
150	9	6	73.7%	Dissolved-	P (lbs/yr)	9	0	0	9	9	0	0	92	0.0%
150	9	6	73.7%	TKN	(lbs/yr)	92	0	0	92	92	0	ŏ	13	0.0%
150	9	6	73.7%	$NO_2 + NO_3$	(lbs/yr)	13	0	0	13	13	—	0	18	0.0%
150	9	6	73.7%	Lead	(lbs/yr)	18	0	0	18	18	0	0	4	0.0%
150	ŷ	6	73.7%	Copper	(lbs/yr)	4	0	0	4	4	0	0	9	0.0%
150	9	6	73.7%	Zinc	(lbs/yr)	9	0	0	9	9	0	0	0	0.0%
150	9	6	73.7%	Cadmium	(lbs/yr)	0	0	0	0	0	U	Ŭ	Ŭ	0.070
100	÷	•						_			0	0	11	
151	3	2	90.0%	Runoff	(ac-ft/yr)	11	0	0	11	11	0	ŏ	279	0.0%
151	3	2	90.0%	BOD	(lbs/yr)	27 <del>9</del>	0	0	279	279	0	ŏ	2,966	0.0%
151	3	2	90.0%	COD	(ibs/yr)	2,966	0	0	2,966	2,966	0	ŏ	4,101	0.0%
151	3	2	90.0%	TSS	(lbs/yr)	4,101	0	0	4,101	4,101	0	ŏ	2,879	0.0%
151	3	2	90.0%	TDS	(lbs/yr)	2,879	0	0	2,879	2,879	0	ŏ	2,070	0.0%
151	3	2	90.0%	Total-P	(lbs/yr)	4	0	0	4	4 3	0	ŏ	3	0.0%
151	3	2	90.0%	Dissolved	P (lbs/yr)	3	0	0	3		0	ŏ	31	0.0%
151	3	2	90.0%	TKN	(lbs/yr)	31	0	0	31	31	-	ŏ	3	0.0%
151	3	2	90.0%	$NO_2 + NO_3$	(lbs/yr)	3	0	0	3	3	0	ŏ	7	0.0%
i151	3	2	90.0%	Lead	(lbs/yr)	7	0	0	7	7	0	0	1	0.0%
151	3	2	90.0%	Copper	(lbs/yr)	1	0	0	1	1	0			0.0%
	3	2	90.0%	Zinc	(lbs/yr)	3	0	0	3	3	0	0	3	0.0%
5151	3	2	90.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.070
151	3	4	30.070						-		-	~	4.4	
400	•	2	25.0%	Runoff	(ac-ft/yr)	14	0	0	14	14	0	0	14	-90.0%
160	8 8	2	25.0%	BOD	(lbs/yr)	120	0	0	120	12	0	0	12	-90.0%
160		2	25.0%	COD	(lbs/yr)	737	0	0	737	74	0	0	74	
160	8	2	25.0%	TSS	(lbs/yr)	3,509	0	0	3,509	351	0	0	351	-90.0%
160	8	2	25.0%	TDS	(lbs/yr)	3,874	0	0	3,874	387	0	0	387	-90.0%
5160	8		25.0% 25.0%	Total-P	(ibs/yr)	7	Ō	0	7	1	0	0	1	-90.0%
5160 5160	8 8	2 2	25.0%	Dissolved	•	5	ō	0	5	0	0	0	0	-90.0%

### RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER PROPOSED ALTERNATIVE.

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDE	R PROPOSED
ALTERNATIVE (Continued).	

Drainage Imper			iperv %				No BMP C Average			N		With Wet Pond BMPs Average Annual				
Basin	Drainago Area	Imperv Area	% Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads		
			4-000000000000000000000000000000000000			19	0	0	19	2	0	0	2	-90.0%		
5160	8	2	25.0%	TKN	(lbs/yr)	19	ŏ	ŏ	19	2	0	0	2	-90.0%		
5160	8	2	25.0%	$NO_2 + NO_3$	(lbs/yr)	0	ŏ	ŏ	ō	0	0	0	0	-90.0%		
160	8	2	25.0%	Lead	(lbs/yr)		0	ŏ	2	Ō	Ō	0	0	-90.0%		
6160	8	2	25.0%	Copper	(lbs/yr)	2	0	ŏ	6	1	ŏ	0	1	-90.0%		
5160	8	2	25.0%	Zinc	(lbs/yr)	6		-	0	o	Ō	Ō	Ó	-90.0%		
160	8	2	25.0%	Cadmium	(ibs/yr)	0	0	0	U	v	Ŭ	Ŭ	-			
5161	2	0	1.0%	Runoff	(ac-ft/yr)	2	0	0	2	2	0	0	2	0.0%		
i 161	2	ŏ	1.0%	BOD	(lbs/yr)	40	0	0	40	40	0	0	40			
	2	ŏ	1.0%	COD	(lbs/yr)	253	0	0	253	253	0	0	253	0.0%		
5161	2	õ	1.0%	TSS	(lbs/yr)	1,076	0	0	1,076	1,076	0	0	1,076	0.0%		
161		ŏ	1.0%	TDS	(lbs/yr)	498	0	0	498	498	0	0	498	0.0%		
161	2 2	ŏ	1.0%	Total-P	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%		
161		ŏ	1.0%	Dissolved-f		0	0	0	0	0	0	0	0	0.0%		
161	2	ŏ	1.0%	TKN	(lbs/yr)	4	0	0	4	4	0	0	4	0.0%		
161	2	ō	1.0%	NO ₂ +NO ₃	(ibs/yr)	1	0	0	1	1	0	0	1	0.0%		
5161	2	0	1.0%	Lead	(ibs/yr)	Ó	0	0	0	0	0	0	0	0.0%		
5161	2	0	1.0%	Copper	(lbs/yr)	ō	Ó	0	0	0	0	0	0	0.0%		
161	2	-	1.0%	Zinc	(lbs/yr)	ō	õ	0	0	0	0	0	0	0.0%		
5161	2	0	1.0%	Cadmium	(lbs/yr)	õ	õ	Ō	0	0	0	0	0	0.0%		
5161	2	U	1.0%	Cauthidin	(1991 4-1	-	-		_	_		0	8			
163	5	1	29.6%	Runoff	(ac-ft/yr)	8	0	0	8	8	0	0	137	0.0%		
5163	5	1	29.6%	BOD	(lbs/yr)	137	0	0	137	137	0	-	983	0.0%		
5163	5	1	29.6%	COD	(lbs/yr)	983	0	0	983	983	0	0 0	983 2,495	0.0%		
5163	5	1	29.6%	TSS	(lbs/yr)	2,495	0	0	2,495	2,495	0			0.0%		
i 163	5	1	29.6%	TDS	(lbs/yr)	2,290	0	0	2,290	2,290	0	0	2,290	0.0%		
5163	5	1	29.6%	Total-P	(lbs/yr)	5	0	0	5	5	0	0	5			
5163	5	1	29.6%	Dissolved-	• • •	3	0	0	3	3	0	0	3	0.0%		
	5	1	29.6%	TKN	(lbs/yr)	18	0	0	18	18	0	0	18	0.0%		
6163		1	29.6%	$NO_2 + NO_3$	(lbs/yr)	10	0	0	10	10	0	0	10	0.0%		
5163	5	1	29.6%	Lead	(lbs/yr)	1	õ	0	1	1	0	0	1	0.0%		
5163	5				(lbs/yr)	1	Ō	Ō	1	1	0	0	1	0.0%		
5163	5	1	29.6%	Copper	(ibs/yr) (ibs/yr)	3	ŏ	Ö	3	3	0	0	3	0.0%		
5163 5163	5 5	1	29.6% 29.6%	Zinc Cadmium	(lbs/yr) (lbs/yr)	0	ŏ	ŏ	ō	0	0	0	0	0.0%		

RESULTS FROM CDM WATERSHED MANAGE	EMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER PROPOSED
ALTERNATIVE (Continued).	

1

	Drainage Im		%				No BMP ( Average			V	Vith Wet Po Average A			% Reduction Surface
Basin	Area	Area	70 Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
					( <b>6</b> ( )	7	0	0	7	7	0	0	7	
5164	4	1	25.0%	Runoff	(ac-ft/yr)	56	0	ŏ	56	56	ō	Ō	56	0.0%
164	4	1	25.0%	BOD	(lbs/yr)	50 347	ŏ	õ	347	347	ō	Ō	347	0.0%
164	4	1	25.0%	COD	(lbs/yr)	1,652	õ	ŏ	1,652	1,652	Ō	0	1,652	0.0%
5164	4	1	25.0%	TSS	(lbs/yr)	1,825	ŏ	ŏ	1,825	1,825	Ō	0	1,825	0.0%
164	4	1	25.0%	TDS	(lbs/yr)	1,625	0	ŏ	3	3	Ō	0	3	0.0%
5164	4	1	25.0%	Total-P	(lbs/yr)	2	0	ŏ	2	2	ō	Ó	2	0.0%
5164	4	1	25.0%	Dissolved-			0	ŏ	9	9	ō	Ō	9	0.0%
i164	4	1	25.0%	TKN	(lbs/yr)	9	0	ŏ	9	9	ŏ	ō	9	0.0%
5164	4	1	25.0%	$NO_2 + NO_3$		9		ō	0	ő	õ	ō	Ō	0.0%
5164	4	1	25.0%	Lead	(lbs/yr)	0	0	ŏ	1	1	ŏ	ŏ	1	0.0%
5164	4	1	25.0%	Copper	(lbs/yr)	1	0			3	ŏ	ŏ	3	0.0%
5164	4	1	25.0%	Zinc	(lbs/yr)	3	0	0	3	0	ŏ	õ	ŏ	0.0%
164	4	1	25.0%	Cadmium	(lbs/yr)	0	0	0	0	Ŭ	U	v	Ũ	0.0.0
							•	^	3	3	0	0	3	
5165	2	0	25.0%	Runoff	(ac-ft/yr)	3	0	0	23	23	ŏ	õ	23	0.0%
5165	2	0	25.0%	BOD	(lbs/yr)	23	0	0		142	õ	0	142	0.0%
5165	2	0	25.0%	COD	(lbs/yr)	142	0	0	142		0	ŏ	674	0.0%
5165	2	0	25.0%	TSS	(lbs/yr)	674	0	0	674	674		ŏ	745	0.0%
5165	2	0	25.0%	TDS	(lbs/yr)	745	0	0	745	745	0	-	745	0.0%
5165	2	0	25.0%	Total-P	(lbs/yr)	1	0	0	1	1	0	0	•	0.0%
5165	2	ō	25.0%	Dissolved-	P (lbs/yr)	1	0	0	1	1	0	0	1	
5165	2	ō	25.0%	TKN	(lbs/yr)	4	0	0	4	4	0	0	4	0.0%
5165	2	õ	25.0%	$NO_2 + NO_3$	(lbs/yr)	4	0	0	4	4	0	0	4	0.0%
5165	2	ŏ	25.0%	Lead	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
5165	2	ŏ	25.0%	Copper	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
5165	2	ŏ	25.0%	Zinc	(lbs/yr)	1	0	0	1	1	0	0	1	0.0%
5165	2	õ	25.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	0.0%
100	4	U	20.070	020111011	(m==, ) . ,									
5170	5	1	25.0%	Runoff	(ac-ft/yr)	9	0	0	9	9	0	0	9	
5170	5	1	25.0%	BOD	(lbs/yr)	73	0	0	73	7	0	0	7	-90.0%
	5 5	1	25.0%	COD	(lbs/yr)	448	0	0	448	45	0	0	45	-90.0%
5170	5 5	1	25.0%	TSS	(lbs/yr)	2,131	ō	0	2,131	213	0	0	213	-90.0%
5170		1	25.0%	TDS	(lbs/yr)	2,353	Õ	0	2,353	235	0	0	235	-90.0%
5170	5	•		Total-P	(lbs/yr)	2,000	ŏ	Ō	4	0	0	0	0	-90.0%
5170 5170	5 5	1 1	25.0% 25.0%	Dissolved-		3	õ	õ	3	0	0	0	0	-90.0%

¥.

							No BMP Average			N	Vith Wet Po Average A			% Reduction Surface
Basin	Drainage Area	Imperv Area	% Impery	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
								^	12	1	0	0	1	-90.0%
5170	5	1	25.0%	TKN	(lbs/yr)	12	0	0		1	ŏ	ō	1	-90.0%
5170	5	1	25.0%	$NO_2 + NO_3$	(lbs/yr)	11	0	0	11	ŏ	ŏ	ŏ	O	-90.0%
170	5	1	25.0%	Lead	(lbs/yr)	0	0	0	0	0	ŏ	ŏ	ŏ	-90.0%
i170	5	1	25.0%	Copper	(lbs/yr)	1	0	0	1		0	ŏ	ŏ	-90.0%
5170	5	1	25.0%	Zinc	(lbs/yr)	4	0	0	4	0		0	ŏ	-90.0%
5170	5	i	25.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	U	v	-30.0 %
• • •					· · · · · · · · · · · · · · · · · · ·	29	0	0	29	29	0	0	29	
171	13	5	40.0%	Runoff	(ac-ft/yr)	29 847	0	ŏ	847	593	0	0	593	-30.0%
171	13	5	40.0%	BOD	(lbs/yr)		ŏ	ŏ	6,530	3,265	0	0	3,265	-50.0%
171	13	5	40.0%	COD	(lbs/yr)	6,530	0	ŏ	10,974	3,292	Ō	0	3,292	-70.0%
171	13	5	40.0%	TSS	(lbs/yr)	10,974	0	ŏ	7,838	7,838	Ō	0	7,838	0.0%
171	13	5	40.0%	TDS	(lbs/yr)	7,838	0	ŏ	26	13	õ	0	13	-50.0%
171	13	5	40.0%	Total-P	(lbs/yr)	26		ŏ	12	2	õ	0	2	-80.0%
171	13	5	40.0%	Dissolved-		12	0	0	103	72	ō	Ō	72	-30.0%
171	13	5	40.0%	TKN	(lbs/yr)	103	0	0	26	5	ō	õ	5	-80.0%
171	13	5	40.0%	$NO_2 + NO_3$		26	0	-	6	1	ŏ	ō	1	-80.0%
171	13	5	40.0%	Lead	(lbs/yr)	6	0	0		1	Ő	ŏ	1	-75.0%
5171	13	5	40.0%	Copper	(lbs/yr)	4	0	0	4	2	ŏ	õ	2	-50.0%
5171	13	5	40.0%	Zinc	(lbs/yr)	5	0	0	5	2	0 0	ŏ	ō	-50.0%
5171	13	5	40.0%	Cadmium	(lbs/yr)	0	0	0	0	U	U	Ū	Ũ	
				0	(	8	0	0	8	8	0	0	8	
5172	4	1	40.0%	Runoff	(ac-ft/yr)	237	ŏ	ō	237	166	0	0	166	-30.0%
5172	4	1	40.0%	BOD	(lbs/yr)	1,825	õ	ŏ	1,825	913	0	0	913	-50.0%
i172	4	1	40.0%	COD	(lbs/yr)	3,068	ŏ	ŏ	3,068	920	0	0	920	-70.0%
5172	4	1	40.0%	TSS	(lbs/yr)		ŏ	ŏ	2,191	2,191	0	0	2,191	0.0%
5172	4	1	40.0%	TDS	(lbs/yr)	2,191	ŏ	ŏ	2,131	4	Ó	0	4	-50.0%
5172	4	1	40.0%	Total-P	(lbs/yr)	7	-	ŏ	3	1	Ō	0	1	-80.0%
5172	4	1	40.0%	Dissolved		3	0	ŏ	29	20	ō	Ó	20	-30.0%
5172	4	1	40.0%	TKN	(lbs/yr)	29	-	ŏ	23 7	1	ō	ō	1	-80.0%
5172	4	1	40.0%	$NO_2 + NO_3$		7	0	0	2	ò	ŏ	ō	Ó	-80.0%
5172	4	1	40.0%	Lead	(lbs/yr)	2	0		1	ŏ	ŏ	õ	Ō	-75.0%
5172	4	1	40.0%	Copper	(lbs/yr)	1	0	0		1	ŏ	ŏ	1	-50.0%
5172	4	1	40.0%	Zinc	(lbs/yr)	1	0	0	1	0	ŏ	ŏ	, O	-50.0%
5172	4	1	40.0%	Cadmium	(lbs/yr)	0	0	0	0	U	v	v	×	

### RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER PROPOSED ALTERNATIVE (Continued).

.

Ŋ

		1	%				No BMP Average			1	With Wet Po Average /	2.2022/00000000000		% Reduction Surface
Basin	Drainage Area	Area	79 Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
		-	40.00	Runoff	(ac-ft/yr)	6	0	0	6	6	0	0	6	
173	3	1	40.0% 40.0%	BOD	(lbs/yr)	177	ŏ	ŏ	177	124	0	0	124	-30.0%
173	3	1	40.0%	COD	(lbs/yr)	1,368	ŏ	õ	1,368	684	0	0	684	-50.0%
173	3	1		TSS	(ibs/yr)	2,299	ŏ	õ	2,299	690	0	0	690	-70.0%
173	3	1	40.0%	TDS	(ibs/yr) (ibs/yr)	1,642	ŏ	ŏ	1,642	1,642	0	0	1,642	0.0%
173	3	1	40.0%		· •	5	ŏ	ŏ	5	3	0	0	3	-50.0%
173	3	1	40.0%	Total-P	(lbs/yr)	3	õ	ŏ	3	1	Ō	0	1	-80.0%
173	3	1	40.0%	Dissolved-	· •	22	0	ŏ	22	15	Ō	Ō	15	-30.0%
173	3	1	40.0%	TKN	(lbs/yr)	5	õ	ŏ	5	1	Ō	Ō	1	-80.0%
173	3	1	40.0%	$NO_2 + NO_3$			0	ŏ	1	o	õ	Ō	0	-80.0%
173	3	1	40.0%	Lead	(lbs/yr)	1	0	ŏ	1	ŏ	ō	ō	Ō	-75.0%
173	3	1	40.0%	Copper	(ibs/yr)	1	0	ŏ	1	ő	ŏ	ō	Ō	-50.0%
173	3	1	40.0%	Zinc	(lbs/yr)	1	0	0	0	ŏ	õ	ō	ō	-50.0%
173	3	1	40.0%	Cadmium	(lbs/yr)	0	0	U	U	Ū	Ū	•		
174	16	5	32.5%	Runoff	(ac-ft/yr)	31	0	0	31	31	0	0	31	20.0%
174	16	5	32.5%	BOD	(lbs/yr)	909	0	0	909	636	0	0	636	-30.0% -50.0%
174	16	5	32.5%	COD	(lbs/yr)	6,980	0	0	6,980	3,490	0	0	3,490	
174	16	5	32.5%	TSS	(lbs/yr)	12,042	0		12,042	3,613	0	0	3,613	-70.0%
174	16	5	32.5%	TDS	(lbs/yr)	8,471	0	0	8,471	8,471	0	0	8,471	0.0%
174	16	5	32.5%	Total-P	(lbs/yr)	30	0	0	30	15	0	0	15	-50.0%
174	16	5	32.5%	Dissolved-	P (lbs/yr)	13	0	0	13	3	0	0	3	-80.0%
174	16	5	32.5%	TKN	(ibs/yr)	117	0	0	117	82	0	0	82	-30.0%
174	16	5	32.5%	$NO_2 + NO_3$	(lbs/yr)	29	0	0	29	6	0	0	6	-80.0%
174	16	5	32.5%	Lead	(lbs/yr)	5	0	0	5	1	0	0	1	-80.0%
174	16	5	32.5%	Copper	(lbs/yr)	4	0	0	4	1	0	0	1	-75.0%
5174	16	5	32.5%	Zinc	(lbs/yr)	5	0	0	5	2	0	0	2	-50.0%
174	16	5	32.5%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-50.0%
			10.00	D	In the	20	0	0	20	20	0	0	20	
175	9	4	40.0%	Runoff	(ac-ft/yr)	597	0	ŏ	597	418	õ	ō	418	-30.0%
175	9	4	40.0%	BOD	(lbs/yr)		0	ŏ	4,602	2,301	ŏ	ŏ	2,301	-50.0%
175	9	4	40.0%	COD	(lbs/yr)	4,602		o	4,002 7,734	2,320	ŏ	ŏ	2,320	-70.0%
175	9	4	40.0%	TSS	(lbs/yr)	7,734	0	0	7,734 5,524	5,524	ŏ	ŏ	5,524	0.0%
175	9	4	40.0%	TDS	(lbs/yr)	5,524	0	-	5,524 18	5,524	ō	ŏ	9	-50.0%
175	9	4	40.0%	Total-P	(lbs/yr)	18	0	0	18	9 2	0	0	2	-80.0%
5175	9	4	40.0%	Dissolved-	P (ibs/yr)	9	0	<u> </u>	Э	۷۲	<u> </u>		-	

#### RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER PROPOSED ALTERNATIVE (Continued).

λ,

\$

2

RESULTS FROM CDM WATERSHED MANAGEMENT MODEL	. FOR ELLIGRAW BAYOU BASIN 2 UNDER PROPOSED
ALTERNATIVE (Continued).	

			mani PL				No BMP (			Y	Vith Wet Po Average /			% Reductio Surface
Basin	Drainage Area	Imperv Area	% Imperv	Constituent	(units)	Surface	<u>Average</u> Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
			40.0%	TKN	(lbs/yr)	73	0	0	73	51	0	0	51	-30.0%
5175	9	4	40.0%			18	ŏ	ŏ	18	4	õ	Ó	4	-80.0%
5175	9	4	40.0%	NO₂ + NO₃	(ibs/yr) (ibs/yr)	4	ŏ	ŏ	4	1	ō	Ó	1	-80.0%
5175	9	4	40.0%	Lead	• • •	3	õ	ŏ	3	1	ō	0	1	-75.0%
5175	9	4	40.0%	Copper	(lbs/yr)	3	0	ŏ	3	2	õ	ō	2	-50.0%
5175	9	4	40.0%	Zinc	(lbs/yr)		0 0	õ	Ö	ō	ō	Ō	0	-50.0%
5175	9	4	40.0%	Cadmium	(lbs/yr)	0	U	U	U	Ū	Ū	Ū	Ū	
5180	4	2	42.4%	Runoff	(ac-ft/yr)	11	0	0	11	11	0	0	11	<b>00</b> 00/
5180	4	2	42.4%	BOD	(lbs/yr)	269	0	0	269	188	0	0	188	-30.0%
5180	4	2	42.4%	COD	(lbs/yr)	2,687	0	0	2,687	1,343	0	0	1,343	-50.0%
5180	4	2	42.4%	TSS	(lbs/yr)	4,435	0	0	4,435	1,331	0	0	1,331	-70.0%
5180	4	2	42.4%	TDS	(lbs/yr)	2,859	0	0	2,859	2,859	0	0	2,859	0.0%
5180	4	2	42.4%	Total-P	(lbs/yr)	4	0	0	4	2	0	0	2	-50.0%
5180	4	2	42.4%	Dissolved-F		3	0	0	3	1	0	0	1	-80.0%
5180	4	2	42.4%	TKN	(lbs/yr)	29	0	0	29	20	0	0	20	-30.0%
5180	4	2	42.4%	$NO_2 + NO_3$	(lbs/yr)	4	0	0	4	1	0	0	1	-80.0%
5180	4	2	42.4%	Lead	(lbs/yr)	6	0	0	6	1	0	0	1	-80.0%
5180	4	2	42.4%	Copper	(lbs/yr)	1	0	0	1	0	0	0	0	-75.0%
5180	4	2	42.4%	Zinc	(lbs/yr)	3	0	0	3	1	0	0	1	-50.0%
5180	4	2	42.4%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-50.0%
	20	9	43.1%	Runoff	(ac-ft/yr)	47	0	0	47	47	0	0	47	
5181	20 20	9	43.1%	BOD	(lbs/yr)	1,374	ō	Ō	1,374	962	0	0	962	-30.0%
5181		9	43.1%	COD	(lbs/yr)	10,993	Õ	ō	10,993	5,496	0	0	5,496	-50.0%
5181	20 20	9	43.1%	TSS	(lbs/yr)	18,038	ŏ	ŏ	18,038	5,412	0	0	5,412	-70.0%
5181	20 20	9	43.1%	TDS	(lbs/yr)	12,859	Ō	ō	12,859	12,859	0	0	12,859	0.0%
5181	20 20	9	43.1%	Total-P	(lbs/yr)	40	õ	ō	40	20	0	0	20	-50.0%
5181	20	9	43.1%	Dissolved-F	• •	19	õ	ŏ	19	4	0	0	4	-80.0%
5181		9	43.1%	TKN	(ibs/yr) (ibs/yr)	166	õ	ō	166	116	0	0	116	-30.0%
5181	20			$NO_2 + NO_3$	(lbs/yr)	39	ŏ	ŏ	39	8	0	0	8	-80.0%
5181	20	9	43.1%	$NO_2 + NO_3$ Lead	(lbs/yr) (lbs/yr)	12	ŏ	ŏ	12	2	Ō	0	2	-80.0%
5181	20	9	43.1%		• •	6	Ő.	ŏ	6	2	õ	Ō	2	-75.0%
5181	20	9	43.1%	Copper	(lbs/yr)	9	0	ŏ	9	4	õ	Õ	4	-50.0%
5181	20 20	9 9	43.1% 43.1%	Zinc Cadmium	(lbs/yr) (lbs/yr)	9	0	ŏ	0	0	õ	Ō	Ó	-50.0%

N.

			%				No BMP ( Average			١	Nith Wet Po Average /	e de que concerne		% Reduction Surface
Basin	Drainage Area	imperv Area	70 Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
<u></u>								0	12	12	0	0	12	
5182	6	2	37.0%	Runoff	(ac-ft/yr)	12	0	0	366	256	õ	ŏ	256	-30.0%
182	6	2	37.0%	BOD	(lbs/yr)	366	0	0	2,822	1,411	ŏ	õ	1,411	-50.0%
182	6	2	37.0%	COD	(lbs/yr)	2,822	0	0		1,422	õ	ŏ	1,422	-70.0%
182	6	2	37.0%	TSS	(lbs/yr)	4,742	0	-	4,742	3,387	ŏ	õ	3,387	0.0%
182	6	2	37.0%	TDS	(lbs/yr)	3,387	0	0	3,387		0	õ	6	-50.0%
182	6	2	37.0%	Total-P	(lbs/yr)	12	0	0	12	6 1	0	õ	1	-80.0%
182	6	2	37.0%	Dissolved-	• • •	5	0	0	5	-	0	õ	32	-30.0%
182	6	2	37.0%	TKN	(lbs/yr)	46	0	0	46	32 2	ŏ	ŏ	2	-80.0%
182	6	2	37.0%	$NO_2 + NO_3$	(lbs/yr)	12	0	0	12		ŏ	ŏ	ō	-80.0%
5182	6	2	37.0%	Lead	(lbs/yr)	2	0	0	2	0	-	0	0	-75.0%
5182	6	2	37.0%	Copper	(ibs/yr)	2	0	0	2	0	0	0	1	-50.0%
182	6	2	37.0%	Zinc	(lbs/yr)	2	0	0	2	1	0	0	0	-50.0%
182	6	2	37.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	U	-30.0%
183	20	6	31.6%	Runoff	(ac-ft/yr)	38	0	0	38	38	0	0	38	
183	20	6	31.6%	BOD	(lbs/yr)	1,117	0	0	1,117	782	0	0	782	-30.0%
183	20	6	31.6%	COD	(lbs/yr)	8,614	0	0	8,614	4,307	0	0	4,307	-50.0%
183	20	6	31.6%	TSS	(lbs/yr)	14,476	0	0	14,476	4,343	0	0	4,343	-70.0%
	20	6	31.6%	TDS	(lbs/yr)	10,339	0		10,339	10,339	0	0	10,339	0.0%
183			31.6%	Total-P	(lbs/yr)	39	Ō	0	39	20	0	0	20	-50.0%
183	20	6	31.6%	Dissolved		16	ŏ	õ	16	3	0	0	3	-80.0%
183	20	6	-			152	õ	õ	152	106	0	0	106	-30.0%
183	20	6	31.6%	TKN	(ibs/yr)	37	ŏ	ŏ	37	7	Ō	0	7	-80.0%
5183	20	6	31.6%	NO ₂ +NO ₃		6	0	ŏ	6	1	0	Ō	1	-80.0%
183	20	6	31.6%	Lead	(lbs/yr)		0	ŏ	5	1	õ	Õ	1	-75.0%
183	20	6	31.6%	Copper	(lbs/yr)	5	0	o	5	3	ŏ	ō	3	-50.0%
5183	20	6	31.6%	Zinc	(lbs/yr)	5 0	0	0	0	ő	õ	õ	ō	-50.0%
183	20	6	31.6%	Cadmium	(lbs/yr)	U	U	U	v	5	v	-	-	
184	7	3	38.8%	Runoff	(ac-ft/yr)	16	0	0	16	16	0	0	16 329	-30.0%
184	7	3	38.8%	BOD	(lbs/yr)	471	0	0	471	329	0	0		
184	7	3	38.8%	COD	(lbs/yr)	3,627	0	0	3,627	1,813	0	0	1,813	-50.0%
184	7	3	38.8%	TSS	(lbs/yr)	6,095	0	0	6,095	1,829	0	0	1,829	-70.0%
184	7	3	38.8%	TDS	(lbs/yr)	4,353	0	0	4,353	4,353	0	0	4,353	0.0%
184	7	3	38.8%	Total-P	(lbs/yr)	15	0	0	15	7	0	0	7	-50.0%
5184	7	3	38.8%	Dissolved-		7	0	0	7	1	0	0	1	-80.0%

# RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER PROPOSED ALTERNATIVE (Continued).

# RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER PROPOSED ALTERNATIVE (Continued).

Basin	Drainage I Area		% Imperv	Constituent	(units)	No BMP Controls Average Annual				١	% Reduction Surface			
		Imperv Area				Surface	Baseflow	Point Source	Total	Surface	<u>Average A</u> Baseflow	Point Source	Total	NPS Loads
	-		38.8%	TKN	(lbs/yr)	58	0	0	58	41	0	0	41	-30.0%
5184	7	3	38.8%	$NO_2 + NO_3$	(lbs/yr)	15	ō	Ō	15	3	0	0	3	-80.0%
5184	7	3			(lbs/yr)	3	õ	Ō	3	1	0	0	1	-80.0%
184	7	3	38.8%		(ibs/yr)	2	õ	ŏ	2	1	0	0	1	-75.0%
184	7	3	38.8%	Copper	• • •	3	ŏ	ŏ	3	1	0	0	1	-50.0%
184	7	3	38.8%	Zinc	(lbs/yr)	0	0	ŏ	Ő	0 0	Ō	0	0	-50.0%
184	7	3	38.8%	Cadmium	(lbs/yr)	0	Ũ	U	Ū	, , , , , , , , , , , , , , , , , , ,	-	_		
		•	25 00/	Runoff	(ac-ft/yr)	1	0	0	1	1	0	0	1	
5185	1	0	25.0%	BOD	(lbs/yr)	7	õ	ō	7	5	0	0	5	-30.0%
5185	1	0	25.0%	-		45	ŏ	ŏ	45	22	0	0	22	-50.0%
5185	1	0	25.0%	COD	(lbs/yr)	212	0	ŏ	212	64	ō	0	64	-70.0%
5185	1	0	25.0%	TSS	(lbs/yr)		0	ŏ	234	234	0	0	234	0.0%
5185	1	0	25.0%	TDS	(lbs/yr)	234	0	õ	234	0	õ	ō	0	-50.0%
5185	1	0	25.0%	Total-P	(lbs/yr)	0	0	ŏ	ŏ	õ	õ	õ	0	-80.0%
5185	1	0	25.0%	Dissolved-I		0	-	0	1	1	õ	ŏ	- 1	-30.0%
5185	1	0	25.0%	TKN	(lbs/yr)	1	0	0	1	ò	õ	õ	Ó	-80.0%
5185	1	0	25.0%	$NO_2 + NO_3$	(lbs/yr)	1	0	0	0	0	ŏ	õ	Õ	-80.0%
5185	1	0	25.0%	Lead	(lbs/yr)	0	0	-	-	0	0	0	ŏ	-75.0%
5185	1	0	25.0%	Copper	(lbs/yr)	0	0	0	0	0	o	0	ŏ	-50.0%
5185	1	0	25.0%	Zinc	(lbs/yr)	0	0	0	0		0	ŏ	ŏ	-50.0%
5185	1	0	25.0%	Cadmium	(lbs/yr)	0	0	0	0	0	U	0	U	-30.070
			47.6%	Runoff	(ac-ft/yr)	21	0	0	21	21	0	0	21	
5186	8	4	47.6%	BOD	(lbs/yr)	600	õ	Ō	600	420	0	0	420	-30.0%
5186	8	4		COD	(lbs/yr)	5,028	ŏ	Ō	5,028	2,514	0	0	2,514	-50.0%
5186	8	4	47.6%	TSS	(lbs/yr)	8,015	õ	ŏ	8,015	2,404	0	0	2,404	-70.0%
5186	8	4	47.6%		•	5,700	ŏ	õ	5,700	5,700	0	0	5,700	0.0%
5186	8	4	47.6%	TDS	(lbs/γr)	5,700 16	0	0	16	8	õ	ō	8	-50.0%
5186	8	4	47.6%	Total-P	(lbs/yr)		0	ŏ	8	2	õ	õ	2	-80.0%
5186	8	4	47.6%	Dissolved-		8	•	0	72	50	ŏ	ŏ	50	-30.0%
5186	8	4	47.6%	TKN	(lbs/yr)	72	0	-			ŏ	ŏ	3	-80.0%
5186	8	4	47.6%	$NO_2 + NO_3$	(lbs/yr)	16	0	0	16	. 3	0	ŏ	1	-80.0%
5186	8	4	47.6%	Lead	(lbs/yr)	7	0	0	7	1		0	1	-75.0%
5186	8	4	47.6%	Copper	(lbs/yr)	3	0	0	3	1	0	-	•	-50.0%
5186	8	4	47.6%	Zinc	(lbs/yr)	4	0	0	4	2	0	0	2	-50.0%
5186	8	4	47.6%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-50.0%

, j

### RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER PROPOSED ALTERNATIVE (Continued).

Basin	Drainage Im Area A		% Imperv	Constituent	(units)	No BMP Controls Average Annual				With Wet Pond BMPs Average Annual				% Reduction Surface
		Imperv Area				Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
			30.0%	Rupoff	(ac-ft/yr)	3	0	0	3	3	0	0	3	
187	1	0		BOD	(lbs/yr)	81	Ő	Ō	81	8	0	0	8	-90.0%
187	1	0	30.0%	COD	(lbs/yr)	623	ŏ	ō	623	62	0	0	62	-90.0%
187	1	0	30.0%	TSS	(lbs/yr)	1,047	õ	ō	1.047	105	0	0	105	-90.0%
187	1	0	30.0%	TDS	(lbs/yr)	748	õ	ō	748	75	0	0	75	-90.0%
187	1	0	30.0%		(ibs/yr) (ibs/yr)	3	õ	ŏ	3	0	0	0	0	-90.0%
187	1	0	30.0%	Total-P	• •	1	õ	ō	1	0	0	0	0	-90.0%
187	1	0	30.0%	Dissolved-		11	ŏ	ŏ	11	1	0	0	1	-90.0%
5187	1	0	30.0%		(lbs/yr)	3	ŏ	ŏ	3	Ó	0	0	0	-90.0%
5187	1	0	30.0%	$NO_2 + NO_3$		0	ŏ	ŏ	ō	Ō	0	0	0	-90.0%
5187	1	0	30.0%	Lead	(lbs/yr)	0	õ	ŏ	ŏ	Ō	0	0	0	-90.0%
6187	1	0	30.0%	Copper	(lbs/yr)	0	0	ŏ	õ	Ō	0	0	0	-90.0%
5187	1	0	30.0%	Zinc	(tbs/yr)	0	0	ŏ	õ	Ō	Ō	0	0	-90.0%
5187	1	0	30.0%	Cadmium	(lbs/yr)	U	U	U	Ŭ	Ū	•			
							0	0	4	4	0	0	4	
5190	2	1	25.0%	Runoff	(ac-ft/yr)	4	0	ŏ	32	22	ō	Ō	22	-30.0%
5190	2	1	25.0%	BOD	(lbs/yr)	32	÷	0	194	97	õ	ō	97	-50.0%
5190	2	1	25.0%	COD	(lbs/yr)	194	0	_	924	277	õ	õ	277	-70.0%
5190	2	1	25.0%	TSS	(lbs/yr)	924	0	0		1,020	ŏ	ŏ	1,020	0.0%
5190	2	1	25.0%	TDS	(ibs/yr)	1,020	0	0	1,020		ŏ	õ	1,020	-50.0%
5190	2	1	25.0%	Total-P	(lbs/yr)	2	0	0	2	1	0	0	ò	-80.0%
5190	2	1	25.0%	Dissolved-	P (lbs/yr)	1	0	0	1	0		0	4	-30.0%
5190	2	1	25.0%	TKN	(lbs/yr)	5	0	0	5	4	0	0	4	-80.0%
5190	2	1	25.0%	$NO_2 + NO_3$	(lbs/yr)	5	0	0	5	1	0	0	0	-80.0%
5190	2	1	25.0%	Lead	(lbs/yr)	0	0	0	0	0	0	0	0	-75.0%
5190	2	1	25.0%	Copper	(lbs/yr)	0	0	0	0	0	0	-		-50.0%
5190	2	1	25.0%	Zinc	(lbs/yr)	2	0	0	2	1	0	0	1 0	-50.0%
5190	2	1	25.0%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	U	-90.0%
5191	3	1	25.0%	Runoff	(ac-ft/yr)	5	0	0	5	5	0	0	5 30	-30.0%
5191	3	1	25.0%	BOD	(lbs/yr)	42	0	0	42	30	0	0		-30.0%
5191	3	1	25.0%	COD	(lbs/yr)	260	0	0	260	130	0	0	130	
5191	3	1	25.0%	TSS	(lbs/yr)	1,236	0	0	1,236	371	0	0	371	-70.0%
5191	3	1	25.0%	TDS	(lbs/yr)	1,365	0	0	1,365	1,365	0	0	1,365	0.0%
5191 5191	3	1	25.0%	Total-P	(lbs/yr)	2	0	0	2	1	0	0	1	-50.0%
5191 5191	3	1	25.0%	Dissolved-		2	0	0	2	0	0	0	0	-80.0%

RESULTS FROM CDM WATERSHED MANAGEMEN	T MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER PROPOSED
ALTERNATIVE (Continued).	

			%				No BMP ( Average	an san sa sa dika sa d		)	With Wet Po Average A	AND ADDIDE OF MA		% Reduction Surface
Basin	Drainage Area	Imperv Area	% Imperv	Constituent	(units)	Surface	Baseflow	Point Source		Surface	Baseflow	Point Source	Total	NPS Loads
			or <b>o</b> 0/		()h()	7	0	0	7	5	0	0	5	-30.0%
5191	3	1	25.0%	TKN	(lbs/yr)	7	0	ŏ	, 7	1	õ	Ō	1	-80.0%
5191	3	1	25.0%	$NO_2 + NO_3$	(lbs/yr)		0	ŏ	ó	ò	ŏ	õ	Ó	-80.0%
5191	3	1	25.0%	Lead	(lbs/yr)	0	0	ŏ	1	õ	õ	ō	0	-75.0%
5191	3	1	25.0%	Copper	(lbs/yr)	1	0	ő	2	1	ŏ	ŏ	1	-50.0%
5191	3	1	25.0%	Zinc	(lbs/yr)	2	-	ő	0	o o	õ	ŏ	ò	-50.0%
191	3	1	25.0%	Cadmium	(lbs/yr)	0	0	U	U	0	v	Ŭ	v	001010
5192	52	8	15.7%	Runoff	(ac-ft/yr)	69	0	0	69	69	0	0	69	<b>AA AA</b> ⁴
5192	52	8	15.7%	BOD	(lbs/yr)	1,815	0	0	1,815	1,270	0	0	1,270	-30.0%
5192	52	8	15.7%	COD	(lbs/yr)	14,132	0	0	14,132	7,066	0	0	7,066	-50.0%
5192	52	8	15.7%	TSS	(lbs/yr)	31,252	0	0	31,252	9,376	0	0	9,376	-70.0%
5192	52	8	15.7%	TDS	(lbs/yr)	18,773	0	0	18,773	18,773	0	0	18,773	0.0%
192	52	8	15.7%	Total-P	(lbs/yr)	51	0	0	51	26	0	0	26	-50.0%
5192	52	8	15.7%	Dissolved-I		22	0	0	22	4	0	0	4	-80.0%
5192	52	8	15.7%	TKN	(ibs/yr)	225	0	0	225	157	0	0	157	-30.0%
i 192	52	8	15.7%	NO ₂ +NO ₂	(lbs/yr)	51	0	0	51	10	0	0	10	-80.0%
5192 5192	52	8	15.7%	Lead	(lbs/yr)	12	0	0	12	2	0	0	2	-80.0%
	52	8	15.7%	Copper	(lbs/yr)	6	0	0	6	1	0	0	1	-75.0%
5192	52 52	8	15.7%	Zinc	(lbs/yr)	8	Ō	0	8	4	0	0	4	-50.0%
5192 5192	52 52	8	15.7%	Cadmium	(lbs/yr)	õ	0	0	0	0	0	0	0	-50.0%
						405	0	0	405	405	0	0	405	
	ım 205	66	32.5%	Runoff	(ac-ft/yr)			ŏ	10,497	7,593	õ	ō	7,593	
	ım 205	66	32.5%	BOD	(lbs/yr)	10,497	0	•		47,478	õ	ŏ	47,478	
	ım 205	66	32.5%	COD	(lbs/yr)	83,959	0	0	83,959	47,478 59,472	ŏ	ŏ	59,472	
	ım 205	66	32.5%	TSS	(lbs/yr)	153,368	0		53,368		0 0	-	103,872	
	ım 205	66	32.5%	TDS	(lbs/yr)	110,150	0		10,150	103,872 165	0	ō	165	
	ım 205	66	32.5%	Total-P	(lbs/yr)	311	0	0	311	44	0	ŏ	44	
fotal Su	ım 205	66	32.5%	Dissolved-l		151	0	0	151	936	0	ő	936	
otal Su	ım 205	66	32.5%	TKN	(lbs/yr)	1,306	0	0	1,306		0	0	930	
otal Su	ım 205	66	32.5%	NO2+NO3	(lbs/yr)	344	0	0	344	97	0	0	39	
	ım 205	66	32.5%	Lead	(lbs/yr)	92	0	0	92	39	0	0	17	
otal Su	im 205	66	32.5%	Copper	(lbs/yr)	48	0	0	48	17	-	0	47	
	ım 205	66	32.5%	Zinc	(lbs/yr)	82	0	0	82	47	0	0	47	
	ım 205	66	32.5%	Cadmium	(lbs/yr)	2	0	0	2	1	0	U	I	

Ì.

λ

	Drainage Imperv		%				No BMP Average			Ŷ	Vith Wet Po Average A	44 <b>49 4 3 6 6 6 6 6 6 6 6</b> 6 6 6 6 6 6 6 6 6 6		% Reduction Surface
Basin	Area	Area	/o Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
EMC	205	66	32.5%	BOD	(mg/L)	9.53	0.00	0.00	9.53	6.89	0.00	0.00	6.89	
EMC	205	66	32.5%	COD	(mg/L)	76.21	0.00	0.00	76.21	43.10	0.00	0.00	43.10	
EMC	205	66	32.5%	TSS	· (mg/L)	139.22	0.00	0.00	139.22	53.99	0.00	0.00	53.99	
EMC	205	66	32.5%	TDS	(mg/L)	99.99	0.00	0.00	99.9 <del>9</del>	94.29	0.00	0.00	94.29	
EMC	205	66	32.5%	Total-P	(mg/L)	0.28	0.00	0.00	0.28	0.15	0.00	0.00	0.15	
EMC	205	66	32.5%	Dissolved-I		0.14	0.00	0.00	0.14	0.04	0.00	0.00	0.04	
EMC	205	66	32.5%	TKN	(mg/L)	1,19	0.00	0.00	1.19	0.85	0.00	0.00	0.85	
EMC	205	66	32.5%	$NO_2 + NO_3$	(mg/L)	0.31	0.00	0.00	0.31	0.09	0.00	0.00	0.09	
EMC	205	66	32.5%	Lead	(mg/L)	0.08	0.00	0.00	0.08	0.04	0.00	0.00	0.04	
EMC	205	66	32.5%	Copper	(mg/L)	0.04	0.00	0.00	0.04	0.02	0.00	0,00	0.02	
EMC	205	66	32.5%	Zinc	(mg/L)	0.07	0.00	0.00	0.07	0.04	0.00	0.00	0.04	
EMC	205	66	32.5%	Cadmium	(mg/L)	0.002	0.000	0.000	0.002	0.001	0.000	0.000	0.001	

# RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 2 UNDER PROPOSED ALTERNATIVE (Continued).

à

Ì

1

-

ý

Drainage Imperv %							No BMP Average				% Reduction Surface			
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Poin		Surface	Average A Baseflow	Point	Total	NPS Loads
								Sour	CC			Source	X	
5200	20	7	34.6%	Runoff	(ac-ft/yr)	41	0	0	41	41	0	0	41	
5200	20	7	34.6%	BOD	(lbs/yr)	1,202	0	0	1,202	842	0	0	842	-30.0%
5200	20	7	34.6%	COD	(lbs/yr)	9,269	0	0	9,269	4,634	0	0	4,634	-50.0%
5200	20	7	34.6%	TSS	(lbs/yr)	15,576	0	0	15,576	4,673	0	0	4,673	-70.0%
5200	20	7	34.6%	TDS	(lbs/yr)	11,125	0	0	11,125	11,125	0	0	11,125	0.0%
5200	20	7	34.6%	Total P	(lbs/yr)	40	0	0	40	20	0	0	20	-50.0%
5200	20	7	34.6%	Dissolved I	P (lbs/yr)	18	0	0	18	4	0	0	4	-80.0%
5200	20	7	34.6%	TKN	(lbs/yr)	157	0	0	157	110	0	0	110	-30.0%
5200	20	7	34.6%	NO ² + NO ³	(lbs/yr)	39	0	0	39	8	0	0	8	-80.0%
5200	20	7	34.6%	Lead	(lbs/yr)	7	0	0	7	1	0	0	1	-80.0%
5200	20	7	34.6%	Copper	(lbs/yr)	5	0	0	5	1	0	0	1	-75.0%
5200	20	7	34.6%	Zinc	(lbs/yr)	6	0	0	6	3	0	0	3	-50.0%
5200	20	7	34.6%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-50.0%
5210	38	19	48.8%	Runoff	(ac-ft/yr)	99	0	0	99	99	0	0	99	
5210	38	19	48.8%	BOD	(lbs/yr)	2,714	0	0	2,714	1,900	0	0	1,900	-30.0%
5210	38	19	48.8%	COD	(lbs/yr)	19,318	0	0	19,318	9,659	0	0	9,659	-50.0%
5210	38	19	48.8%	TSS	(lbs/yr)	30,528	. 0	0	30,528	9,158	0	0	9,158	-70.0%
5210	38	19	48.8%	TDS	(lbs/yr)	26,946	0	0	26,946	26,946	0	0	26,946	0.0%
5210	38	19	48.8%	Total P	(lbs/yr)	62	0	0	62	31	0	0	31	-50.0%
5210	38	19	48.8%	Dissolved F	P (lbs/yr)	32	0	0	32	6	0	0	6	-80.0%
5210	38	19	48.8%	TKN	(lbs/yr)	325	0	0	325	227	0	0	227	-30.0%
5210	38	19	48.8%	$NO_2 + NO_3$	(lbs/yr)	56	0	0	56	11	0	0	11	-80.0%
5210	38	19	48.8%	Lead	(lbs/yr)	45	0	0	45	9	0	0	9	-80.0%
5210	38	19	48.8%	Copper	(lbs/yr)	11	0	0	11	3	0	0	3	-75.0%
5210	38	19	48.8%	Zinc	(lbs/yr)	25	0	0	25	13	0	0	13	-50.0%
5210	38	19	48.8%	Cadmium	(lbs/yr)	1	0	0	1	0	0	0	0	-50.0%
5220	19	1	6.1%	Runoff	(ac-ft/yr)	18	0	0	18	18	0	0	18	
5220	19	1	6.1%	BOD	(lbs/yr)	451	0	0	451	315	0	0	315	-30.0%
220	19	1	6.1%	COD	(lbs/yr)	3,113	0	0	3,113	1,556	0	0	1,556	-50.0%
5220	19	1	6.1%	TSS	(lbs/yr)	9,538	0	0	9,538	2,861	0	0	2,861	-70.0%
220	19	1	6.1%	TDS	(lbs/yr)	5,024	0	0	5,024	5,024	0	0	5,024	0.0%
220	19	1	6.1%	Total P	(lbs/yr)	12	0	0	12	6	0	0	6	-50.0%
220	19	1	6.1%	Dissolved F	(lbs/yr)	5	0	0	5	1	0	0	1	-80.0%
5220	19	1	6.1%	TKN	(lbs/yr)	53	0	0	53	37	0	0	37	-30.0%

.

;

# RESULTS FROM CDM WATERSHED MANAGEMENT MODEL FOR ELLIGRAW BAYOU BASIN 3 UNDER PROPOSED ALTERNATIVE (Continued).

١

	Drainage	Imperv	%				No BMP ( Average			١	With Wet Po Average A			% Reduction Surface
Basin	Area	Area	Imperv	Constituent	(units)	Surface	Baseflow	Point Source	Total	Surface	Baseflow	Point Source	Total	NPS Loads
5220	19	1	6.1%	NO ² + NO ³	(lbs/yr)	13	0	0	13	3	0	0	3	-80.0%
5220	19	1	6.1%	Lead	(lbs/yr)	1	0	0	1	0	0	0	0	-80.0%
5220	19	1	6.1%	Copper	(lbs/yr)	1	0	0	1	0	0	0	0	-75.0%
5220	19	1	6.1%	Zinc	(lbs/yr)	1	0	0	1	0	0	0	0	-50.0%
5220	19	1	6.1%	Cadmium	(lbs/yr)	0	0	0	0	0	0	0	0	-50.0%
Total Su	ım 77	27	34.5%	Runoff	(ac-ft/yr)	158	0	0	158	158	0	0	158	
Fotal Su	ım 77	27	34.5%	BOD	(lbs/yr)	4,367	0	0	4,367	3,057	0	0	3,057	
Total Su		27	34.5%	COD	(lbs/yr)	31,699	0	0	31,699	15,850	0	0	15,850	
Total Su		27	34.5%	TSS	(lbs/yr)	55,641	0	0	55,641	16,692	0	0	16,692	
Total Su	ım 77	27	34.5%	TDS	(lbs/yr)	43,095	0	0	43,095	43,095	0	0	43,095	
Total Su	ım 77	27	34.5%	Total P	(lbs/yr)	114	0	0	114	57	0	0	57	
Total Su		27	34.5%	Dissolved I	P (lbs/yr)	54	0	0	54	11	0	0	11	
Total Su		27	34.5%	TKN	(lbs/yr)	535	0	0	535	374	0	0	374	
Total Su		27	34.5%	$NO_2 + NO_3$	(ibs/yr)	108	0	0	108	22	0	0	22	
Total Su		27	34.5%	Lead	(lbs/yr)	53	0	0	53	11	0	0	11	
Total Su	ım 77	27	34.5%	Copper	(lbs/yr)	17	0	0	17	4	0	0	4	
Total Su		27	34.5%	Zinc	(lbs/yr)	32	0	0	32	16	0	0	16	
Fotal Su		27	34.5%	Cadmium	(lbs/yr)	1	0	0	1	0	0	0	0	
EMC	77	27	34.5%	BOD	(mg/L)	10.13	0.00	0.00	10.13	7.09	0.00	0.00	7.09	
MC	77	27	34.5%	COD	(mg/L)	73.55	0.00	0.00	73.55	36.77	0.00	0.00	36.77	
MC	77	27	34.5%	TSS	(mg/L)	129.10	0.00	0.00		38.73	0.00	0.00	38.73	
EMC	77	27	34.5%	TDS	(mg/L)	99.99	0.00	0.00	99.99	99.99	0.00	0.00	99.99	
EMC	77	27	34.5%	Total P	(mg/L)	0.27	0.00	0.00	0.27	0.13	0.00	0.00	0.13	
EMC	77	27	34.5%	Dissolved I		0.13	0.00	0.00		0.03	0.00	0.00	0.03	
EMC	77	27	34.5%	TKN	(mg/L)	1.24	0.00	0.00	1.24	0.87	0.00	0.00	0.87	
MC	77	27	34.5%	$NO_2 + NO_3$	(mg/L)	0.25	0.00	0.00		0.05	0.00	0.00	0.05	
MC	77	27	34.5%	Lead	(mg/L)	0.12	0.00	0.00	0.12	0.02	0.00	0.00	0.02	
MC	77	27	34.5%	Copper	(mg/L)	0.04	0.00	0.00	0.04	0.01	0.00	0.00	0.01	
MC	77	27	34.5%	Zinc	(mg/L)	0.08	0.00	0.00	0.08	0.04	0.00	0.00	0.04	
EMC	77	27	34.5%	Cadmium	(mg/L)	0.002	0.000	0.00	0 0.002	0.00	1 0.000	0.000	0.001	



Location: Tuckerstown Drive at Captiva Way (looking east)

Date: 06/26/92

Time: 3:55 p.m.



Location: Tuckerstown Drive at Coventry Drive (looking south)

Date: 06/26/92

Time: 3:55 p.m.



Location: Dickens Drive at Hardee Drive (looking north on Dickens Drive)

Date: 06/92



Location: Tuckerstown Drive and Biltmore Drive (looking west on Biltmore Drive)

Date: 06/92



Location: Tuckerstown Drive at Biltmore Drive (looking east)

Date: 06/26/92

Time: 3:55 p.m.

#### UPPER ELLIGRAW BAYOU



Location: The Estates of Prestancia, Parcel B (looking east from Palmer Ranch Parkway)

Date: 06/26/92



Location: The Estates of Prestancia, Parcel B (looking south from Palmer Ranch Parkway - Country Club of Sarasota in background, Ballantrae Condominium to the right)

Date: 06/26/92

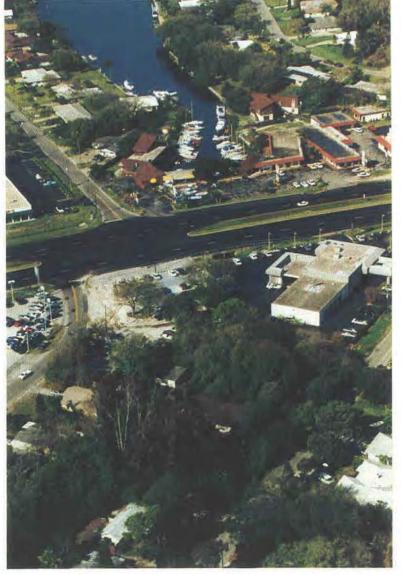
# ELLIGRAW BAYOU GULF GATE LATERAL



Location: Antiqua Place (looking south from Bounty Road)

Date: 06/26/92

Time: 3:45 p.m.

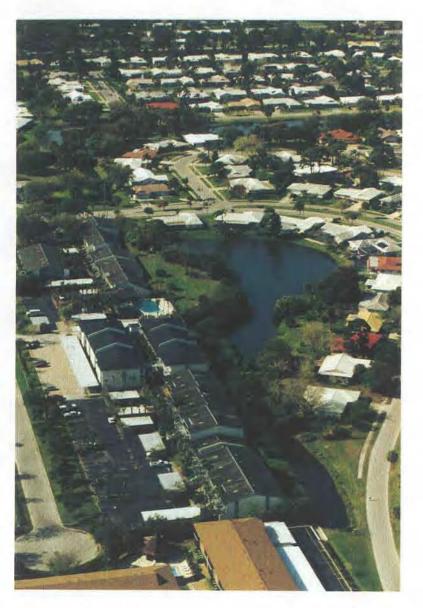



Location: Biltmore Drive and Biltmore Way (looking south on Biltmore Drive)


Date: 06/26/92

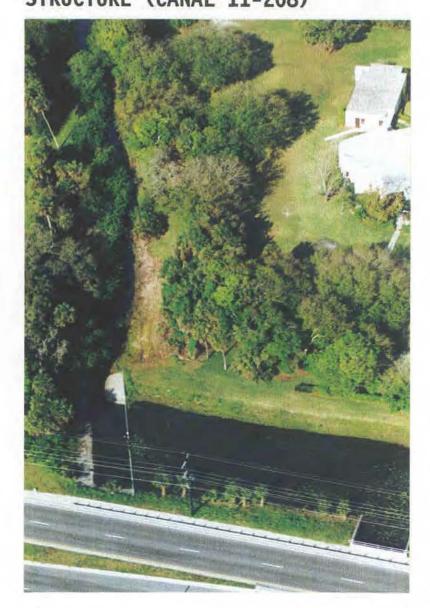
Time: 3:50 p.m.

LOWER ELLIGRAW BAYOU (CANAL 11-209/L11-18)




Looking downstream to U.S. 41 where stormwater exits underground culvert outfall




Looking upstream where stormwater enters underground culvert outfall

**GULF GATE LATERAL (L11-16)** 



Gulf Gate Lateral (looking south from Curtis Avenue)

ELLIGRAW BAYOU BENEVA ROAD WATER LEVEL CONTROL STRUCTURE (CANAL 11-208)



Upper Elligraw Bayou Control Structure (looking west from Beneva Road)



Location: Dale Avenue at U.S. 41 (looking northeast)

Date: 06/26/92

Time: 4:15 p.m.



Location: Dale Avenue at U.S. 41 (looking northwest)

Date: 06/22/92

Time: 4:15 p.m.



Location: U.S. 41 south of Dale Avenue (looking north)

Date: 06/26/92

Time: 4:15 p.m.



Location: Pinehurst Street at Dale Avenue (looking west)

Date: 06/26/92

Time: 4:20 p.m.



Location: Pinehurst Street at Dale Avenue (looking north)

Date: 06/26/92

Time: 4:20 p.m.



Location: Pinehurst Street at Spring Place (looking west)

Date: 06/26/92

Time: 4:20 p.m.

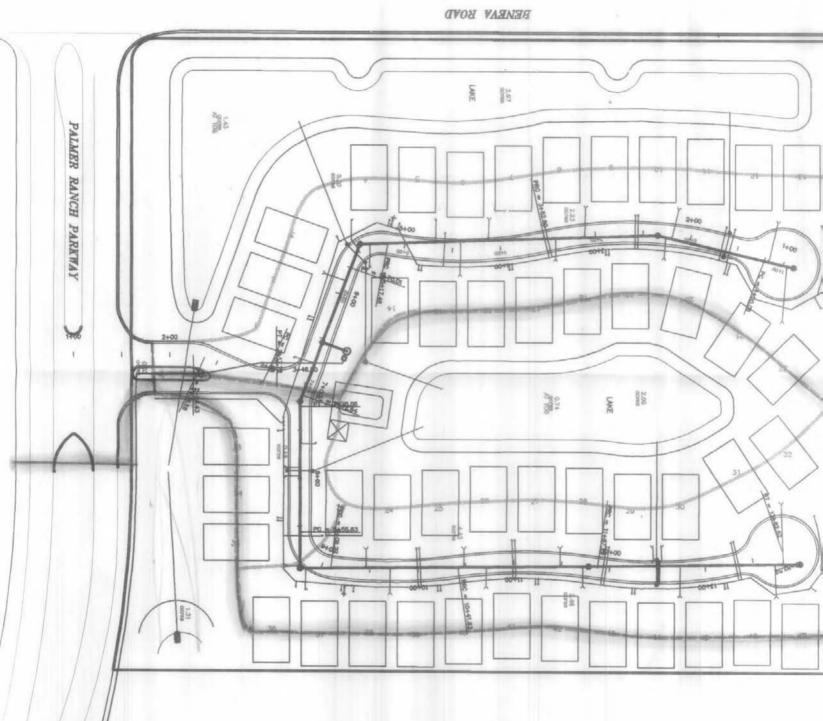


Location: Biltmore Drive and Biltmore Way (looking west on Biltmore to Marianna Drive)

Date: 06/26/92

Time: 3:50 p.m.




Location: Biltmore Drive and Tuckerstown Drive (looking southwest to Biltmore Drive)

Date: 06/26/92

Time: 3:50 p.m.



Date: 2/13/95 SCALE: 1"=40'



### BASIN NO. <u>A</u>

Site Coverage Worksheet

Imperv	vious	23,91		
Α.	DCIA:	( <u>24.17</u> %)		
	a	Street Pavement/Curb G50LF X24 +150 X12 + cul pe sac	0.50	acs.
	<b>b</b> .	Driveways 25 × 400 SF	0.23	acs.
	C.	Ponds	0.49	acs.
	đ.	Other	·····	acs.
		DCIA Total	1.22	acs.
B.	Other	Impervious		
	a.	House/Garage 2584 sr x 27 3/4	1.65	acs.
	Ъ.	Sidewalk 5 × 200	0,02	_ acs.
	c.	Other POOL 50 x 34 + 200 BLOG(PART) (- 1505F) SF	0.04	_ acs.
		(- 1505 F) NON-DCIA Total	_1.21	_ acs.
Pervi	ous			

 $\frac{2.15}{\text{COTAL}}$  acs.

CN = 87Tc = 22

BASIN.NO(FORMS#2)

# BASIN NO. B

. -

Site Coverage Worksheet

.

•

Site C	overage	WOrksheet		
Imper A.		30.17 :(30.57 %)	•	
	<b>a</b> .	Street Pavement/Curb 580LFX24 +160X22 + CAL DE SAC	0.50 acs	•
	Ъ.	Driveways 22x 400 SF	0.20 acs	•
	c.	Ponds	0.8 ( acs	
-	d.	Other	acs	
		DCIA Total	1.56 acs	•
B.	Other	Impervious		
	а.	House/Garage 2584 SFX 173/4	105 acs	
	b.	Sidewalk BOX5 EXIST.	0.01 ac	i.
	c.	Other poor BLDG (LART) 200 SF	0,01 ac:	5.
		POOL 150 5# NON-DCIA Total	1.07 ac	5.
Pervi	ious		<u>2.54</u> ac	s.
14		TOTAL	<u>517</u> ac	s.
	<i>,</i>	CN = 85 Tc = 11		
BASD	1.NO(FOR	MS#2)		

:

٠,

Advanced Intercon Copyrigh	nected Chann t 1989, Stre	nel & Pond eamline Tec	Routing (adl) hnologies, I	CPR Ver nc.	1.40)
ELLIGRAW BAYOU - 04-01-94	BASIN MASTE	R PLAN (EXI	ST. COND	100 YR)	
BASIN NAME NODE NAME	175 175	180 180	(181 <b>2</b> ) (181	182 182	183 183
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.	UH256 256.	UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs	SCSIIMOD 10.00 ) 24.00	10.00	SCSIIMOD S( 10.00 24.00 16.93	CSIIMOD 10.00 24.00	SCSIIMOD 10.00 24.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	8.95 81.30 46.10 22.00 .00 ONSITE	.00	19.78 79.80 ok 23.20 15.00 .00 ONSITE	5.78 82.60 31.50 15.00 .00 ONSITE	19.53 81.60 42.60 15.00 .00 ONSITE
BASIN QMX (cfs) TMX 175 33.02 180 18.11 181 82.21 182 24.97 183 84.91	(hrs) VOL 12.12 12.07 12.07 12.07 12.07 12.07	(in) NOTES 8.70 8.01 8.05 8.49 8.65	+818- 1817 1-31-	-16.86	
BASIN NAME NODE NAME	184 184		186 👉	187 187	191 191
UNIT HYDROGRAPH PEAKING FACTOR	UH256 256.	UH256 256.	UH256 256.	UH256 256.	UH256 256.
RAINFALL FILE RAIN AMOUNT (in) STORM DURATION (hrs	SCSIIMOD 10.00 ) 24.00	10.00 24.00	10.00	CSIİMOD 10.00 24.00	10.00
AREA (ac) CURVE NUMBER DCIA (%) TC (mins) LAG TIME (hrs) BASIN STATUS	7.20 81.00 26.30 15.00 .00 ONSITE	75.00 27.50	30 <del>75.00</del> 30 <del>75.00</del> 1 <del>• 15.00</del> .00 ONSITE	1.46 75.00 60.30 10.00 .00 ONSITE	75.00 80.80 10.00 .00
BASIN QMX (cfs) TMX 184 30.44 185 2.02 186 35.89 187 7.16 191 15.21	12.07 12.07 12.07 12.02 12.02	(in) NOTES 8.24 7.71 8.99 8.70 9.32 27.96 *****	1805 1805 1805 1805 57 57 24 12	<del>4.63</del> .4	1.31 F.62

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.

ELLIGRAW BAYOU - BASIN MASTER PLAN (EXISTING COND.) 04-01-94

NODE NAME	NODE TYPE	INI STAGE (ft)	X-COOR (ft)	Y-COOR (ft)	LENGTH (ft)	STAGE AR/TM/STR (ft) (ac/hr/af)
180	AREA	14.550	.000	.000	.000	14.500 .606 17.500 .862
	AREA	14.730	.000	.000	.000	ತ.ಕ್ರಿ4 15.000 <del>3.566</del> 20.000 5.ಾ <u>.5.138</u>
182	AREA	16.200	.000	.000	.000	15.500 1.621 20.000 2.452
183	AREA	16.200	.000	.000	.000	15.500 3.021 20.000 4.307
183A	AREA	14.710	.000	.000	.000	14.710 .000 20.000 .002
184	AREA	16.500	.000	.000	.000	16.500 .706 20.500 1.019
185A	STRG	14.730	.000	.000	.000	14.730 .000 19.000 .001
185B	AREA	14.730	.000	.000	.000	15.000 .144 20.000 .305
186 1	AREA	14.730	.000	.000	.000	0.86 14.500 - 490 - <del>18.500</del> 1.43 .973
187	AREA	16.430	.000	.000	.000	16.000 .395 17.500 .423 17.800 .735
190	AREA	12.000	.000	.000	.000	18.000 .000 19.000 .000
191	AREA	14.940	.000	.000	.000	14.500 2.130 18.000 2.890
192	AREA	14.910	.000	.000	.000	14.500 7.740 18.000 9.500
200	AREA	11.510	.000	.000	.000	11.5001.61415.0002.183
1300	BRED	14.73				16.000         2.803           17.000         5.465
7						14.5 0.49
					<b>(</b>	18.5 0.74

Advanced Interconnected Channel & Pond Routing (adICPR Ver 1.40) Copyright 1989, Streamline Technologies, Inc.

ELLIGRAW BAYOU (UPDATED FOR PARCEL F) 03-16-95

A second second and a second 
# NODAL MAXIMUM CONDITIONS REPORT

 =	=	=	-	-	=	=	=	=	=	=	=	=	Ξ	=	=	=	Ξ	=:	=	=	=	=:	= =	= =	:=	= =	= :	

NODE	SMA CE		<	INFLOW	>	
ID	STAGE (ft)	VOLUME (af)	RUNOFF (cfs)	OFFSITE (cfs)	OTHER (cfs)	OUTFLOW (cfs)
100	· 1.50	284.39	.00	.00	399.25	.00
101	2.35	.18	38.10	.00	391.99	
102	6.47	.56	.00	.00	391.89	391.99
104	9.40	.10	.00	.00	92.71	93.10
106	11.61	.19	37.58	.00	57.97	92.71
108	11.74	.20	.00	.00	58.12	57.97
110	12.13	.45	53.77	.00	9.42	58.12
120	13.44	9.87	190.90	.00	207.32	314.18
130	14.16	2.13	63.49	.00	184.07	207.32
140	14.38	12.13		.00	143.72	184.07
150	15.93	2.14	.00	.00	150.43	81.58
151 157	15.93		31.28	.00	123.92	150.43
158	15.93	2.46		.00	90.37	119.83
159	15.95	2.03	.00	.00	95.43	79.68
160	15.97 15.99	3.48		.00	160.30	95.43
161	15.99	7.67		.00	16.46	28.66
162	16.00	1.87	4.32	.00	53.06	145.51
163	16.01	2.32		.00	53.80	43.65
164	16.08		12.50	.00	15.70	19.05
165	16.09	. 50	15.35 6.91	.00	8.32	15.70
170	15.95	1.16	7.20	.00	.00	4.17
171	16.27	6.28		.00	.00	13.43
173	16.00	1.56		.00	.00	5.63
175	15.78	6.07		.00 .00	.00	1.49
180	16.38	1.43	17.54	.00	.00 8.48	1.91
181	16.79	9.94	67.89	.00	23.38	11.17
182	18.32	5.78	24.26	.00	15.23	24.93 13.22
183	18.52	11.06	82.55	.00	13.14	19.10
183A	16.21	.01	.00	.00	4.17	4.17
184	18.55	1.78		.00	.00	13.14
185A	16.81	.01	.00	.00	.55	3.34
185B	16.81	. 41	1.96	.00	.00	
186	17.04	2.92	31.31	.00	.00	4.18
187	17.19	. 49	7.11	.00	.00	3.73
188	16.89	1.50	21.91	.00	4.18	10.08
190	16.00	1.73	8.45	.00	14.20	43.91
191 192	17.15	6.66	15.12	.00	24.76	4.85
192	17.15	22.88	96.35	.00	.00	27.59
200	15.64	8.27	66.89	.00	47.04	62.26
210	16.16	5.45	76.54	.00	18.68	47.04
220	16.24	8.69	56.17	.00	.00	18.68

-----

-----

ELLIGRAW		100 YEAR	STORM COMPARISON
NODE	ALT 3	ALT 4	DIFF.
100	1.50	1.50	0.00
101	2.35	2.35	0.00
102	6.48	6.48	
104	9.40	9.40	
106	11.61	11.61	0.00
108	11.74	11.74	0.00
110	12.13	12.13	0.00
120	13.45	13.45	0.00
130	14.18	14.18	0.00
140	14.40	14.40	0.00
150	15.99	15.99	0.00
151	16.00	16.00	0.00
157	16.05	16.00	-0.05
158	16.05	16.03	-0.02
159	16.05	16.04	-0.01
160	16.06	16.06	0.00
161	16.06	16.05	-0.01
162	16.08	16.05	-0.03
163	16.09	16.07	-0.02
164	16.09	16.08	-0.01
165	16.09	16.09	0.00
170	16.03	16.01	-0.02
171	16.32	16.31	-0.01
173	16.07	16.06	-0.01
175	15.82	15.81	-0.01
180	16.62	16.57	-0.05
181	17.16	17.06	-0.10
182	18.11	18.30	0.19
183	18.46	18.51	0.05
183A	16.24	16.24	0.00
184	18.52	18.55	0.03
185A	17.15	17.06	-0.09
185B	17.18	17.08	-0.10
186	17.18	17.11	-0.07
187	17.20	17.20	0.00
190	16.09	16.05	-0.04
191	17.18	17.17	-0.01
192	17.18	17.17	-0.01
200	15.65	15.65	0.00
210	16.16	16.16	0.00
220	16.24	16.24	0.00

------

-

......

ELLIGRAW	BAYOU - 1	00 YEAR	STORM COME	PARISON	
NODE	ALT 3	ALT 4	DIFF.	ALT 5	DIFF.
100	1.50	1.50	0.00	1.50	0.00
101	2.35	2.35		2.35	0.00
102	6.48	6.48		6.48	0.00
104	9.40	9.40	0.00	9.40	0.00
106	11.61	11.61	0.00	11.61	0.00
108	11.74	11.74		11.74	0.00
110	12.13	12.13		12.13	0.00
120	13.45	13.45		13.45	0.00
130	14.18	14.18		14.20	0.02
140	14.40	14.40		14.41	0.01
150	15.99	15.99		16.03	0.04
151	16.00	16.00		16.03	0.03
157	16.05	16.00		16.03	-0.02
158	16.05	16.03		16.06	0.01
159 160	16.05	16.04		16.07	0.02
161	16.06 16.06	16.06		16.08	0.02
162	16.08	16.05		16.08	0.02
163	16.09	16.05 16.07	-0.03	16.08	0.00
164	16.09	16.08	-0.02	16.10	0.01
165	16.09	16.08	-0.01 0.00	16.11	0.02
170	16.03	16.01	-0.02	16.11 16.04	0.02
171	16.32	16.31	-0.02	16.04	0.01
173	16.07	16.06	-0.01	16.08	0.02
175	15.82	15.81	-0.01	15.82	0.01 0.00
180	16.62	16.57	-0.05	16.65	0.03
181	17.16	17.06	-0.10	17.19	0.03
182	18.11	18.30	0.19	18.04	-0.07
183	18.46	18.51	0.05	18.25	-0.21
1 <b>83</b> A	16.24	16.24	0.00	16.25	0.01
184	18.52	18.55	0.03	18.39	-0.13
185A	17.15	17.06	-0.09	17.21	0.06
185B	17.18	17.08	-0.10	17.20	0.02
186	17.18	17.11	-0.07	17.27	0.09
187	17.20	17.20	0.00	17.22	0.02
190	16.09	16.05	-0.04	16.08	-0.01
191	17.18	17.17	-0.01	17.18	0.00
192	17.18	17.17	-0.01	17.18	0.00
200	15.65	15.65	0.00	15.66	0.01
210 220	16.16 16.24	16.16	0.00	16.17	0.01
440	10.24	16.24	0.00	16.25	0.01

-----

-

	BAYOU - 2		RM COMPARISON
NODE	ALT 3	ALT 4	DIFF.
100	1.50	1.50	0.00
101	1.60	1.60	0.00
102	3.87	3.87	0.00
104	7.83	7.83	0.00
106	10.88	10.88	0.00
108	11.03	11.03	0.00
110 120	11.45	11.45	0.00
130	$12.04 \\ 12.12$	12.04	0.00
140	12.12	12.12 12.74	0.00
150	13.68	13.67	0.00
150	13.68	13.67	-0.01 -0.01
157	13.69	13.68	-0.01
158	13.70	13.68	-0.02
159	13.70	13.70	0.00
160	15.74	15.71	-0.03
161	13.70	13.70	0.00
162	13.72	13.72	0.00
163	14.05	14.05	0.00
164	15.51	15.53	0.02
165	15.51	15.53	0.02
170	15.35	15.35	0.00
1 <b>71</b>	14.58	14.58	0.00
173	14.72	14.72	0.00
175	14.54	14.54	0.00
180	15.30	15.29	-0.01
181	15.74	15.70	-0.04
182	16.97	17.01	0.04
183	16.98	17.02	0.04
183A	15.57	15.60	0.03
184	17.28	17.29	0.01
185A 185B	15.76	15.69	-0.07
186	15.74	15.71	-0.03
187	15.74	15.72	-0.02
190	16.77 13.72	16.77 13.73	0.00
190	15.63	15.63	0.01
192	15.63	15.63	0.00
200	13.34	13.34	0.00 0.00
210	13.49	13.49	0.00
220	14.16	14.16	0.00
220	13110	17.10	0.00

ELLIGRAW			M COMPARI	SON	
NODE	ALT 3	ALT 4	DIFF.	ALT 5	DIFF.
100	1.50	1.50	0.00	1.50	0.00
101	1.60	1.60	0.00	1.60	0.00
102	3.87	3.87	0.00	3.88	0.01
104	7.83	7.83	0.00	7.84	0.01
106	10.88	10.88	0.00	10.88	0.00
108	11.03	11.03	0.00	11.03	0.00
110	11.45	11.45	0.00	11.45	0.00
120	12.04	12.04	0.00	12.05	0.01
130	12.12	12.12	0.00	12.12	0.00
140	12.74	12.74	0.00	12.74	0.00
150	13.68	13.67	-0.01	13.68	0.00
151	13.68	13.67	-0.01	13.69	0.01
157	13.69	13.68	-0.01	13.70	0.01
158	13.70	13.68	-0.02	13.70	0.00
159	13.70	13.70	0.00	13.70	0.00
160 161	15.74	15.71	-0.03	15.78	0.04
162	13.70	13.70	0.00	13.71	0.01
163	13.72 14.05	13.72	0.00	13.73	0.01
164	15.51	14.05 15.53	0.00 0.02	14.02	-0.03
165	15.51	15.53	0.02	15.40 15.40	-0.11
170	15.35	15.35	0.02	15.35	-0.11 0.00
171	14.58	14.58	0.00	14.58	0.00
173	14.72	14.72	0.00	14.72	0.00
175	14.54	14.54	0.00	14.54	0.00
180	15.30	15.29	-0.01	15.36	0.06
181	15.74	15.70	-0.04	15.83	0.09
182	16.97	17.01	0.04	16.70	-0.27
183	16.98	17.02	0.04	16.74	-0.24
183A	15.57	15.60	0.03	15.45	-0.12
184	17.28	17.29	0.01	17.27	-0.01
185A	15.76	15.69	-0.07	15.84	0.08
185B	15.74	15.71	-0.03	15.83	0.09
186	15.74	15.72	-0.02	15.83	0.09
187	16.77	16.77	0.00	16.77	0.00
190	13.72	13.73	0.01	13.73	0.01
191	15.63	15.63	0.00	15.63	0.00
192	15.63	15.63	0.00	15.63	0.00
200	13.34	13.34	0.00	13.34	0.00
210	13.49	13.49	0.00	13.49	0.00
220	14.16	14.16	0.00	14.16	0.00

ELLIGRAW		VEND CHOD	
NODE	BAYOU - 5 ALT 3	YEAR STOR	M COMPARISON DIFF.
100	1.50	1.50	0.00
101	1.79	1.79	0.00
102	4.91	4.90	-0.01
104	8.41	8.41	0.00
106	11.03	11.03	0.00
108	11.35	11.35	0.00
110	11.70	11.70	0.00
120	12.51	12.51	0.00
130	12.75	12.75	0.00
140	13.21	13.21	0.00
150	14.61	14.57	-0.04
151	14.61	14.58	-0.03
157	14.63	14.58	-0.05
158	14.64	14.59	-0.05
159 160	14.63 15.85	14.60 15.84	-0.03
161	14.64	14.60	-0.01 -0.04
162	14.64	14.63	-0.01
163	14.69	14.67	-0.02
164	15.65	15.65	0.00
165	15.66	15.67	0.01
170	15.41	15.41	0.00
171	15.07	15.07	0.00
173	15.00	15.00	0.00
175	14.85	14.84	-0.01
180	15.62	15.61	-0.01
181	16.09	16.03	-0.06
182 183	17.35	17.44	0.09
183A	17.41 15.73	17.46 15.72	0.05
184	17.65	17.65	-0.01 0.00
185A	16.11	16.05	-0.06
185B	16.10	16.05	-0.05
186	16.10	16.08	-0.02
187	16.91	16.91	0.00
190	14.64	14.63	-0.01
191	16.03	16.03	0.00
192	16.03	16.03	0.00
200	14.16	14.16	0.00
210	14.49	14.49	0.00
220	14.69	14.69	0.00

ELLIGRAW	BAYOU - 5	YEAR STOP	RM COMPARI	ISON	
NODE	ALT 3	ALT 4	DIFF.	ALT 5	DIFF.
100	1.50	1.50	0.00	1.50	0.00
101	1.79	1.79	0.00	1.79	0.00
102	4.91	4.90	-0.01	4.91	0.00
104	8.41	8.41	0.00	8.41	0.00
106	11.03	11.03	0.00	11.03	0.00
108	11.35	11.35	0.00	11.36	0.01
110	11.70	11.70	0.00	11.70	0.00
120	12.51	12.51	0.00	12.51	0.00
130	12.75	12.75	0.00	12.76	0.01
1 <b>4</b> 0 150	13.21	13.21	0.00	13.21	0.00
150	14.61	14.57	-0.04	14.68	0.07
157	14.61 14.63	14.58 14.58	-0.03 -0.05	14.69	0.08
158	14.63	14.50	-0.05	14.71 14.72	0.08 0.08
159	14.63	14.60	-0.03	14.73	0.08
160	15.85	15.84	-0.01	15.86	0.01
161	14.64	14.60	-0.04	14.72	0.08
162	14.64	14.63	-0.01	14.73	0.09
163	14.69	14.67	-0.02	14.76	0.07
164	15.65	15.65	0.00	15.61	-0.04
165	15.66	15.67	0.01	15.62	-0.04
170	15.41	15.41	0.00	15.41	0.00
171	15.07	15.07	0.00	15.08	0.01
173	15.00	15.00	0.00	15.00	0.00
175	14.85	14.84	-0.01	14.86	0.01
180	15.62	15.61	-0.01	15.69	0.07
181	16.09	16.03	-0.06	16.20	0.11
182 183	17.35	17.44	0.09	17.10	-0.25
183A	17.41 15.73	17.46 15.72	0.05 -0.01	17.18	-0.23
184	17.65	17.65	0.00	15.68 17.63	-0.05 -0.02
185A	16.11	16.05	-0.06	16.20	0.02
185B	16.10	16.05	-0.05	16.21	0.03
186	16.10	16.08	-0.02	16.20	0.10
187	16.91	16.91	0.00	16.91	0.00
190	14.64	14.63	-0.01	14.72	0.08
191	16.03	16.03	0.00	16.03	0.00
192	16.03	16.03	0.00	16.03	0.00
200	14.16	14.16	0.00	14.16	0.00
210	14.49	14.49	0.00	14.49	0.00
220	14.69	14.69	0.00	14.69	0.00

NODE	BAYOU - 10 ALT 3	ALT 4	ORM COMPARISON DIFF.
100	1.50	1.50	0.00
101 102	1.92 5.40	1.92 5.40	0.00 0.00
104	8.68	8.68	0.00
106	11.15	11.15	0.00
108	11.51	11.51	0.00
110 120	11.83 12.77	11.83 12.77	0.00 0.00
130	13.14	13.14	0.00
140	13.52	13.52	0.00
150	15.04	15.03	-0.01
151 157	15.05 15.07	15.03 15.04	-0.02 -0.03
158	15.08	15.05	-0.03
159	15.08	15.06	-0.02
160	15.88	15.87	-0.01
161 162	15.08 15.08	15.09 15.09	0.01 0.01
163	15.12	15.11	-0.01
164	15.77	15.78	0.01
165	15.79	15.79	0.00
170 1 <b>7</b> 1	15.44 15.39	15.44 15.39	0.00
173	15.18	15.18	0.00
175	15.10	15.09	-0.01
180	15.83	15.79	-0.04
181 182	16.36 17.56	16.28	-0.08
183	17.67	17.67 17.72	0.11 0.05
183A	15.87	15.88	0.01
184	17.84	17.84	0.00
185A	16.34	16.30	-0.04
185B 186	16.37 16.37	16.30 16.30	-0.07 -0.07
187	16.98	16.98	0.00
190	15.09	15.09	0.00
191	16.30	16.30	0.00
192 200	16.30 14.60	16.30 14.60	0.00 0.00
210	14.98	14.98	0.00
220	15.12	15.12	0.00

ELLIGRAW	BAYOU - 10	YEAR STO	ORM COMPAR	RTSON	
NODE	ALT 3	ALT 4	DIFF.	ALT 5	DIFF.
100	1.50	1.50	0.00	1.50	0.00
101	1.92	1.92	0.00	1.92	0.00
102	5.40	5.40	0.00	5.40	0.00
104	8.68	8.68	0.00	8.68	0.00
106	11.15	11.15	0.00	11.15	0.00
108	11.51	11.51	0.00	11.51	0.00
110	11.83	11.83	0.00	11.83	0.00
120	12.77	12.77	0.00	12.78	0.01
130 140	13.14	13.14	0.00	13.15	0.01
140	13.52 15.04	13.52	0.00	13.53	0.01
150	15.04	15.03	-0.01	15.10	0.06
157	15.05	15.03 15.04	-0.02	15.10	0.05
158	15.08	15.04	-0.03 -0.03	15.11	0.04
159	15.08	15.06	-0.02	15.12 15.12	0.04
160	15.88	15.87	-0.01	15.88	$0.04 \\ 0.00$
161	15.08	15.09	0.01	15.13	0.00
162	15.08	15.09	0.01	15.13	0.05
163	15.12	15.11	-0.01	15.17	0.05
164	15.77	15.78	0.01	15.72	-0.05
165	15.79	15.79	0.00	15.74	-0.05
170	15.44	15.44	0.00	15.44	0.00
171	15.39	15.39	0.00	15.41	0.02
173	15.18	15.18	0.00	15.20	0.02
175 180	15.10	15.09	-0.01	15.11	0.01
181	15.83	15.79	-0.04	15.92	0.09
182	16.36	16.28	-0.08	16.48	0.12
183	17.56 17.67	17.67 17.72	0.11	17.32	-0.24
183A	15.87	15.88	0.05 0.01	17.45	-0.22
184	17.84	17.84	0.00	15.81	-0.06
185A	16.34	16.30	-0.04	17.83 16.50	-0.01
185B	16.37	16.30	-0.07	16.49	0.16
186	16.37	16.30	-0.07	16.48	0.12 0.11
187	16.98	16.98	0.00	16.98	0.00
190	15.09	15.09	0.00	15.13	0.04
191	16.30	16.30	0.00	16.30	0.00
192	16.30	16.30	0.00	16.30	0.00
200	14.60	14.60	0.00	14.60	0.00
210	14.98	14.98	0.00	14.98	0.00
220	15.12	15.12	0.00	15.12	0.00

ELLIGRAW	BAYOU - 25	YEAR STO	ORM COMPARISON
NODE	ALT 3	ALT 4	DIFF.
100	1.50	1.50	0.00
101	2.07	2.07	0.00
102	5.82	5.82	0.00
104	8.93	8.93	0.00
106	11.29	11.29	0.00
108	11.60	11.60	0.00
110	11.93	11.93	0.00
120	13.03	13.03	0.00
130	13.54	13.54	0.00
140	13.84	13.84	0.00
150	15.44	15.42	-0.02
151	15.45	15.42	-0.03
157	15.45	15.44	-0.01
158	15.47	15.45	-0.02
159	15.47	15.45	-0.02
160	15.91	15.91	0.00
161	15.48	15.46	-0.02
162	15.50	15.48	-0.02
163	15.51	15.49	-0.02
164	15.89	15.90	0.01
165	15.91	15.92	0.01
170	15.48	15.47	-0.01
171	15.74	15.73	-0.01
173	15.51	15.48	-0.03
1 <b>7</b> 5	15.35	15.33	-0.02
180	16.10	16.05	-0.05
181	16.62	16.54	-0.08
182	17.75	17.90	0.15
183	17.92	17.98	0.06
183A	16.00	16.01	0.01
184	18.02	18.04	0.02
185A	16.64	16.56	-0.08
185B	16.63	16.55	-0.08
186	16.63	16.56	-0.07
187	17.05	17.05	0.00
190	15.50	15.48	-0.02
191	16.57	16.57	0.00
192	16.57	16.57	0.00
200	14.97	14.97	0.00
210	15.40	15.40	0.00
220	15.54	15.54	0.00

ELLIGRAW		00 YEAR S	
NODE	ALT3	ALT3MOD	DIFF.
100	1.50	1.50	0.00
101	2.35	2.35	0.00
102	6.48	6.47	-0.01
104	9.40	9.40	0.00
106	11.61	11.61	0.00
108	11.74	11.74	0.00
110	12.13	12.13	0.00
120	13.45	13.44	-0.01
130	14.18	14.16	-0.02
140	14.40	14.38	-0.02
150	15.99	15 <b>.9</b> 3	-0.06
151	16.00	15.93	-0.07
157	16.05	15.93	-0.12
158	16.05	15.95	-0.10
159	16.05	15.97	-0.08
16,50	16.06	15.99	-0.07
161	16.06	15.97	-0.09
162	16.08	16.00	-0.08
163	16.09	16.01	-0.08
164	16.09	16.08	-0.01
165	16.09	16.09	0.00
170	16.03	15.95	-0.08
1 <b>7</b> 1	16.32	16.27	-0.05
173	16.07	16.00	-0.07
175	15.82	15.78	-0.04
180	16.62	16.38	-0.24
181	17.16	16.79	-0.37
182	18.11	18.32	0.21
183	18.46	18.52	0.06
183A	16.24	16.21	-0.03
184	18.52	18.55	0.03
185A	17.15	16.81	-0.34
185в	17.18	16.81	-0.37
186	17.18	17.04	-0.14
187	17.20	17.19	-0.01
188		16.89	
190	16.09	16.00	-0.09
191	17.18	17.15	-0.03
192	17.18	17.15	-0.03
200	15.65	15.64	-0.01
210	16.16	16.16	0.00
220	16.24	16.24	0.00

and a second and a second a second 
------

ELLIGRAW	BAYOU - 25	YEAR STO	RM COMPAR	RISON	
NODE	ALT 3	ALT 4	DIFF.	ALT 5	DIFF.
100	1.50	1.50	0.00	1.50	0.00
101	2.07	2.07	0.00	2.07	0.00
102	5.82	5.82	0.00	5.82	0.00
104	8.93	8.93	0.00	8.93	0.00
106	11.29	11.29	0.00	11.29	0.00
108	11.60	11.60	0.00	11.60	0.00
110	11.93	11.93	0.00	11.93	0.00
120	13.03	13.03	0.00	13.04	0.01
130	13.54	13.54	0.00	13.56	0.02
140	13.84	13.84	0.00	13.86	0.02
150	15.44	15.42	-0.02	15.48	0.04
151	15.45	15.42	-0.03	15.49	0.04
157	15.45	15.44	-0.01	15.50	0.05
158	15.47	15.45	-0.02	15.53	0.06
159	15.47	15.45	-0.02	15.54	0.07
160	15.91	15.91	0.00	15.92	0.01
161	15.48	15.46	-0.02	15.54	0.06
162	15.50	15.48	-0.02	15.54	0.04
163	15.51	15.49	-0.02	15.56	0.05
164	15.89	15.90	0.01	15.84	-0.05
165	15.91	15.92	0.01	15.86	-0.05
170	15.48	15.47	-0.01	15.53	0.05
171	15.74	15.73	-0.01	15.76	0.02
173	15.51	15.48	-0.03	15.54	0.03
175	15.35	15.33	-0.02	15.36	0.01
180	16.10	16.05	-0.05	16.17	0.07
181	16.62	16.54	-0.08	16.70	0.08
182	17.75	17.90	0.15	17.53	-0.22
183	17.92	17.98	0.06	17.72	-0.20
183A	16.00	16.01	0.01	15.94	-0.06
184	18.02	18.04	0.02	18.01	-0.01
185A	16.64	16.56	-0.08	16.72	0.08
185B 186	16.63	16.55	-0.08	16.72	0.09
187	16.63 17.05	16.56	-0.07	16.72	0.09
190	15.50	17.05	0.00	17.05	0.00
190	16.57	15.48 16.57	-0.02	15.54	0.04
192	16.57	16.57	$0.00 \\ 0.00$	16.57 16.57	0.00
200	14.97	14.97	0.00	14.98	0.00
210	15.40	15.40	0.00	15.40	0.01 0.00
220	15.54	15.54	0.00	15.40	0.00
220	10103	10103	0.00	17.74	0.00