SARASOTA BAY WATERSHED PLAN
BEST MANAGEMENT PRACTICES
ANALYSIS
TASK 4 IDENTIFY AND ANALYZE BMPS
FINAL REPORT

This report summarizes the development of conceptual best management practices (BMP) resulting in cost-effective project concepts that can be reasonably expected to contribute to achieving the flood protection and water quality levels of service.

April 282022

Prepared for:
Sarasota County

Prepared by:
Ben Quartermaine, PE
Jordan Corby, PE

Project Number:
Task 4 BMP Updated Final Report


Signature Date
JORDAN S. CORBY, STATE OF FLORIDA, PROFESSIONAL ENGINEER NO. 79330. THIS ITEM HAS BEEN ELECTRONICALLY SIGNED AND SEALED BY JORDAN S. CORBY ON THE DATE INDICATED HERE.


BENJAMIN D. QUARTERMAINE, STATE OF FLORIDA, PROFESSIONAL ENGINEER NO. 57571. THIS ITEM HAS BEEN ELECTRONICALLY SIGNED AND SEALED BY BENJAMIN D. QUARTERMAINE ON THE DATE INDICATED HERE.

I HEREBY CERTIFY THAT TO THE BEST OF MY KNOWLEDGE, INFORMATION, AND BELIEF, THAT THE CONCEPTUAL DESIGN OF THIS PROJECT, AS PREPARED UNDER MY PERSONAL DIRECTION AND CONTROL, COMPLIES WITH THE APPLICABLE PORTIONS OF THE SARASOTA COUNTY UNIFIED DEVELOPMENT CODE, THE SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT, FY2022 \& FY2023, COOPERATIVE FUNDING INITIATIVE GUIDELINES and THE SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT WATERSHED MANAGEMENT PROGRAM GUIDELINES AND SPECIFICATIONS.

PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES.

STANTEC CONSULTING SERVICES INC.
6920 PROFESSIONAL PARKWAY
SARASOTA, FLORIDA 34240
CERTIFICATE OF AUTHORIZATION: 27013

## Table of Contents

Acronyms/Abbreviations ..... 6
Figures ..... 6
Tables ..... 8
1.0 Introduction ..... 9
2.0 Priority Management Areas ..... 10
2.1 Flooding Level of Service Deficiency Area Scoring and Ranking ..... 10
2.2 Pollutant Load Area Scoring and Ranking ..... 11
2.3 Priority Management Area Creation and Ranking. ..... 11
2.4 Final Priority Management Areas ..... 13
Tri-Par Area ..... 15
US-41 and Highland Area ..... 16
Myrtle and US-301 Area ..... 17
Martin Luther King and Orange ..... 18
17th and US-301 Area ..... 19
US-41 and $10^{\text {th }}$ Street Area ..... 20
Bee Ridge Road and Beneva Road Area. ..... 21
Tuttle Circle Area ..... 22
Bee Ridge between McIntosh and Honore Area ..... 23
Pinecraft Area ..... 24
Jefferson Avenue Area ..... 25
Sarasota Memorial Hospital and US-41 Area. ..... 26
Downtown Area ..... 27
Bee Ridge Road and US-41 Area ..... 28
Stickney Point Area ..... 29
Northern Siesta Key Area ..... 30
US-41 and Proctor Road ..... 31
Faubel Street ..... 32
3.0 Conceptual Best Management Practices ..... 33
3.1 Menu of Improvement Strategies ..... 33
3.2 BMP TRAINS Effectiveness Modeling ..... 34
3.3 Flood Modeling ..... 35
3.4 Cost Estimating ..... 35
3.5 Benefits and Cost Effectiveness ..... 36
3.6 Scoring ..... 39
3.7 Conceptual BMP Results ..... 40
Tri-Par Priority Management Area Conceptual BMP ..... 42
US-41 and Highland Priority Management Area Conceptual BMP ..... 47
Martin Luther King Jr Way and Orange Ave Priority Management Area Conceptual BMP ..... 52
US41 and $10^{\text {th }}$ Street Priority Management Area Conceptual BMP ..... 58
Bee Ridge and Beneva Rd. Priority Management Area Conceptual BMP ..... 68
Tuttle Circle Priority Management Area BMP ..... 77
Pinecraft Priority Management Area Conceptual BMP ..... 90
Sarasota Memorial Hospital and US-41 Priority Management Area Conceptual BMP ..... 102
Downtown Priority Management Area Conceptual BMP ..... 109
Bee Ridge and US-41 Priority Management Area Conceptual BMP ..... 118
Stickney Point Priority Management Area Conceptual BMP ..... 125
US-41 and Proctor Priority Management Area Conceptual BMP ..... 127
Faubel Street Priority Management Area Conceptual BMP ..... 133
4.0 Water Quality Level of Service Analysis ..... 135
4.1 Methodology ..... 135
4.2 Results ..... 135
5.0 ..... 137
References ..... 139
Appendices ..... 140
Appendix A ..... 141
Appendix B ..... 142
Appendix C ..... 143
Appendix D ..... 144
Appendix E ..... 145
Appendix F ..... 146
Appendix G ..... 147

Acronyms/Abbreviations

| BAM | Biosorption Activated Media |
| :--- | :--- |
| BCA | Benefit Cost Analysis |
| BCR | Benefit Cost Ratio |
| BMP | Best Management Practices |
| FDEP | Florida Department of Environmental Protection |
| FDOT | Florida Department of Transportation |
| FEMA | Federal Emergency Management Agency |
| FFE | Finished Floor Elevation |
| GIS | Geographic Information System Mapping |
| ICPR | Interconnected Channel and Pond Routing Model |
| LID | Low Impact Development |
| LOS | Level of Service |
| MHP | Mobile Home Park |
| O \& M | Operations and Maintenance |
| OSTDS | Onsite Treatment and Disposal Systems |
| PMA | Priority Management Area |
| SWFWMD | Southwest Florida Water Management District |
| TN | Total Nitrogen |
| TP | Total Phosphorus |
| TSS | Total Suspended Solids |
| VRSS | Vegetation Reinforced Soil Slope |

## Figures

Figure 1 - Priority Management Areas ..... 14
Figure 2 - Tri-Par Priority Management Area ..... 15
Figure 3 - US 41 \& Highland Priority Management Area ..... 16
Figure 4 - Myrtle \& US 301 Priority Management Area ..... 17
Figure 5 - MLK \& Orange Priority Management Area ..... 18
Figure 6-17th \& US301 Priority Management Area ..... 19
Figure 7 - US 41 \& 10th Street Priority Management Area ..... 20
Figure 8 - Bee Ridge \& Beneva Priority Management Area ..... 21
Figure 9 - Tuttle Circle Priority Management Area ..... 22
Figure 10 - Bee Ridge between McIntosh \& Honore Priority Management Area ..... 23
Figure 11 - Pinecraft Priority Management Area ..... 24
Figure 12 - Jefferson Ave Priority Management Area ..... 25
Figure 13 - Sarasota Memorial Hospital \& US 41 Priority Management Area ..... 26
Figure 14 - Downtown Priority Management Area ..... 27
Figure 15 - Bee Ridge \& US41 Priority Management Area ..... 28
Figure 16 - Stickney Point Priority Management Area ..... 29
Figure 17 - Northern Siesta Priority Management Area ..... 30
Figure 18 - US 41 \& Proctor Priority Management Area ..... 31
Figure 19 - Faubel Street Priority Management Area ..... 32
Figure 20 - Tri-Par Area BMPs ..... 42
Figure 21 - Floodplain Bench / Linear Treatment System Typical Cross-Section ..... 43
Figure 22 - US 41 \& Highland Area BMP ..... 48
Figure 23 - MLK \& Orange Area BMP ..... 52
Figure 24 - US 41 \& 10th Street Area BMPs ..... 58
Figure 25 - US-41 \& 10th Street Parking Lot Pervious Pavement Conversion ..... 59
Figure 26 - US-41 \& 10th Steet - Low-Flow Weirs \& Side-Bank Filters ..... 62
Figure 27 - Typical Side-Bank Filter Detail (source: BMP Trains) and Example Canal with Low Flow Weir Cross Section from ICPR4. ..... 63
Figure 28-10th Street Sediment Sump Load Reduction Assessment Tool Input ..... 65
Figure 29-10th Street Sediment Sump Load Reduction Assessment Tool Results ..... 66
Figure 30 - Bee Ridge \& Beneva Area BMPs ..... 68
Figure 31 - Floating Beemats (source: beemats.com) ..... 69
Figure 32 - Forest Lakes Pond Sediment Removal and NSBB ..... 69
Figure 33 - Forest Lakes Pond Sediment Removal Load Reduction Assessment Tool Input ..... 70
Figure 34 - Forest Lakes Pond Sediment Removal Load Reduction Assessment Tool Results ..... 70
Figure 35 - Bee Ridge and Beneva Low-Flow Weirs BMP Contributing Area ..... 74
Figure 36 - Tuttle Circle Area BMPs ..... 77
Figure 37 - Tanglewood In-Line Wet Detention Treatment System ..... 78
Figure 38 - Blossom Brook Canal BMP System ..... 80
Figure 39 - Tuttle Sediment Removal, Dam Removal and Sediment Sump ..... 87
Figure 40 - Phillippi Creek Sediment Sump \& Sediment Removal Load Reduction Assessment Tool Input ..... 88
Figure 41 - Phillippi Creek Sediment Sump \& Sediment Removal Load Reduction Assessment Tool Results89
Figure 42 - Pinecraft Area BMPs ..... 90
Figure 43 - Aloha Mobile Home Park Denitrification Trench Typical Detail ..... 96
Figure 44 - Phillippi Creek Stream Restoration Concept Plan ..... 97
Figure 45 - Stream Restoration Plan Sections 1 and 2 ..... 98
Figure 46 - Wood Toe Protection with Vegetated Soil Lifts Details ..... 100
Figure 47 - Stream Restoration Headwater Channel Details ..... 101
Figure 48 - SMH \& US 41 Area BMPs ..... 102
Figure 49 - Nutrient-Separating Baffle Box Diagram (source: Oldcastleinfrastructure.com) ..... 103
Figure 50 - Harbor Acres ICPR3 Model with Proposed Pipe Changes. ..... 106
Figure 51 - Example One-Way Check Valve (source: redvalve.com/Tideflex) ..... 107
Figure 52 - Downtown Nutrient Separating Baffle Box Conceptual BMP ..... 110
Figure 53 - Up-flow Filter Typical Detail (source: BMP Trains 2020) ..... 110
Figure 54 - Downtown Denitrification Trench Detail (source: Stantec) ..... 113
Figure 55 - Downtown Denitrification Trench Locations and Contributing Areas ..... 113
Figure 56 - Bee Ridge and US 41 Area BMPs ..... 118
Figure 57 - Westfield Mall Parking Lot Conversion to Pervious Pavement ..... 122
Figure 58 - Stickney Point Area BMPs ..... 125
Figure 59 - Concrete Flume Example ..... 126
Figure 60 - US41 and Proctor Area BMPs ..... 127
Figure 61 - The Landings Pond Contributing Area ..... 128
Figure 62- The Landings Pond Sediment Removal Load Reduction Assessment Tool Input ..... 129
Figure 63 - The Landings Pond Sediment Removal Load Reduction Assessment Tool ..... 129
Figure 64 - Faubel Street Area BMPs ..... 133
Figure 65 - Faubel Street Stormwater Improvements ..... 134
Tables
Table 1 - Summary of Conceptual BMPs ..... 41
Table 2 - MLK \& Orange Ave. ICPR Pipe Changes ..... 53
Table 3 - Pinecraft Pond Conversion Treatment Efficiency ..... 94
Table 4 - TN and TP groundwater monitoring data for the Turkey Creek and Suntree Areas ..... 95
Table 5 - Estimated Average Annual TN and TP Loading for Aloha Mobile Home Park ..... 95
Table 6 - Biosorption Media Details ..... 96
Table 7 - Aloha Mobile Home Park Denitrification Wall Estimated Load Reductions ..... 96
Table 8 - Bee Ridge and US-41 ICPR pipe changes ..... 118
Table 9 - The Landings Pond Sediment Removal Treatment Efficiency ..... 132
Table 10 - Basins meeting or not meeting the Strategic LOS ..... 135
Table 11 - Percent of Nitrogen LOS target met by proposed conceptual BMP reductions ..... 136
Table 12 - Percent of Phosphorous LOS Target met by Conceptual CMP Reductions ${ }^{1}$ ..... 136
Table 13 - Scoring for the Conceptual BMPs ..... 138

### 1.0 Introduction

This Report is a compilation of the work effort performed by Stantec Consulting Services Inc., Watershed Management Services, LLC and Janicki Environmental, Inc. to identify best management practices (BMP), to improve watershed conditions relative to flood protection and surface water quality levels of service. 18 Priority Management Areas (PMA) were identified throughout the Sarasota Bay Watershed focusing on locations with potential flood level of service (LOS) deficiencies, (LOS as defined by the County's Stormwater Environmental Utility) as well as locations that have been identified as having high nutrient loads (nitrogen) in stormwater run-off. These PMAs were evaluated, considering potential improvement strategies that could be implemented, based on the characteristics of the location(s). In this report, the methodology, analysis, results, and recommendations to improve the watershed are presented with detailed data and reference documents in the Appendix.

### 2.0 Priority Management Areas

The results of the technical analysis performed in Task 2 Flood Protection and Task 3 Surface Water Resource Assessment were used to identify the PMAs and target the identification of conceptual BMPs. This section outlines the methodology used to prioritize flooding deficiency areas and pollutant load hot spots to generate the boundaries for the PMAs.

### 2.1 Flooding Level of Service Deficiency Area Scoring and Ranking

In Task 2.4: FPLOS Report, roadway and structure level of service deficiencies were developed based on the updated ICPR version 4 flood model results and the County's level of service criteria. Both roadway and structure deficiencies were scored and ranked, according to the methodology presented in this section. The roadway flooding data was scored, based on the following variables:

- Evacuation route flooding

0 Whether or not there is an evacuation route that has flooding within it
o Yes = 1, No = 0
o Percent of evacuation roadways that are flooded when compared to the total length of evacuation roadways in the subcatchment
o Score $=1+\left(4^{*} \%\right.$ as a decimal $)$ - a weighting of 4, multiplied by the percent as a decimal

- Arterial roadway flooding

0 Percent of arterial roadways that are flooded when compared to the total length of arterial roadways in the subcatchment
o Score $=(3 * \%$ as a decimal $)-$ a weighting of 3 , multiplied by the percent as a decimal

- Collector roadway flooding
o Percent of collector roadways that are flooded when compared to the total length of collector roadways in the subcatchment
o Score $=(2 * \%$ as a decimal) - a weighting of 2 , multiplied by the percent as a decimal
- Local roadway flooding
o Percent of local roadways that are flooded when compared to the total length of local roadways in the subcatchment
0 Score = ( $1^{*} \%$ as a decimal) - a weighting of 1 , multiplied by the percent as a decimal
0 If local roadway falls within a plat boundary defined within last 15 years, this score was automatically a " 0 "
Once the variables were calculated, the Roadway Flooding Score was then calculated by summing the scores, with a maximum score of 10 .


## Roadway Flooding Score $=($ Evac + Art + Coll + Local $)$

The structure flooding data determined in Task 2.4: FPLOS Report was scored based on the following variables:

- Structure Flooding Variable

0 To get a decimal representation of the number of structures within a subcatchment that have Finished Floor Elevation (FFE) deficiencies, multiple the total number of deficient structures in the subcatchment by 0.01
o $0.01^{*}$ number of structures with LOS Deficient FFE

- Repetitive Loss Variable
o Calculate the area (in acres) of a subcatchment that overlaps with a repetitive loss area
o Calculate the \% of the subcatchment that is in a repetitive loss area (repetitive loss area / total area)
- Repetitive Loss Variable = (1*\%)
- 1 multiplied by the percent of the subcatchment within a repetitive loss area (as a decimal)
Once the variables were calculated, the Structure Flooding Score was then calculated by summing the scores, with a maximum score of 1.53 .

In order to provide the structure flooding score on a scale from 0-10, it was normalized. This normalization was performed using the following equation:

Structure Flooding Score $=\left(x_{i}-\min (x)\right) /(\max (x)-\min (x)) * 10$
$z_{i}=\left(x_{i}-\min (x)\right) /(\max (x)-\min (x)) * 10$

- $\mathbf{z}_{\mathbf{i}}$ : The normalized Structure Flooding Score (on a scale from 0-10)
- $\mathbf{x}_{\mathrm{i}}$ : The non-normalized score
- $\quad \min (x)$ : The minimum value possible in the scoring (0)
- $\quad \max (\mathbf{x}):$ The maximum value in the dataset (1.53)

After calculating the structure and roadway scores for each subcatchment, a distribution of the scores was assessed to determine four breakpoints: High, Medium, Low and None. This step was performed individually for Roadway Flooding and Structure Flooding Scores. These rankings were important for identifying subcatchments that have structure or roadway flooding independent of each other.

See Appendix A, Exhibits 1and 2 for Structure and Roadway Flooding LOS Deficiency Ranking Exhibits.

### 2.2 Pollutant Load Area Scoring and Ranking

Water quality areas of concern with high pollutant loading for Total Nitrogen (TN) and Total Phosphorus (TP) were previously identified in Task 3.7-Technical Memorandum \#9. Pollutant loads were determined for each of the subcatchments within the watershed. The relative loading rates are categorized as low, medium, and high. See Task 3.7 - Technical Memorandum \#9 for full details of the pollutant load rankings. Since this watershed is limited by nitrogen, that is the target nutrient pollutant which the team prioritized and utilized in the pollutant load prioritization and ranking.

### 2.3 Priority Management Area Creation and Ranking

Once each subcatchment had an individual roadway flooding score, structure flooding, and pollutant load priority ranking, the next step was to reduce the number of subcatchments and areas to only those that have overlap between all three deficiencies, and to begin to identify areas of subcatchments that can be logically grouped together as potential PMA's for further study and analysis.

Filters were applied to the subcatchments to identify only those that were of medium to high criticality for roadway flooding, structure flooding and pollutant loading.

The following criteria was used for each variable:

- Pollutant Loading = Only subcatchments ranked "High"
- Structure Flooding = Only subcatchments with a 7 or greater Structure Score (equal to or greater than the mean)
- Roadway Flooding $=$ Only subcatchments with a 0.3 or greater Structure Score (equal to or greater than the mean)

Once these subcatchments were overlayed, a group assessment was performed by the team to identify areas of overlap to form preliminary priority areas. 17 areas were identified through the County as being suitable Priority Management Areas, warranting further evaluation and study. See Appendix A, Exhibit 4 for Priority Management Area Overlay Analysis output exhibit.

These 17 areas were then ranked independently for structure flooding, roadway flooding and TN loading as shown in Appendix A, Exhibits 5, 6 and 7, respectfully. The ranking of those individual factors was then combined for a cumulative ranking, based on the flooding, roadway, and pollutant loading scores of the subcatchments to help prioritize and rank the PMA's in order of importance or most critical. The order of the 17 PMA's based off the preliminary cumulative rankings is as follows, with 17 being the highest priority score:

| Priority Management | Preliminary <br> Cumulative <br> Ranking | Individual <br> Roadway <br> Ranking | Individual <br> Pollutant <br> Load (TN) <br> Ranking | Individual <br> Structure <br> Ranking |
| :--- | ---: | ---: | :--- | ---: |
| lona/Palmer |  |  |  |  |

${ }^{1}$ = The Iona/Palmer PMA was later removed from the list as the area is undergoing development.

See Appendix A: Exhibit 8 for the combined PMA ranking.
Modifications were made to this list prior to finalizing it as discussed below. After further review, it was determined that the pollutant loading rates for the lona/Palmer PMA did not reflect the recent residential development, leading to inaccurate results, based on agricultural conditions. In addition, the roadway flooding had not accounted for the County's 12 -inch local street flooding level of service. These factors led to the removal of Iona/Palmer from the list.

Two PMAs were added to the list: MLK \& Orange and Faubel Street. The MLK \& Orange area was added with the knowledge of previous flood control projects in Whitaker Bayou, that utilized pump systems and did not meet effective cost-benefit scoring, with the intent to develop a non-pump flood mitigation project that would provide a preferable score. Based on discussions with County and City of Sarasota staff, Faubel Street on Siesta Key is an area of known flooding in the City of Sarasota and field investigations confirmed the issues in this area.

### 2.4 Final Priority Management Areas

After removing Iona/Palmer and adding MLK \& Orange and Faubel Street, the final Priority Management Area list is comprised of the following list of 18 areas:

- Tri-Par
- US 41 \& Highland
- Myrtle \& US 301
- MLK \& Orange
- $17^{\text {th }} \& ~ U S ~ 301$
- US $41 \& 10^{\text {th }}$ Street
- Bee Ridge \& Beneva
- Tuttle Circle
- Bee Ridge between McIntosh \& Honore
- Pinecraft
- Jefferson Ave
- Sarasota Memorial Hospital \& US 41
- Downtown
- Bee Ridge \& US 41
- Stickney Point
- Northern Siesta Key
- US 41 \& Proctor
- Faubel Street

See Figure 1 for locations of the PMAs.


Figure 1 - Priority Management Areas

Tri-Par Area
The Tri-Par Area is subject to historic flooding, located within Whitaker Bayou basin at the confluence of Whitaker Main Canal and Tributary A, as well as confluence of Tributaries A and B. The area has a history of flooding and includes significant nitrogen loading as well - which is primarily due to the age and intensity of land-use and commercial/industrial land-use types.


Figure 2-Tri-Par Priority Management Area

US-41 and Highland Area
This area is along the north US41 corridor with older development along the roadway. There is a Roadway LOS deficiency on US 41 with high or medium nutrient loading. The area is in the northern portion of the City of Sarasota. There are significant areas such as this existing throughout the watershed, that have little or no stormwater treatment facilities due to the age of development and urbanization.


Figure 3-US 41 \& Highland Priority Management Area

Myrtle and US-301 Area
This section of 301 is an evacuation route with existing street flooding; the area has been studied previously with no cost-effective solutions identified. There are recent improvements along Myrtle St that have had some flood benefits.


Figure 4-Myrtle \& US 301 Priority Management Area

Martin Luther King and Orange
This is a contributing area to Whitaker Bayou Tributary C and includes close to 60 structures with potential flooding level of service deficiencies. The area has a history of flooding and includes significant nitrogen loading areas as well. Nutrient loading is primarily due to the age and intensity of land-use as well as various land-use types that are common in the surrounding area (commercial / industrial).


Figure 5-MLK \& Orange Priority Management Area

17th and US-301 Area
This area has street flooding level of service deficiencies on US - 301, existing street flooding on US - 301, 17th Street and N. East Ave and Structure flooding LOS deficient for 10 commercial buildings. The area also experiences high or medium nitrogen loading throughout.


Figure 6-17th \& US301 Priority Management Area

US-41 and $10^{\text {th }}$ Street Area
There is a roadway LOS deficiency on US-41 with high or medium nutrient loading. Intense urban development upstream of the 10th Street boat basin contributes to the direct discharge of stormwater run-off into Sarasota Bay. The boat basin has been maintained throughout the years and a sediment removal project was completed in 2018. SWFWMD cooperatively funded project No. W606 to install a nutrient separating baffle box on $10^{\text {th }}$ St. just east of Florida Ave. The Bay Partnership is redeveloping the City owned bayfront into a more highly used public space and is interested in partnering on improvements.


Figure 7-US 41 \& 10th Street Priority Management Area

Bee Ridge Road and Beneva Road Area
This section of Bee Ridge Road is an evacuation route with existing street flooding. The runoff flows through the stormwater ponds in the Forest Lakes subdivision. The pond and existing stormwater infrastructure have experienced significant sediment loading throughout the years.


Figure 8-Bee Ridge \& Beneva Priority Management Area

Tuttle Circle Area
Along Phillippi Creek, a historic dam from agricultural use has contributed to significant sediment build up and proliferation of invasive species above and below the dam in the Creek. It was converted to residential in the 1950's with drainage ditches directly discharging stormwater to tidal system with no stormwater BMP's. The County had Weiler Engineering perform a study in 2019 to evaluate options to remove the dam which are incorporated into this analysis and can be found in Appendix C.


Figure 9 - Tuttle Circle Priority Management Area

Bee Ridge between McIntosh and Honore Area
The 486 Canal system has degraded at Cattlemen Road; opportunities may exist for maximizing storage and treatment restoration.


Figure 10-Bee Ridge between McIntosh \& Honore Priority Management Area

Pinecraft Area
This is the area of the original headwaters of Phillippi Creek, as well as the location where tidal influence becomes negligible. Significant sediment deposition occurs at Beneva Road Bridge and the Railroad Trestle Bridge. Further, large, dense development exists along both sides of the creek - all with little existing BMP's.


Figure 11 - Pinecraft Priority Management Area

Jefferson Avenue Area
Potential structural LOS deficiencies exist for four multifamily structures, with high or medium nutrient loading. The area is east of the downtown City of Sarasota area. Nutrient loading is primarily due to the age and intensity of land-use.


Figure 12 - Jefferson Ave Priority Management Area

Sarasota Memorial Hospital and US-41 Area
Existing street flooding on Harbor Drive, Hillview Drive and Flower Drive in the Harbor Acres subdivision is a function of tidal influence as well as being downstream from a dense commercial development with minimal BMP's. The drainage within this subbasin drains from the natural ridge along US-41 to the bay through the existing neighborhoods.


Figure 13 - Sarasota Memorial Hospital \& US 41 Priority Management Area

Downtown Area
There are over 20 outfalls that directly discharge from the urban area of the City of Sarasota into the boat basin and bay adjacent to Marina Jack's. Additionally, the stormwater BMP's that exist are stressed and tidally influenced. Further, the existing FDOT ponds are being retrofitted to accommodate intersection improvements at Gulfstream and US41. There is an open space buffer that exists between downtown and the water, however, the open space is used often for civic and public events.


Figure 14 - Downtown Priority Management Area

Bee Ridge Road and US-41 Area
This section of Bee Ridge Road and Bay Street is an evacuation route with existing street flooding. The area is an important evacuation route for Siesta Key and the Coastal areas. Additionally, the neighborhoods are well established, having been built in the 1940's-1960's - thereby existing without major stormwater BMP's. The system outfalls have been improved over the years (stormwater strainer at Tangier Terrace and Bay Street) - but the improvements are not adequate to remove nutrients from the water column.


Figure 15 - Bee Ridge \& US41 Priority Management Area

Stickney Point Area
This area experiences street flooding associated with stormwater and tidal influences. The areas are well established and exist with minimal stormwater BMP's; most of the drainage discharges directly into the intercoastal waterway.


Figure 16-Stickney Point Priority Management Area

## Northern Siesta Key Area

Minor flooding LOS deficiencies with small area of high nutrient loading exist along Sandy Hook and Grand Canal areas. As part of the Coastal Fringe Roberts Bay North watershed, identifying BMP's resilient to sea level rise is a challenge.


Figure 17- Northern Siesta Priority Management Area

US-41 and Proctor Road
This section of US-41 has experienced flooding in the past. The area is primarily developed residential, although there is a commercial corridor along the arterial roadways (Tamiami Trail and Proctor Road). The area has aging stormwater ponds that ultimately have direct discharge into the bay.


Figure 18- US 41 \& Proctor Priority Management Area

Faubel Street
This area has an existing residential street on the north end of Siesta Key. Faubel Street residents contend with multiple flooding events along their roadway, on a regular basis, during the wet season. The area needs to have upgrades completed to the stormwater system to ensure that the drainage is treated and discharged - instead of attenuating in the roadway. Residents have reported using the sanitary manhole as a way to remove stormwater from the roadway.


Figure 19 - Faubel Street Priority Management Area

### 3.0 Conceptual Best Management Practices

Once all PMAs were finalized, each area was reviewed with the following considerations to assess the practicality, functionality, and performance of potential BMPs:

- Proximity to publicly owned lands
- Available Right-of-Way
- Land Use types
- Existing stormwater infrastructure
- Flooding and pollutant loading characteristics

A menu of improvement strategies was developed with an exhaustive list of traditional and innovative BMPs that could be considered for a treatment train approach to reduce flooding and pollutant loading. Each conceptual BMP went through a rigorous process to optimize removal efficiencies with the BMP Trains model, determine floodplain impacts with ICPR, and estimate costs as outlined in this section.

### 3.1 Menu of Improvement Strategies

Potential improvement strategies that were considered to improve conditions at each PMAs consisted of the following:

- Open Conveyance Improvement
- Stormwater Storage Pond with Buffer
- Floating Island Treatment Train
- Raingarden with BAM
- Stream Restoration
- Pervious Pavers
- Baffle Box
- Rain Garden with Depression Retention
- Infiltration Trench
- BAM (Biosorption Activated Media) Filter Treatment
- Stormwater Pump System
- Replace Impervious with Pervious
- Stormwater Park
- Stormwater Detention Vault
- Sediment Sump
- Removal of Built-Up Sediment
- Pipe Conveyance Improvement
- Operable Control Structures
- Partnership with Private Stormwater Systems
- Upflow Filter with Biosorption Activated Media (BAM) Retrofit Sand Filters
- Pond Skimmer for Floatables
- Stormwater Backflow Prevention Valve
- Offline Wetland Treatment System
- Urban Tree Canopy
- Floodplain Bench


### 3.2 BMP TRAINS Effectiveness Modeling

Eric Livingston, Watershed Management Services, LLC, optimized the pollutant removal efficiencies for each conceptual BMP using BMP TRAINS. Proposed BMPs with water quality benefits were analyzed to determine potential total nitrogen (TN) and total phosphorous (TP) reductions on an annual basis.

BMP TRAINS is a model that calculates the average annual nutrient loadings, Total Nitrogen (TN) and Total Phosphorus (TP), of development projects and the reductions in loadings from their stormwater treatment systems. The program incorporates over 40 years of stormwater related research and monitoring data from Florida, along with statewide rainfall data and analyses. BMP TRAINS originally was developed by the University of Central Florida Stormwater Management Academy, with funding from the Florida Department of Environmental Protection (FDEP) and the Florida Department of Transportation (FDOT). In recent years, FDOT funding allowed the updating of BMP TRAINS to incorporate more recent stormwater research findings on BMP treatment effectiveness. The computer program and its User Manual are in the public domain and available for free download from https://stars.library.ucf.edu/bmptrains/26/. In addition, copies of the research publications, upon which the program's calculations are based, can be downloaded.

Key aspects of BMP TRAINS include:

- It uses the "Harper Methodology" for calculating stormwater pollutant loadings.
- It uses five rainfall zones in Florida to select the average annual rainfall.
- It uses Florida stormwater event mean concentrations.
- It uses Florida BMP treatment effectiveness data.
- It includes the most recent treatment effectiveness data for LID BMPs.
- It incorporates the most recent LID BMP design criteria.

BMP TRAINS can be used to:

- Quantify TN and TP average annual load reductions of individual traditional and LID BMPs.
- Quantify TN and TP average annual load reductions for BMP treatment trains consisting of several different BMPs.
- Evaluate and optimize the pollutant load reduction of proposed BMPs and BMP treatment trains.
- Demonstrate the stormwater system achieves the minimum level of treatment for the receiving waters to which the system will discharge.

BMP TRAINS consists of a series of worksheets and reports that the stormwater professional can use to evaluate the treatment effectiveness of a proposed stormwater system. The worksheets and reports include:

- General site information worksheet
- Watershed characteristics worksheet.
- Treatment options (selecting one or more BMPs, each with its own worksheet).
- Catchment configuration worksheet to establish flow patterns.
- Summary Treatment report of the BMP or BMPs being evaluated.
- Complete report (usually submitted for permit review purposes).
- Optional cost comparisons worksheet.

The order listed above is the general sequence of input and analysis, although users may choose to return to previous steps at any time to revise values or to conduct "what if" scenarios of BMPs or BMP treatment trains. Once the general site information and watershed characteristics information is input, it is very easy to evaluate different BMPs or BMP treatment trains.

Contributing area and curve number (CN) data for BMP TRAINS input was developed from ICPR basin data, while land use input was derived from publicly available Sarasota County Zoning and Future Land Use designation GIS shapefiles.

BMP TRAINS model input and output data are provided for BMPs with a quantifiable surface water quality benefit.

### 3.3 Flood Modeling

Flood modeling is done to determine if no adverse impact is achieved for the water quality conceptual BMPs, which could impact flood stages, or to assess the effectiveness of flood improvement conceptual BMPs. ICPR simulations for the 100-year, 25 -year and 10 -year storms were run with revised model input, representing the proposed conditions for relevant conceptual BMPs. Proposed measurable flood protection benefits are presented in the following sections for each BMP, including roadway and structure Level of Service (LOS) deficiency reductions. Model outputs are available in ICPR for each of the PMAs with flood benefits.

### 3.4 Cost Estimating

Many iterations took place during the development of the concepts to maximize the benefits with respect to reducing flooding and pollutant loading. Once the conceptual project components were somewhat finalized, conceptual costs were estimated. A conceptual cost is the approximate cost of the project that is calculated at the conceptual stage. The goal of the conceptual cost is to understand construction cost based on as much detail as possible and to recognize the costs of major material/ major manpower required.

A cost estimate was developed for each of the conceptual BMP's; the cost estimate includes preliminary numbers for material costs, equipment, and manpower estimates. Stormwater infrastructure construction, demolition, excavation, land acquisition and ancillary costs were considered when developing the preliminary costs.

Two sources were used to determine the cost of construction items. The FDOT Historical Cost analysis was used to provide weighted average unit costs for major line items. Awarded contract prices are captured from all over the state each month. These are totaled with the previous 11 months to calculate the weighted average of the unit price. FDOT Historical Costs are located on the FDOT website: https://www.fdot.gov/programmanagement/estimates/historicalcostinformation/historicalcost.shtm

The FDOT published reports include construction material costs, equipment, and labor. The reports are based on executed FDOT construction contracts which have a letting date that falls within the past 6 to 12 months range. In addition to FDOT construction costs, Stantec has developed a database of local construction projects, again based on executed construction contracts in the Manasota Region in the
past three years. Both sources are compared to local construction costs and to the published FDOT costs in order to use conservative estimates to develop unit costs.

While larger material costs can be estimated with our databases, construction costs such as traffic control, construction staging areas and contractor mobilization were estimated based on a percentage of the total cost of construction. Generally, the percentages are consistent throughout the cost estimates; however, the percentages are modified to consider density of development adjacent to construction area, length of roadway work and detour(s), and the availability of right of way to stage construction material.

In addition to the construction costs, engineering design and permitting was considered as well as annual operation and maintenance ( $O \& M$ ) costs. The costs for design and permitting are based on our experience designing and permitting similar types of projects. The O\&M costs were determined based on the frequency and level of difficulty of maintaining the system(s), i.e., staff costs and equipment costs, as well as number of O\&M events required annually.

O\&M costs were developed considering predictive maintenance. Predictive maintenance is the ability to forecast and perform necessary repairs, prior to failure, with little to no disruption to system operations, potentially saving valuable resources. A stormwater system operator can only achieve predictive maintenance by incorporating technology into a clear operations plan. Corrective maintenance generally involves repairing an unforeseen asset failure - corrective maintenance was not considered in development of the O\&M costs. The O\&M cost is included in Appendix B: Conceptual BMP Project Sheets and not included in the construction cost in this section.

The final line item in developing construction costs was a contingency; generally, during the development of preliminary costs, a contingency of $30 \%$ is used to ensure that items not listed as individual line items are captured and to allow for cost increases from the time of estimating through design and permitting.

Project concepts costs are provided for each BMP in the following sections, which do not include the estimated O\&M costs. Full project cost details are presented in Appendix B: Conceptual BMP Project Sheets.

### 3.5 Benefits and Cost Effectiveness

The Cost-Effective Analysis of each individual project was determined using the County's Manual for Costs and Benefits for Flood and Water Quality Projects; and the SWFMWD's 2023 Cooperative Funding Initiative Guidelines. Costs included the design, permitting and construction of the conceptual BMPs and did not include O\&M costs in the cost benefit calculations.

Based on the Cost Benefit Analysis adopted by the Board of County Commissioners on December 5, 2000, the Sarasota County Stormwater Division applies a cost benefit analysis to proposed capital projects, to determine if the project will provide stormwater management improvements in a costeffective investment. The County contracted with Stantec to update the white paper titled Projecting Damages Associated with Flooding: A Proposed Cost-Effective Analysis for Stormwater Projects as presented to the Board of County Commissioners, through an Interoffice Memorandum dated December 5, 2000.

In certain instances, even if a project's costs exceed the tangible benefits of flood control, the County may determine the project provides public value supported by numerous intangible benefits such as health, safety, and community support. These intangibles should be given consideration on a case-bycase basis, when deciding whether to go forward with a project.

To update the Sarasota County specific multipliers for building and content damage, Stantec analyzed nearly 800 FEMA claims (historic flood damage costs) for Sarasota County that were made during rain events. The available claim data ranges from 1978 to 2016 and provides a statistically valid sample to analyze. The analysis showed that the average Sarasota County building damage claim was $12 \%$ of the building value and the median claim was $6 \%$ of the building value. Analysis of the content damage claims showed that the average content damage claim was between $82 \%$ and $87 \%$ of the building damage claims.

Revisions included using the most current available data (2015) to update the average automobile cost, number of cars per household, landscape / hardscape cost, per diem cost for displacement from structures, the average household income, and the published 2018 IRS per mile cost for the detours. These values are fixed costs that will need to be updated as more current data becomes available.

The Lost Business Income and Lost Wages due to Closed Business were separated from Total Lost Wages for increased accuracy in calculating lost business revenue caused by flooding. Data from the United States Census Bureau - American Fact Finder website was used to derive the average daily commercial revenue for Sarasota County; the average number of employees per business in Sarasota County; and the average wages in Sarasota County.

Each project under evaluation requires the following project specific data:

1. AV-assessed property values
2. FS - number of flooded residential structures
3. HFP - number of residential structures within the horizontal floodplain
4. CFS - number of flooded commercial structures
5. CHFP - number of commercial structures within the horizontal floodplain
6. RD - road detour costs
7. PW - public works costs
8. FI-flood insurance costs

The analysis is very similar to FEMA's Benefit-Cost Analysis. Benefit-Cost Analysis (BCA) is a method that determines the future risk reduction benefits of a hazard mitigation project and compares those benefits to its costs. The result is a Benefit-Cost Ratio (BCR). A project is considered cost-effective when the BCR is 1.0 or greater. Like FEMA's BCR, the County's cost benefit generates a whole number, that is then awarded points based on SWFWMD's Cooperative Funding Initiatives Guidelines, and the cost benefit analysis generated by the EPA.

The Conceptual BMP's that are part of our report have been assigned points based on this table from SWFWMD:

Flood Protection Projects - Implementation Projects For projects that combine benefits, list the primary benefit statement first and follow with secondary benefits.

| Flood Protection Projects - Implementation Projects |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Project Type | 5 Points | 10 Points | 15 Points | 20 Points | 25 Points |
| BMPs (benefit/costratio) Required Projects Over \$500k | $0.50<0.70$ | N/A | $\begin{gathered} >0.70< \\ 0.90 \end{gathered}$ | $\begin{gathered} >0.90< \\ 1.10 \end{gathered}$ | $\geq 1.10$ |
| BMPs (when benefit/cost ratio is not available for projects under $\$ 500 \mathrm{k}$ ) | Higher than Other Projects | N/A | Similar to Other Projects | N/A | N/A |

Implementation of BMPs for flood protection is addressed through structural and non-structural methods. SWFWMD encourages Cooperators to maximize opportunities to provide water quality improvements above permit requirements for any flood protection BMP project. Project components eligible for funding include:

- Design and permitting
- Land acquisition and easements - NOTE: SWFWMD may recognize land costs incurred by local government as a match if the land was acquired recently, with the specific purpose of implementing the proposed stormwater improvements.
- Construction of BMPs
- Construction engineering and inspection
- Benefit/Cost Analysis

The County's CBA tool has been expanded to include water quality benefits. However, the SWFWMD has been updated since the last revision to the County's CBA tool. The Conceptual BMP's are scored based on the following:

- Total area treated (acres)
- Total nitrogen (N) removed / year (lbs)
- Total phosphorus $(P)$ removed / year (lbs) ${ }^{1}$
${ }^{1}$ future discussion will be required with County to consider the removal of TP from scoring
Specifically, water quality projects are scored based on SWFMWD's 2023 Cooperative Funding Initiative Guidelines; Water Quality Projects are scored based on the table below:


| Water Quality Projects (cost/lb of pollutant removed) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Project Type | 5 Points | 10 Points | 15 Points | 20 Points | 25 Points |
| Total Nitrogen (cost/lb) | $\$ 475-\$ 400$ | $\$ 400-\$ 250$ | $\$ 250-\$ 175$ | $\$ 175-\$ 150$ | $<\$ 150$ |
| Total Phosphorus (cost//b) | $\$ 4152-\$ 3500$ | $\$ 3500-\$ 2750$ | $\$ 2750-\$ 2000$ | $\$ 2000-\$ 1350$ | $<\$ 1350$ |
| Septic Conversion <br> Total Nitrogen <br> (cost/lb) | $\$ 300-\$ 250$ | $\$ 250-\$ 200$ | $\$ 200-\$ 150$ | $\$ 150-\$ 100$ | $<\$ 100$ |

Natural Systems Restoration Projects are scored based on the table below:
Natural Systems Restoration Projects - Based on past projects Cost/acre restored or Cost
/linear foot restored. For projects that combine benefits, list the primary benefit statement first
and follow with secondary benefits.

| Natural Systems Restoration Projects (cost/acre restored; cost/linear foot restored) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Project Type | 5 Points | 10 Points | 15 Points | 20 Points | 25 Points |
| Shoreline <br> Restoration ( $\$ 1 / f)$ | $\$ 1250-\$ 900$ | $\$ 900-5750$ | $\$ 750-\$ 650$ | $\$ 650-\$ 500$ | $\leqslant \$ 500$ |
| Hydrologic <br> Restoration | $\$ 21 \mathrm{k}-\$ 18 \mathrm{k}$ | $\$ 18 \mathrm{k}-\$ 9 \mathrm{k}$ | $\$ 9 \mathrm{k}-\$ 4 \mathrm{k}$ | $\$ 4 \mathrm{k}-\$ 1500$ | $\$ \$ 1500$ |
| Comprehensive <br> Ecosystem <br> Restoration | $\$ 100 \mathrm{k}-\$ 75 \mathrm{k}$ | $\$ 75 \mathrm{k}-\$ 54 \mathrm{k}$ | $\$ 54 \mathrm{k}-\$ 28 \mathrm{k}$ | $\$ 28 \mathrm{k}-\$ 15 \mathrm{k}$ | $5 \$ 15 \mathrm{k}$ |

c
Intangible benefits including public perception and political climate, along with benefits such as health, safety, and community support continue to be considered for proposed projects. However, a weighting system for intangible benefits has not been developed nor has a sensitivity analysis been performed for the projects to determine how weightings would affect a cost-effective analysis. Due to the high degree of judgment that would be needed, it is reasonable to acknowledge the intangible factors, without assigning a dollar figure to be included in any type of economic analysis. Some examples of these intangible factors include, but are not limited to:

- Health Factors, such as the ability to use septic systems
- Safety Factors, such as access to Emergency Vehicles
- Community Support for a Project
- Public Perception of a Stormwater Problem
- Board Policy for Addressing Stormwater Needs

In certain instances, even if a project's costs exceed the tangible benefits of flood control, it may still be a worthwhile project if it has numerous intangible benefits such as health, safety, and community support. These intangibles should be given consideration on a case-by-case basis, when deciding whether to go forward with a particular project.

### 3.6 Scoring

Scoring was applied based on methodology defined in the SWFWMD FY2023 Cooperative Funding Initiative with scores between 0-25 for flood, water quality, natural systems (shoreline restoration). As discussed, there are several PMAs that contain multiple Conceptual BMPs. To allow for as much flexibility as possible when choosing projects to move forward into design, there is both a breakout of individual BMPs and also a score of the combined BMPs. In addition, resiliency was scored between 0-5, based on the resiliency of each BMP considering whether the BMP would be inundated by the 2100 "intermediate high" floodplain, provided in the Jones Edmunds Future Conditions Floodplain Analysis. Scoring results are found in Section 5, Table 13.

### 3.7 Conceptual BMP Results

The original intent included in the scope of work was to propose up to 10 conceptual BMPs. However, the team wanted to provide every PMA with the opportunity for concept development, so BMPs were evaluated for all PMAs. Out of 18 total PMAs, 22 BMPs were conceptually developed for 13 PMAs. See Table 1 for a summary of conceptual BMPs for each Priority Management Area.

Table 1 - Summary of Conceptual BMPs

| PRIORITY <br> MANAGEMENT AREA | CONCEPTUAL BMP |
| :---: | :---: |
| TRI-PAR | DRY RETENTION/FLOODPLAIN STORAGE AREA; NUTRIENT SEPARATING BAFFLE BOX |
|  | LINEAR TREATMENT AREA; FLOODPLAIN BENCH |
| US-41 \& HIGHLAND | CONVERT EXISTING UNDERGROUND TREATMENT MEDIA FROM SAND TO BAM |
| MYRTLE \& US-301 ${ }^{1}$ | NO FEASIBLE BMP CONCEPTS FOR THIS PMA WERE IDENTIFIED. FULLY DEVELOPED INDUSTRIAL BASIN WITH TOO LITTLE AVAILABLE SPACE FOR BMPS DISCHARGING DIRECTLY TO FDOT SYSTEMS. |
| MLK \& ORANGE | STORM INFRASTRUCTURE IMPROVEMENTS; NUTRIENT SEPARATING BAFFLE BOX |
| 17TH \& US-301 ${ }^{1}$ | NO FEASIBLE BMP CONCEPTS FOR THIS PMA WERE IDENTIFIED. FULLY DEVELOPED INDUSTRIAL BASIN WITH TOO LITTLE AVAILABLE SPACE FOR BMPS DISCHARGING DIRECTLY TO FDOT SYSTEMS. |
| US-41 \& 10TH STREET | CONVERT EXISTING PARKING SPOTS TO PERVIOUS PAVMENT |
|  | LOW FLOW WEIRS WITH SIDE-BANK FILTRATION |
|  | SEDIMENT SUMP |
| BEE RIDGE \& BENEVA | FOREST LAKES POND SEDIMENT REMOVAL \& BEEMATS; NUTRIENT SEPARATING BAFFLE BOX |
|  | LOW FLOW WEIRS WITH SIDE-BANK FILTRATION IN EXISTING DITCH SYSTEM (4-63) |
|  | TANGLEWOOD CONVERSION OF CANAL TO WET DETENTION WITH BEEMATS |
| TUTTLE CIRCLE | CONVERSION OF BLOSSOM BROOK CANAL TO WET DETENTION IN SERIES |
|  | PHILLIPPI CREEK DAM REMOVAL; SEDIMENT REMOVAL; SEDIMENT SUMP INSTALLATION |
| BEE RIDGE BETWEEN MCINTOSH \& HONORE ${ }^{1}$ | NO FEASIBLE BMP CONCEPTS FOR THIS PMA WERE IDENTIFIED. FULLY DEVELOPED COMMERCIAL BASIN WITH TOO LITTLE AVAILABLE SPACE FOR BMPS DISCHARGING DIRECTLY TO FDOT SYSTEMS. |
| PINECRAFT | CONVERT EXISTING WET POND TO DRY POND |
|  | DENITRIFICATION TRENCH - ALOHA MOBILE HOME PARK |
|  | STREAM RESTORATION PHILLIPPI CREEEK |
| JEFFERSON AVE ${ }^{1}$ | NO FEASIBLE BMP CONCEPTS FOR THIS PMA WERE IDENTIFIED. SMALL PMA WITH TOO LITTLE AVAILABLE SPACE AND ONLY MULTIFAMILY STRUCTURE FLOODING AND WATER QUALITY LOS ISSUES. |
| SMH \& US-41 | NUTRIENT SEPARATING BAFFLE BOX; HARBOR ACRES STORM PIPE IMPROVEMENTS \& CHECK VALVES |
| DOWNTOWN | NUTRIENT SEPARATING BAFFLE BOX; DENITRIFICATION TRENCHES |
| BEE RIDGE \& US-41 | STORM INFRASTRUCTURE IMPROVEMENTS; NUTRIENT SEPARATING BAFFLE BOX |
|  | CONVERT EXISTING PARKING SPOTS TO PERVIOUS PAVEMENT |
| NORTHERN SIESTA KEY ${ }^{1}$ | NO FEASIBLE BMP CONCEPTS FOR THIS PMA WERE IDENTIFIED. PROJECTED SEA LEVEL RISE EXASPERATES DIFFICULTY OF IDENTIFYING RESILIENT FLOOD PROJECTS, AND WATER QUALITY LOS DEFICIENCIES ARE NOT HIGH. |
| STICKNEY POINT | STORM PIPE CHECK VALVES AND STORM INFRASTRUCTURE IMPROVEMENTS |
| US41 \& PROCTOR FAUBEL STREET <br> Note: ${ }^{(1)}=$ This PMA was eva | THE LANDINGS POND SEDIMENT REMOVAL \& BEEMATS; NUTRIENT SEPARATING BAFFLE BOX STORM INFRASTRUCTURE IMPROVEMENTS <br> uated, and no feasible conceptual BMP concepts were identified |

Tri-Par Priority Management Area Conceptual BMP


Figure 20-Tri-Par Area BMPs
Floodplain Bench and Linear Treatment Area
Along the northern portion of this PMA, there is an existing drainage ditch that is part of the Whitaker Bayou drainage system. This northern conveyance has the opportunity to install a floodplain bench and linear treatment area with weirs to control flow allowing for flood protection and nutrient removal. The section of Whitaker Bayou Tributary A that runs through Tri-Par can be modified to provide additional floodplain storage by excavating a "bench" into the bank, as shown in Figure 21.


Figure 21 - Floodplain Bench / Linear Treatment System Typical Cross-Section
The project was modeled in ICPR with the Whitaker Bayou Watershed model. Flood protection benefits include:

- Removing 1018 linear feet of roadway from Level of Service (LOS) deficiency, including 416 feet of evacuation route.
- Flood Cost-Benefit Ratio $=1.08$
- Resilient in the NOAA 2100 future condition

BMP TRAINS 2020 Report: Tri-Par PMA - Channel Marsh Flow Way - Upper Limit Removal

Water quality benefits were assessed in BMP TRAINS 2020, with an assumption of $20 \%$ of baseflow capture in the linear treatment system. Model input and output is presented here:

Site and Catchment Information
Analysis: BMP Analysis

| Catchment Name | Combined catchments |
| :--- | :--- |
| Rainfall Zone | Florida Zone 4 |
| Annual Mean Rainfall | 52.00 |
| Post-Condition Land Use Information |  |
| Land use | User Defined Values |
| Area (acres) | $1,280.54$ |
| Rational Coefficient (0-1) | 0.31 |
| Non DCIA Curve Number | 84.70 |
| DCIA Percent (0-100) | 20.00 |
| Wet Pond Area (ac) | 0.00 |
| Nitrogen EMC (mg/l) | 1.830 |
| Phosphorus EMC (mg/l) | 0.330 |



## Surface Water Discharge NOTE: THIS IS FOR FULL VOLUME

Provided TN Treatment Efficiency (\%) 68
Provided TP Treatment Efficiency (\%) 82
Load Diagram for Marsh Flowway full volume

| Load $\begin{array}{ll} \mathrm{N}: 3,849.87 \mathrm{~kg} / \mathrm{yr} \quad \rightarrow \\ \mathrm{P}: 694.24 \mathrm{~kg} / \mathrm{yr} \end{array}$ | Treatment <br> N: $68 \%$ <br> P: $82 \%$ | $\rightarrow \quad \begin{aligned} & \text { Surface Discharge } \\ & \mathrm{N}: 1,231.96 \mathrm{~kg} / \mathrm{yr} \\ & \mathrm{P}: 124.96 \mathrm{~kg} / \mathrm{yr} \end{aligned}$ |
| :---: | :---: | :---: |
|  | $\downarrow$ | Mass Reduction <br> N: 2,617.91 kg/yr <br> P: $569.28 \mathrm{~kg} / \mathrm{yr}$ |

Load Diagram for User Defined BMP (As Used In Routing)


## $\downarrow$

> Mass Removed
> $\mathrm{N}: 2,617.91 \mathrm{~kg} / \mathrm{yr}$
> P: $569.28 \mathrm{~kg} / \mathrm{yr}$

| Summary Report Full flow volume |  |  |  |
| :---: | :---: | :---: | :---: |
| Nitrogen |  |  |  |
| Surface Water Discharge |  |  |  |
| Total N post load | $3849.87 \mathrm{~kg} / \mathrm{yr}$ |  |  |
| Percent N load reduction | 68 \% |  |  |
| Provided N discharge load | $1231.96 \mathrm{~kg} / \mathrm{yr}$ | $2716.47 \mathrm{lb} / \mathrm{yr}$ |  |
| Provided N load removed | $2617.91 \mathrm{~kg} / \mathrm{yr}$ | $5772.5 \mathrm{lb} / \mathrm{yr}$ |  |
| Phosphorus |  |  |  |
| Surface Water Discharge |  |  |  |
| Total P post load |  | $694.239 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent P load reduction |  | 82 \% |  |
| Provided P discharge load |  | $124.963 \mathrm{~kg} / \mathrm{yr}$ | $275.54 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed |  | $569.276 \mathrm{~kg} / \mathrm{yr}$ | $1255.254 \mathrm{lb} / \mathrm{yr}$ |

LOAD REDUCTIONS AT VARIOUS LEVELS OF FLOW CAPTURE AND TREATMENT

|  | Total Nitrogen Load <br> Reductions $\mathrm{kg} / \mathrm{yr}$ | Total Phosphorus Load <br> Reductions $\mathrm{kg} / \mathrm{yr}$ |
| :--- | :--- | :--- |
| Full flow capture | 2617.91 | 569.28 |
| $10 \%$ flow capture | 261.79 | 56.93 |
| $20 \%$ flow capture | 523.58 | 113.86 |
| $30 \%$ flow capture | 785.37 | 179.78 |

The Linear Treatment System conceptual BMP provides reductions of $1154 \mathrm{lb} / \mathrm{yr}$ of TN and $251 \mathrm{lb} / \mathrm{yr}$ of TP.

## Dry Retention and Nutrient Separating Baffle Box

A second conceptual BMP for the Tri-Par area includes a managed stormwater facility, located north of Martin Luther King Jr. Blvd. and west of the railroad corridor. The intent of this project is to create a detention and retention area for stormwater with capacity to allow storage of increased flows, due to conveyance improvements along Tributary C. This treatment system will also include a nutrientseparating baffle box to provide additional water quality treatment for flows entering the retention area.

The project was modeled with the Whitaker Bayou Watershed ICPR model, and flooding benefits include:

- 12 structures were removed from 100-year storm risk.
- Resilient in the NOAA 2100 future condition

The treatment retention area proposed size is approximately 7 acres. Note that part of the conceptual BMP area is currently under public ownership and part is under private ownership; therefore, if the project is to move forward, a partnership could be formed with the private owners, to include potential acquisition, if there is interest. The project concept is completely voluntary and in no way considered a mandatory improvement. There is a potential to reduce the size of the retention area to only government-owned parcels and right-of-way for a reduced benefit, if acquisition is not possible.

## BMP TRAINS 2020 Report - Tri-Par PA5 Baffle Box and Dry Retention Area

For the full 7-acre retention area, the BMP TRAINS 2020 input and output data is presented here:

| Site and Catchment Information <br> Analysis: BMP Analysis <br> Catchment Name |  |
| :--- | :--- |
| Rainfall Zone | Tri Par Retention |
| Annual Mean Rainfall | Florida Zone 4 |
| Post-Condition Land Use Information |  |
| Land use | User Defined Values |
| Area (acres) | $3,501.60$ |
| Rational Coefficient (0-1) | 0.24 |
| Non DCIA Curve Number | 84.60 |
| DCIA Percent (0-100) | 9.40 |
| Wet Pond Area (ac) | 0.00 |
| Nitrogen EMC (mg/l) | 1.720 |
| Phosphorus EMC (mg/I) | 0.287 |
| Runoff Volume (ac-ft/yr) | $3,617.095$ |
| Nitrogen Loading (kg/yr) | $7,670.990$ |
| Phosphorus Loading (kg/yr) | $1,279.985$ |

Catchment Number: 1 Name: Tri Par Retention Multiple BMP in Series Design Parameters

BMP in Series Number: 1
BMP Type: Nutrient Separating Baffle Box for trash and debris
Contributing Catchment Area (acres) 3,501.600

Provided Nitrogen Treatment Efficiency (\%) 10
Provided Phosphorus Treatment Efficiency (\%) 10

BMP in Series Number: 2
BMP Type: Retention Alone
Retention Depth (in) 0.159
Retention Volume (ac-ft) 46.396

Load for Multiple BMP in Series (Baffle box to retention)


Summary Treatment Report
Nitrogen

| Surface Water Discharge |  |  |
| :--- | :--- | :--- |
| Total N post load | $7670.99 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent N load reduction | $32 \%$ |  |
| Provided N discharge load | $5192.39 \mathrm{~kg} / \mathrm{yr}$ | $11449.22 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $2478.6 \mathrm{~kg} / \mathrm{yr}$ | $5465.31 \mathrm{lb} / \mathrm{yr}$ |

Phosphorus

| Surface Water Discharge |  |  |
| :--- | :--- | :--- |
| Total P post load | $1279.985 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent P load reduction | $32 \%$ |  |
| Provided P discharge load | $866.405 \mathrm{~kg} / \mathrm{yr}$ | $1910.42 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed | $413.58 \mathrm{~kg} / \mathrm{yr}$ | $911.944 \mathrm{lb} / \mathrm{yr}$ |

The dry retention system with nutrient separating baffle box conceptual BMP provides reductions of $5465 \mathrm{lb} / \mathrm{yr}$ of TN and $912 \mathrm{lb} / \mathrm{yr}$ of TP.

Reductions for both conceptual BMPs in the Tri-Par PMA provide removal rates of $6619 \mathrm{lb} / \mathrm{yr}$ of TN and $1163 \mathrm{lb} / \mathrm{yr}$ of TP .

The estimated cost for both conceptual BMPs in the Tri-Par PMA is $\mathbf{\$ 3 , 7 8 7 , 7 6 7}$.

## US-41 and Highland Priority Management Area Conceptual BMP

This is an opportunity to partner with the public to develop a retrofit program for existing filter systems that are very common in urban areas. This isn't necessarily a recommended project at this location but rather an evaluation of cost to use as the basis for a program. The existing underground storage and treatment system, for the commercial business located at the intersection of US-41 and Myrtle Street, can be modified by removing the sand filter media and replacing it with a biosorption activated media (BAM). The water quality benefits were modeled in BMP Trains 2020, comparing the existing sand filter performance with BAM performance. The goal of this conceptual BMP was to provide improvements in
the PMA, as well as to provide a unit cost for the conversion of existing sand filters throughout the County.


Figure 22 - US 41 \& Highland Area BMP

BMP TRAINS 2020 Report US-41 and Highland - Walmart Filter Replacement
Full BMP input and output is presented here:
Existing Filter Effectiveness
Site and Catchment Information
Analysis: BMP Analysis

| Catchment Name | Walmart |
| :--- | :--- |
| Rainfall Zone | Florida Zone 4 |
| Annual Mean Rainfall | 52.00 |
| Post-Condition Land Use Information |  |
| Land use | High-Intensity Commercial: TN=2.40 TP=0.345 |
| Area (acres) | 3.06 |
| Rational Coefficient (0-1) | 0.76 |
| Non DCIA Curve Number | 94.00 |
| DCIA Percent (0-100) | 85.00 |
| Wet Pond Area (ac) | 0.00 |
| Nitrogen EMC (mg/l) | 2.400 |
| Phosphorus EMC (mg/l) | 0.345 |


| Runoff Volume (ac-ft/yr) | 10.067 |
| :--- | :--- |
| Nitrogen Loading (kg/yr) | 29.790 |
| Phosphorus Loading (kg/yr) | 4.282 |

Catchment Number: 1 Name: Walmart
Surface Discharge Filtration Design
Treatment Depth (in) 0.650
Hydraulic Capture Efficiency (\%) 52

| Media Type | U |
| :--- | :--- |
| Media N Reduction (\%) | 1 |
| Media P Reduction (\%) | 15 |

Watershed Characteristics
Catchment Area (acres) 3.06
Contributing Area (acres) 3.060
Non-DCIA Curve Number 94.00
DCIA Percent 85.00
Rainfall Zone Florida Zone 4
Rainfall (in) 52.00

Surface Water Discharge
Provided TN Treatment Efficiency (\%) 5
Provided TP Treatment Efficiency (\%) 8
Media Mix Information
Type of Media Mix Sand
Media N Reduction (\%) 10
Media P Reduction (\%) 15

Load Diagram for Surface Discharge Filtration (stand-alone)


| Nitrogen |  |  |
| :--- | :--- | :--- |
| Surface Water Discharge |  |  |
| Total N post load | $29.79 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent N load reduction | $5 \%$ |  |
| Provided N discharge load | $28.24 \mathrm{~kg} / \mathrm{yr}$ | $62.27 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $1.55 \mathrm{~kg} / \mathrm{yr}$ | $3.42 \mathrm{lb} / \mathrm{yr}$ |



## Surface Water Discharge

## Provided TN Treatment Efficiency (\%) 39

Provided TP Treatment Efficiency (\%) 49

## Media Mix Information

Type of Media Mix B\&G CTS24
Media N Reduction (\%) 75
Media P Reduction (\%) 95

Load Diagram for Surface Discharge Filtration (stand-alone)

Summary Report
For 7" thick filter media
Nitrogen

Surface Water Discharge

| Total N post load | $29.79 \mathrm{~kg} / \mathrm{yr}$ |  |
| :--- | :--- | :--- |
| Percent N load reduction | $22.62 \%$ |  |
| Provided N discharge load | $23.052 \mathrm{~kg} / \mathrm{yr}$ | $50.821 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $6.738 \mathrm{~kg} / \mathrm{yr}$ | $14.855 \mathrm{lb} / \mathrm{yr}$ |

## Phosphorus

Surface Water Discharge

| Total P post load | $4.282 \mathrm{~kg} / \mathrm{yr}$ |  |
| :--- | :--- | :--- |
| Percent P load reduction | $28.42 \%$ |  |
| Provided P discharge load | $3.065 \mathrm{~kg} / \mathrm{yr}$ | $6.757 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed | $1.217 \mathrm{~kg} / \mathrm{yr}$ | $2.683 \mathrm{lb} / \mathrm{yr}$ |

## Media Filter Report

Catchment Name: Walmart
Treatment Depth (in): 0.65
Rate (GPM/SF): 0.05
Effective Impervious Area (acres): 2.77
Minimum Filter Area (sf): 325.99

The existing TN removal rate of $3.4 \mathrm{lbs} / \mathrm{yr}$ increases by more than 4 times to 14.9 lbs when the system is converted to BAM from sand, while the TP removal rate increases from $0.74 \mathrm{lb} / \mathrm{yr}$ to $2.69 \mathrm{lb} / \mathrm{yr}$.

The estimated project cost is $\mathbf{\$ 2 1 , 4 0 0}$. This could serve as an example cost for Sarasota County to develop a program, incentivizing local businesses to upgrade existing sand filter treatment systems through the County. This specific location is resilient to the NOAA 2100 future condition.

Martin Luther King Jr Way and Orange Ave Priority Management Area Conceptual BMP


Figure 23 - MLK \& Orange Area BMP

## Stormwater Pipe Improvements and Nutrient Separating Baffle Box

These improvements will provide a water quality and flood protection component. BMP concept includes replacing existing undersized pipe with larger pipe for approximately 2,400 linear feet, including on $29^{\text {th }}$ Street, from Goodrich Ave. to Lean Ave. and from Maple Ave. to Orange Ave, and installation of a nutrient-separating baffle box on $29^{\text {th }}$ Street.

The improvements were modeled in the Whitaker Bayou watershed model and include changes to 8 pipes, as detailed in Table 2, and shown in Figure 23.

Table 2 - MLK \& Orange Ave. ICPR Pipe Changes

| Pipe | Change | Length |
| :--- | :--- | ---: |
| $1517 P$ | from circular 36" to elliptical 43"x68" | 36 |
| $1518 P$ | from circular 36" to elliptical 43"x68" | 218 |
| 1519P | from circular 36" to elliptical 43"x68" | 390.6 |
| $1520 P$ | from circular 15" to elliptical 43"x68" | 241.7 |
| 1522P | from circular 36" to elliptical 43"x68" | 766 |
| $1523 P$ | from circular 42" to elliptical 43"x68" | 225 |
| $1524 P$ | from circular 42" to elliptical 43"x68" | 285 |
| $1525 P$ | from circular 42" to elliptical 43"x68" | 228.7 |

## Measurable benefits from the flood component of the BMP include:

- Removing 292 linear feet of local roads from LOS deficiency
- 5 structures removed from 100-year storm risk
- Resilient to the NOAA 2100 future condition

The Benefit-Cost Ratio for the MLK \& Orange Stormwater Improvements is 0.94.
BMP TRAINS 2020 Report - Martin Luther King Jr Way and Orange Ave
Nutrient Separating Baffle Box
Water quality benefits for the baffle box were estimated with BMP TRAINS 2020. All input and output data are presented here:

Project: MLK Orange Ave NSBB
Date: 2/15/2022 12:50:05 PM

Site and Catchment Information
Analysis: BMP Analysis

1521-1536
1535-1540
1527-1531
Catchment Name

| Rainfall Zone | Florida Zone 4 | Florida Zone 4 | Florida Zone 4 |
| :--- | :--- | :--- | :--- |
| Annual Mean Rainfall | 52.00 | 52.00 | 52.00 |

Post-Condition Land use Information
Land use User Defined Values User Defined Values User Defined Values

| Area (acres) | 31.97 | 42.11 | 22.13 |
| :--- | :--- | :--- | :--- |
| Rational Coefficient (0-1) | 0.23 | 0.24 | 0.29 |
| Non DCIA Curve Number | 85.00 | 84.79 | 84.24 |
| DCIA Percent (0-100) | 7.44 | 8.88 | 17.40 |


| Wet Pond Area (ac) | 0.00 | 0.00 | 0.00 |
| :--- | :--- | :--- | :--- |
| Nitrogen EMC (mg/l) | 2.039 | 2.031 | 1.891 |
| Phosphorus EMC (mg/l) | 0.325 | 0.320 | 0.297 |
| Runoff Volume (ac-ft/yr) | 31.810 | 43.218 | 27.505 |
| Groundwater N (kg/yr) | 0.000 | 0.000 | 0.000 |
| Groundwater P (kg/yr) | 0.000 | 0.000 | 0.000 |
| Nitrogen Loading (kg/yr) | 79.974 | 108.227 | 64.130 |
| Phosphorus Loading (kg/yr) | 12.747 | 17.052 | 10.072 |

Catchment Number: 1 Name: Subbasins1521-1536
Nutrient Separating Baffle Box BMP Design
Contributing Catchment Area (acres) 31.970
Provided Nitrogen Treatment Efficiency (\%) 19
Provided Phosphorus Treatment Efficiency (\%) 15

Watershed Characteristics
Catchment Area (acres) 31.97
Contributing Area (acres) 31.970
Non-DCIA Curve Number 85.00
DCIA Percent $\quad 7.44$
Rainfall Zone Florida Zone 4
Rainfall (in) 52.00

Surface Water Discharge
Provided TN Treatment Efficiency (\%) 19

Provided TP Treatment Efficiency (\%) 15

Load Diagram for User Defined BMP (stand-alone)


Load Diagram for User Defined BMP ( As Used In Routing)


> Mass Removed N: $47.94 \mathrm{~kg} / \mathrm{yr}$ $\mathrm{P}: 5.98 \mathrm{~kg} / \mathrm{yr}$

Catchment Number: 2 Name: Subbasins 1535 -1540
No BMPs

Watershed Characteristics

Catchment Area (acres) 42.11

Contributing Area (acres) 42.110
Non-DCIA Curve Number 84.79
DCIA Percent $\quad 8.88$

Rainfall Zone Florida Zone 4

Rainfall (in) 52.00
Load Diagram for No BMPs

| Load <br> $\mathrm{N}: 108.23 \mathrm{~kg} / \mathrm{yr}$ <br> $\mathrm{P}: 17.05 \mathrm{~kg} / \mathrm{yr}$$\rightarrow$Treatment <br> $\mathrm{N}: \%$ <br> $\mathrm{P}: \%$ |
| :--- |$\rightarrow$| Surface Discharge |
| :--- |
| $\mathrm{N}: 108.23 \mathrm{~kg} / \mathrm{yr}$ |
| $\mathrm{P}: 17.05 \mathrm{~kg} / \mathrm{yr}$ |

$\mathrm{N}: 0.00 \mathrm{~kg} / \mathrm{yr}$
P: $0.00 \mathrm{~kg} / \mathrm{yr}$

## Load Diagram for No BMPs



Catchment Number: 3 Name: Subbasins 1527-1531
No BMPs

Watershed Characteristics

Catchment Area (acres) 22.13

Contributing Area (acres) 22.130

Non-DCIA Curve Number 84.24
DCIA Percent $\quad 17.40$

| Rainfall Zone | Florida Zone 4 |
| :--- | :--- |
| Rainfall (in) | 52.00 |

Load Diagram for No BMPs

| Load <br> $\mathrm{N}: 64.13 \mathrm{~kg} / \mathrm{yr}$ <br> $\mathrm{P}: 10.07 \mathrm{~kg} / \mathrm{yr}$ |  |
| :--- | :--- |
|  | $\rightarrow$Treatment <br> $\mathrm{N}: \%$ <br> $\mathrm{P}: \%$ |
|  | $\downarrow$ | | Surface Discharge |
| :--- |
| $\mathrm{N}: 64.13 \mathrm{~kg} / \mathrm{yr}$ |
| $\mathrm{P}: 10.07 \mathrm{~kg} / \mathrm{yr}$ |
| Mass Reduction |
| $\mathrm{N}: 0.00 \mathrm{~kg} / \mathrm{yr}$ |
| $\mathrm{P}: 0.00 \mathrm{~kg} / \mathrm{yr}$ |

Summary Treatment Report Version: 4.3.5

Project: MLK Orange Ave NSBB
Analysis Type: BMP Analysis
BMP Types:
$\quad$ Catchment 1-(1521-1536) Nutrient
Separating Baffle Box BMP
Catchment 2-(1535-1540)
No BMP
Catchment 3-(1527-1531)
No BMP
Based on \% removal values to the nearest percen

Summary Report
Nitrogen
Surface Water Discharge

| Total N post load | $252.33 \mathrm{~kg} / \mathrm{yr}$ |  |
| :--- | :--- | :--- |
| Percent N load reduction | $19 \%$ |  |
| Provided N discharge load | $204.39 \mathrm{~kg} / \mathrm{yr}$ | $450.68 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $47.94 \mathrm{~kg} / \mathrm{yr}$ | $105.71 \mathrm{lb} / \mathrm{yr}$ |

Phosphorus
Surface Water Discharge
Total P post load $\quad 39.871 \mathrm{~kg} / \mathrm{yr}$

Percent P load reduction 15 \%
Provided P discharge load $\quad 33.891 \mathrm{~kg} / \mathrm{yr} \quad 74.73 \mathrm{lb} / \mathrm{yr}$

Provided P load removed $\quad 5.981 \mathrm{~kg} / \mathrm{yr} \quad 13.187 \mathrm{lb} / \mathrm{yr}$

The nutrient separating baffle box provides reductions of $105.71 \mathrm{lb} / \mathrm{yr}$ of TN and $13.19 \mathrm{lb} / \mathrm{yr}$ of TP. The conceptual BMP cost is $\mathbf{\$ 1 , 2 4 2 , 0 2 1}$

US41 and $10^{\text {th }}$ Street Priority Management Area Conceptual BMP


Figure 24 - US 41 \& 10th Street Area BMPs

## $10^{\text {th }}$ Street Boat Ramp Parking Lot Conversion to Pervious Pavement

This conceptual BMP includes removal of existing asphalt in the parking spots and replacing it with pervious pavement. The existing dry retention stormwater management system will remain in place and will be supplemented with additional treatment and storage volume provided by the new pervious areas. The drive aisles will remain impervious asphalt, and the existing drainage inlets and storm pipes will remain in place for all runoff that does not percolate into the pervious pavement. Existing grass islands can also be converted to rain gardens to allow for additional stormwater percolation and nutrient removal. In total, 1.6 acres of parking spots within a 5 -acre contributing area would be converted from impervious to pervious, with 6-inch of pervious concrete over an 8-inch layer of stone. This area was chosen as a retrofit due to future plans to reconstruct the boat basin parking area. Parking areas to be converted are shown in Figure 25.


Figure 25-US-41 \& 10th Street Parking Lot Pervious Pavement Conversion

BMP TRAINS 2020 Report US-41 and $10^{\text {th }}$ Street Boat Ramp Parking Lot - Paved drive with retention and pervious pavement parking area

The water quality benefits were modeled in BMP Trains 2020, with full BMP input and output presented here:

## Site and Catchment Information

Analysis: BMP Analysis

| Catchment Name | Paved drive, islands, retention area | Pervious pavement area |
| :--- | :--- | :--- |
| Rainfall Zone | Florida Zone 4 | Florida Zone 4 |
| Annual Mean Rainfall | 52.00 | 52.00 |

## Post-Condition Land Use Information

Land use
Area (acres)
Rational Coefficient (0-1)
Non DCIA Curve Number
DCIA Percent (0-100)
58.84

Wet Pond Area (ac)
Nitrogen EMC (mg/l)
0.00
1.520

Highway: TN=1.520 TP=0.200
1.60
0.82
98.00
100.00
0.00
1.520

| Phosphorus EMC (mg/l) | 0.200 | 0.200 |
| :--- | :--- | :--- |
| Runoff Volume (ac-ft/yr) | 8.048 | 5.706 |
| Groundwater N (kg/yr) | 0.000 | 0.000 |
| Groundwater P $(\mathrm{kg} / \mathrm{yr})$ | 0.000 | 0.000 |
| Nitrogen Loading (kg/yr) | 15.084 | 10.694 |
| Phosphorus Loading (kg/yr) | 1.985 | 1.407 |

Catchment Number: 1 Name: Paved drive, islands, retention area

## Retention Design

Retention Depth (in) $\quad 1.300$
Retention Volume (ac-ft) 0.378

## Watershed Characteristics

| Catchment Area (acres) | 3.49 |
| :--- | :--- |
| Contributing Area (acres) | 3.490 |
| Non-DCIA Curve Number | 78.00 |
| DCIA Percent | 58.84 |
| Rainfall Zone | Florida Zone 4 |
| Rainfall (in) | 52.00 |

## Surface Water Discharge

Provided TN Treatment Efficiency (\%) 82
Provided TP Treatment Efficiency (\%) 82

Load Diagram for Retention (stand-alone)


Catchment Number: 2 Name: Pervious pavement area Pervious Pavement Design
Surface Area of Pavement (acres) 1.600
Treatment Volume (in over watershed) 3.500

| Pavement Type | Thickness (in) Storage (in) Storage (ac-ft) |  |  |
| :--- | :---: | :---: | :---: |
| Concrete Permeable Pavement 6.00 | 1.500 | 0.200 |  |
| \#89 pea rock | 8.00 | 2.000 | 0.267 |
| Total |  | 3.500 | 0.467 |

## Watershed Characteristics

| Catchment Area (acres) | 1.60 |
| :--- | :--- |
| Contributing Area (acres) | 0.000 |
| Non-DCIA Curve Number | 98.00 |
| DCIA Percent | 100.00 |
| Rainfall Zone | Florida Zone 4 |
| Rainfall (in) | 52.00 |
|  |  |
| Surface Water Discharge |  |
| Provided TN Treatment Efficiency (\%) 95 |  |
| Provided TP Treatment Efficiency (\%) 95 |  |

Load Diagram for Pervious Pavement (stand-alone)


| Summary Report <br> Nitrogen |  |  |
| :---: | :---: | :---: |
| Surface Water Discharge |  |  |
| Total N post load | $25.78 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent N load reduction | 88 \% |  |
| Provided N discharge load | $3.19 \mathrm{~kg} / \mathrm{yr}$ | $7.02 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $22.59 \mathrm{~kg} / \mathrm{yr}$ | $49.82 \mathrm{lb} / \mathrm{yr}$ |
| Phosphorus |  |  |
| Surface Water Discharge |  |  |
| Total P post load | $3.392 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent P load reduction | 88 \% |  |
| Provided P discharge load | . $419 \mathrm{~kg} / \mathrm{yr}$ | . $92 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed | $2.973 \mathrm{~kg} / \mathrm{yr}$ | $6.555 \mathrm{lb} / \mathrm{yr}$ |

The pervious pavement parking lot conversion provides reductions of $49.82 \mathrm{lb} / \mathrm{yr}$ of TN and $6.56 \mathrm{lb} / \mathrm{yr}$ of TP.

The estimated cost for the pervious pavement parking lot conceptual BMP is $\mathbf{\$ 1 , 4 8 5 , 6 4 0}$.

## Low-Flow Weirs with Side-Bank Filtration

A second conceptual BMP in the US 41 and $10^{\text {th }}$ Street basin includes installing Low-Flow Weirs with Side-Bank Filtration, in the existing canal north of $10^{\text {th }}$ Street. The BMP components include installing
two concrete weirs and excavating the canal banks for approximately 1,040 feet and installing a sidebank filter system with BAM.


Figure 26-US-41 \& 10th Steet - Low-Flow Weirs \& Side-Bank Filters
Contributing areas and proposed side-bank filter locations are shown in Figure 26. The typical section for the side-bank filter is shown in Figure 27.


Typical Side-Bank Filter in relation to: 1 control elevation, 2 cover, 3 Media, 4 outlet pipe or collection box, 5 fabric or bridging rock, 6 liner and slope if needed


Figure 27-Typical Side-Bank Filter Detail (source: BMP Trains) and Example Canal with Low Flow Weir Cross Section from ICPR4
BMP TRAINS 2020 Report - US-41 and 10th Street - Low-Flow Weirs with Side-Bank Filters

The water quality benefits were modeled in BMP Trains 2020, with full BMP input and output presented here:

## Site and Catchment Information

## Analysis: BMP Analysis

| Catchment Name | Composite all subbasins |
| :--- | :--- |
| Rainfall Zone | Florida Zone 4 |
| Annual Mean Rainfall | 52.00 |
| Post-Condition Land use Information |  |
| Land use | User Defined Values |
| Area (acres) | 239.11 |
| Rational Coefficient (0-1) | 0.36 |
| Non DCIA Curve Number | 84.57 |
| DCIA Percent (0-100) | 29.00 |
| Wet Pond Area (ac) | 0.00 |
| Nitrogen EMC (mg/l) | 1.735 |
| Phosphorus EMC (mg/l) | 0.279 |
| Runoff Volume (ac-ft/yr) | 377.625 |
| Nitrogen Loading (kg/yr) | 807.836 |
| Phosphorus Loading (kg/yr) | 129.906 |

Catchment Number: 1 Name: Composite all subbasins
Surface Discharge Filtration Design
Treatment Depth (in) 0.500
Hydraulic Capture Efficiency (\%) 58

| Media Type | B\&G CTS12 |
| :---: | :---: |
| Media N Reduction (\%) | 60 |
| Media P Reduction (\%) | 90 |
| Watershed Characteristics |  |
| Catchment Area (acres) 239.11 |  |
| Contributing Area (acres) 239.110 |  |
| Non-DCIA Curve Number 84.57 |  |
| DCIA Percent 29.00 |  |
| Rainfall Zone Florida Zone 4 |  |
| Rainfall (in) | 52.00 |
| Surface Water Discharge |  |
| Required TN Treatment Efficiency (\%) |  |
| Provided TN Treatment Efficiency (\%) 35 |  |
| Required TP Treatment Efficiency (\%) |  |
| Provided TP Treatment Efficiency (\%) 52 |  |
| Media Mix Information |  |
| Type of Media Mix B | B\&G CTS12 |
| Media N Reduction (\%) 60 |  |
| Media P Reduction (\%) 90 |  |
| Load Diagram for Surface | ce Discharge Filtratio |



| Summary Report <br> Nitrogen |  |  |
| :--- | :--- | :--- |
| Surface Water Discharge |  |  |

Phosphorus

| Surface Water Discharge |  |  |
| :--- | :--- | :--- |
| Total P post load | $129.906 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent P load reduction | $52 \%$ |  |
| Provided P discharge load | $62.099 \mathrm{~kg} / \mathrm{yr}$ | $136.93 \mathrm{lb} / \mathrm{yr}$ |

## Media Filter Report

Catchment Name: Composite all subbasins
Treatment Depth (in): 0.50
Rate (GPM/SF): 0.05
Effective Impervious Area (acres): 72.50
Minimum Filter Area (sf): 6,570.69

The proposed Low-Flow Weirs with Side-Bank Filtration conceptual BMP provides reductions of 619.9 $\mathrm{lb} / \mathrm{yr}$ of TN and $149.5 \mathrm{lb} / \mathrm{yr}$ of TP.

The estimated cost for the Low-Flow Weirs with Side-Bank Filtration conceptual BMP is $\mathbf{\$ 1 , 2 1 2 , 6 4 0}$.

## Sediment Sump

A third conceptual BMP for the US-41 and $10^{\text {th }}$ Street PMA includes installation of a Sediment Sump at the east end of the $10^{\text {th }}$ Street Boat Ramp Basin. Significant sediment deposition occurs in the basin and this BMP will allow for simplified maintenance and reduction of pollutant loading into Sarasota Bay. The 41.44-acre Contributing area to the sump is shown in Figure 24.

Sediment removal via excavation during initial construction yields 1380 lbs of TN and 665 lbs of TP removed from an estimated 767 cubic yards of material. Values were obtained by utilizing the Florida Stormwater Association MS4 Load Reduction Assessment Tool, dated June 2019, accessed from the Florida Department of Environmental Protection's site (FSA-MS4 Load Reduction Tool updated 2019 | Florida Department of Environmental Protection)

The tool's input screen is presented below in Figure 28, while the results are shown in Figure 29.


Figure 28-10th Street Sediment Sump Load Reduction Assessment Tool Input


Figure 29-10th Street Sediment Sump Load Reduction Assessment Tool Results
An existing Nutrient Separating Baffle Box on $10^{\text {th }}$ Street is in place, SWFWMD Environmental Resource Permit Exemption Application No. 733406, which provides treatment for a 443-acre watershed contributing area. The proposed sediment sump BMP in the $10^{\text {th }} \mathrm{St}$. Boat Ramp Basin provides treatment downstream of the existing Baffle Box, therefore the nutrient and sediment reduction calculations take this into account, with a contributing area consisting only of watershed area locations downstream of the existing BMP's location.

To calculate the estimated annual reductions, an assumed total suspended solids loading rate of 361.66 lb TSS / yr * ac was developed from the "Evaluation of Current Stormwater Design Criteria within the State of Florida" report by Harvey Harper (June 2007). TP and TN concentrations in Total suspended solids (TSS) were also obtained from the same source. Annual TN and TP reductions were calculated based on the estimated performance of the sediment sump.

Calculations for nutrient removal are presented below:

## Annual Reductions

Contributing Area: 41.44 ac
TSS Loading Rate: $361.66 \frac{\text { lb TSS }}{y r * a c}$
TSS Loading: $41.44 a c * 361.66 \frac{\mathrm{lb} \text { TSS }}{y r * a c}=14,987 \frac{\mathrm{lb} \text { TSS }}{y r}$
Assumed Sediment Sump Efficiency $=80 \%$

$$
14,987 \frac{\text { lb TSS removed }}{y r} * 0.8=11,990 \frac{\text { lb TSS removed }}{y r}
$$

$$
\text { TP Reduction: } 11,990 \frac{l b T S S \text { removed }}{y r} * 0.0049 \frac{l b T P}{l b T S S}=58.75 \frac{l b T P \text { removed }}{y r}
$$

TN Reduction: 11,990 $\frac{l b \text { TSS removed }}{y r} * 0.0034 \frac{l b T P}{l b T S S}=40.77 \frac{l b T N \text { removed }}{y r}$

The proposed sediment sump provides annual reductions of $40.77 \mathrm{lb} / \mathrm{yr}$ of TN and $58.75 \mathrm{lb} / \mathrm{yr}$ of TP. Initial excavation also provides a one-time removal of 1380 lbs of TN and 665 lbs of TP.

The estimated cost for the Sediment Sump conceptual BMP is $\mathbf{\$ 2 7 4 , 3 4 6}$.

The estimated cost for all conceptual BMPs in the US-41 and $10^{\text {th }}$ Street PMA is $\mathbf{\$ 2 , 9 7 2 , 6 2 6}$.

Bee Ridge and Beneva Rd. Priority Management Area Conceptual BMP
The conceptual BMPs proposed for the Bee Ridge and Beneva PMA include Sediment Removal from the Forest Lakes Stormwater Pond and installation of a nutrient separating baffle box at the primary inflow point, floating Beemats in the pond, as well as Low-Flow Weirs with Side-Bank Filters in the existing ditch east of Riviera Drive.


Figure 30-Bee Ridge \& Beneva Area BMPs

## Sediment Removal and Nutrient Separating Baffle Box

The estimated sediment removal of approximately 48,400 cubic yards of material from the pond will provide an estimated 30.3 acre feet of additional permanent pool volume available to provide water quality treatment. Installation of a nutrient-separating baffle box at the end of an existing 48 -inch storm pipe adjacent to East Forest Lakes drive will provide additional pollutant loading reductions for the stormwater before entering the pond. Floating Beemats, as shown in Figure 31, are estimated to cover approximately $5 \%$ of the ponds surface, providing additional nutrient uptake pathways. This is a conservative estimate for planning purposes and assumed to be adjusted during design based on resident desires, maintenance access and cost to cover the highest amount of surface area possible.


Figure 31 - Floating Beemats (source: beemats.com)
The full contributing area for the Forest Lakes Pond is presented in Figure 32, along with the location of the pond and proposed nutrient-separating baffle box.


Figure 32 - Forest Lakes Pond Sediment Removal and NSBB

Sediment removal via excavation during initial construction yields 41,946 lbs of TN and 87,110 lbs of TP removed from an estimated 48,400 cubic yards of material. Values were obtained by utilizing the

Florida Stormwater Association MS4 Load Reduction Assessment Tool, dated June 2019, accessed from the Florida Department of Environmental Protection's site (FSA-MS4 Load Reduction Tool updated 2019 |Florida Department of Environmental Protection)

The tool's input screen is presented below in Figure 33, while the results are shown in Figure 34.


Figure 33 - Forest Lakes Pond Sediment Removal Load Reduction Assessment Tool Input


Figure 34 - Forest Lakes Pond Sediment Removal Load Reduction Assessment Tool Results

BMP TRAINS 2020 Report Bee Ridge at Beneva - Forest Lakes Sediment Removal, Nutrient Separating Baffle Box and Beemats

The BMP Trains 2020 input and output for the Forest Lakes Pond is presented here:


## Surface Water Discharge

Provided TN Treatment Efficiency (\%) 42
Provided TP Treatment Efficiency (\%) 76
Load Diagram for Dredged Wet Detention (stand-alone)


| Summary Report |  |  |
| :---: | :---: | :---: |
| Nitrogen |  |  |
| Surface Water Discharge |  |  |
| Total N post load | $411.85 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent N load reduction | 42 \% |  |
| Provided N discharge load | $237.72 \mathrm{~kg} / \mathrm{yr}$ | $524.18 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $174.12 \mathrm{~kg} / \mathrm{yr}$ | $383.94 \mathrm{lb} / \mathrm{yr}$ |
| Phosphorus |  |  |
| Surface Water Discharge |  |  |
| Total P post load | $69.797 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent P load reduction | 76 \% |  |
| Provided P discharge load | $16.808 \mathrm{~kg} / \mathrm{yr}$ | $37.06 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed | $52.99 \mathrm{~kg} / \mathrm{yr}$ | $116.842 \mathrm{lb} / \mathrm{yr}$ |
| Project: Forest Lakes After - Wet Detention with |  |  |
| Beemats |  |  |
| Summary Report |  |  |
| Nitrogen |  |  |
| Surface Water Discharge |  |  |
| Total N post load | $411.85 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent N load reduction | 48 \% |  |
| Provided N discharge load | $213.95 \mathrm{~kg} / \mathrm{yr}$ | $471.76 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | 197.9 kg/yr | $436.36 \mathrm{lb} / \mathrm{yr}$ |
| Phosphorus |  |  |
| Surface Water Discharge |  |  |
| Total P post load | $69.797 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent P load reduction | 78 \% |  |
| Provided P discharge load | $15.127 \mathrm{~kg} / \mathrm{yr}$ | $33.35 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed | $54.671 \mathrm{~kg} / \mathrm{yr}$ | $120.548 \mathrm{lb} / \mathrm{yr}$ |
| NUTRIENT SEPARATING BAFFLE BOX ON 48"INFLOW PIPE TO WET DETENTION SYSTEM |  |  |
| Catchment Area (acres) |  | 139.64 |
| Watershed Non-DCIA Curve |  | 86.00 |
| Watershed DCIA Percent |  | 14.70 |



The baffle box is anticipated to remove $525 \mathrm{lb} / \mathrm{yr}$ TN and $126 \mathrm{lb} / \mathrm{yr}$ TP. Total cost for these two components is $\mathbf{\$ 8 5 8 , 5 3 5 .}$
Low-Flow Weirs with Side-Bank Filtration
The existing ditch east of Riviera Drive will have 6 concrete weirs installed approximately 500 linear feet apart, along a 3000 ft length of ditch. Side-bank filters on both banks will be installed with BAM as the media. The contributing area and location of the ditch is shown in Figure 35.


Figure 35 - Bee Ridge and Beneva Low-Flow Weirs BMP Contributing Area
BMP TRAINS 2020 Report Bee Ridge and Beneva Low Flow Weir with Side-bank BAM filter

The BMP Trains 2020 input and output for the low-flow weirs with side-bank filters in the existing ditch east of Riviera Drive is presented here:

| Site and Catchment Information Analysis: BMP Analysis |  |
| :---: | :---: |
| Catchment Name | All subbasins |
| Rainfall Zone | Florida Zone 4 |
| Annual Mean Rainfall | 52.00 |
| Post-Condition Land Use Information |  |
| Land use | User Defined Values |
| Area (acres) | 88.68 |
| Rational Coefficient (0-1) | 0.51 |
| Non DCIA Curve Number | 81.40 |
| DCIA Percent (0-100) | 53.43 |
| Wet Pond Area (ac) | 0.00 |
| Nitrogen EMC (mg/l) | 2.174 |
| Phosphorus EMC ( $\mathrm{mg} / \mathrm{l}$ ) | 0.390 |
| Runoff Volume (ac-ft/yr) | 194.720 |
| Nitrogen Loading (kg/yr) | 521.955 |
| Phosphorus Loading (kg/yr) | 93.635 |
| Catchment Number: 1 Name: All subbasins |  |
| Surface Discharge Filtration Design |  |
| Treatment Depth (in) 0.500 |  |
| Hydraulic Capture Efficiency (\%) 55 |  |
| Media Type B\&G CTS12 |  |
| Media N Reduction (\%) 60 |  |
| Media P Reduction (\%) 90 |  |
| Watershed Characteristics |  |
| Catchment Area (acres) 88.68 |  |
| Contributing Area (acres) 88.680 |  |
| Non-DCIA Curve Number 81.40 |  |
| DCIA Percent 53.43 |  |
| Rainfall Zone Florida Zone 4 |  |
| Rainfall (in) 52.00 |  |
| Surface Water Discharge |  |
| Required TN Treatment Efficiency (\%) |  |
| Provided TN Treatment Efficiency (\%) 33 |  |
| Required TP Treatment Efficiency (\%) |  |
| Provided TP Treatment Efficiency (\%) 50 |  |
| Media Mix Information |  |
| Type of Media Mix B\&G CTS12 |  |
| Media N Reduction (\%) 60 |  |
| Media P Reduction (\%) 90 |  |

Load Diagram for Surface Discharge Filtration (stand-alone)


| Summary Report <br> Nitrogen |  |  |
| :--- | :--- | :--- |
| Surface Water Discharge |  |  |$\quad$| Total N post load | $521.96 \mathrm{~kg} / \mathrm{yr}$ |  |
| :--- | :--- | :--- |
| Percent N load reduction | $33 \%$ |  |
| Provided N discharge load | $348.61 \mathrm{~kg} / \mathrm{yr}$ | $768.68 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $173.35 \mathrm{~kg} / \mathrm{yr}$ | $382.23 \mathrm{lb} / \mathrm{yr}$ |

## Phosphorus

Surface Water Discharge

| Total P post load | $93.635 \mathrm{~kg} / \mathrm{yr}$ |  |
| :--- | :--- | :--- |
| Percent P load reduction | $50 \%$ |  |
| Provided P discharge load | $46.99 \mathrm{~kg} / \mathrm{yr}$ | $103.61 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed | $46.645 \mathrm{~kg} / \mathrm{yr}$ | $102.853 \mathrm{lb} / \mathrm{yr}$ |

## Media Filter Report

Catchment Name: All subbasins
Treatment Depth (in): 0.50
Rate (GPM/SF): 0.05
Effective Impervious Area (acres): 47.45
Minimum Filter Area (sf): 4,299.91
The combined conceptual BMPs of baffle box, bee mats, low flow weirs with side-bank filtration provide annual reductions of $908 \mathrm{lb} / \mathrm{yr}$ of TN and $229 \mathrm{lb} / \mathrm{yr}$ of TP. Initial excavation also provides a one-time removal of $87,110 \mathrm{lbs}$ TN and $41,946 \mathrm{lbs}$ of TP.

The estimated cost of the Low Flow Weirs with Side-Bank Filtration is $\$ 1,917,525$.
The estimated cost for both conceptual BMPs in the Bee Ridge and Beneva PMA is $\mathbf{\$ 2 , 7 7 6 , 0 6 0}$.

Tuttle Circle Priority Management Area BMP
The BMPs proposed for the Tuttle Circle PMA include sediment removal from the Phillippi Creek main channel, removal of the historical agricultural dam, installation of a sediment sump and conversion of two upstream canal systems into linear wet detention treatment systems.


Figure 36 - Tuttle Circle Area BMPs
Tanglewood Canal Conversion to Wet Detention with Beemats
The Tanglewood Canal is a Phillippi Creek tributary canal located east of Tanglewood Dr, north of Dawson St, and south of Espanola Dr. Proposed modifications include installing two concrete weirs, providing an in-line wet detention system with floating Beemats covering 5\% of the surface water. The contributing area ICPR basin delineation along with canal and weir locations is provided in Figure 37.


Figure 37-Tanglewood In-Line Wet Detention Treatment System
BMP TRAINS 2020 Report Tuttle at Tanglewood - Wet Detention with Beemat Floating Wetlands

The BMP TRAINS 2020 input and output for the in-line wet detention system with floating Beemats in the existing canal east of Tanglewood Drive is presented here:

| Site and Catchment Information <br> Analysis: BMP Analysis <br> Catchment Name |  |
| :--- | :--- |
| Rainfall Zone | 30617 |
| Annual Mean Rainfall | Florida Zone 4 |
| Post-Condition Land Use Information |  |
| Land use | User Defined Values |
| Area (acres) | 103.50 |
| Rational Coefficient (0-1) | 0.29 |
| Non DCIA Curve Number | 84.00 |
| DCIA Percent (0-100) | 17.50 |
| Wet Pond Area (ac) | 0.59 |
| Nitrogen EMC (mg/l) | 2.058 |
| Phosphorus EMC (mg/I) | 0.332 |
| Runoff Volume (ac-ft/yr) | 127.272 |
| Nitrogen Loading (kg/yr) | 322.955 |


| Phosphorus Loading (kg/yr) |  |  |
| :---: | :---: | :---: |
| Watershed Characteristics |  |  |
| Catchment Area (acres) |  | 103.50 |
| Contributing Area (acres) |  | 102.910 |
| Non-DCIA Curve Number |  | 84.00 |
| DCIA Percent |  | 17.50 |
| Rainfall Zone |  | Florida Zone 4 |
| Rainfall (in) |  | 52.00 |
| Wet Detention with Floating Wetland Mats Design |  |  |
| Permanent Pool Volume (ac-ft) |  | 2.640 |
| Permanent Pool Volume (ac-ft) for 31 days residence 10.809 |  |  |
| Annual Residence Time (days) |  | 8 |
| Littoral Zone Efficiency Credit |  | 0 |
| Wetland Efficiency Credit |  | 10 |
| Surface Water Discharge |  |  |
| Provided TN Treatment Efficiency (\%) 35 |  |  |
| Provided TP Treatment Efficiency (\%) 59 |  |  |
| Load Diagram for Wet Detention with Floating Wetland Mats (stand-alone) |  |  |
| $\left.\begin{array}{l}\text { Load } \\ \mathrm{N}: 322.96 \mathrm{~kg} / \mathrm{yr} \\ \mathrm{P}: 52.10 \mathrm{~kg} / \mathrm{yr}\end{array} \rightarrow \begin{array}{l}\text { Treatment } \\ \mathrm{N}: 35 \% \\ \mathrm{P}: 59 \%\end{array}\right]$ | TreatmentN: $35 \%$P: $59 \%$$\rightarrow$Surf <br> N: 2 <br> P: 21 | Discharge $\mathrm{kg} / \mathrm{yr}$ $\mathrm{kg} / \mathrm{yr}$ |
|  |  | duction <br> kg/yr <br> $\mathrm{kg} / \mathrm{yr}$ |
| Summary Report |  |  |
| Nitrogen |  |  |
| Surface Water Discharge |  |  |
| Total N post load | $322.96 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent N load reduction | ion $35 \%$ |  |
| Provided N discharge load | load $\quad 210.1 \mathrm{~kg} / \mathrm{yr}$ | $463.27 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | ved $\quad 112.85 \mathrm{~kg} / \mathrm{yr}$ | $248.84 \mathrm{lb} / \mathrm{yr}$ |
| Phosphorus |  |  |
| Surface Water Discharge |  |  |
| Total P post load | $52.1 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent P load reduction | 59 \% |  |
| Provided $P$ discharge load | load $\quad 21.615 \mathrm{~kg} / \mathrm{yr}$ | $47.66 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed | ved $\quad 30.484 \mathrm{~kg} / \mathrm{yr}$ | $67.218 \mathrm{lb} / \mathrm{yr}$ |

The estimated costs for the Tanglewood Canal conceptual BMP total $\mathbf{\$ 8 5 , 2 5 9}$ and it is anticipated to remove $249 \mathrm{lb} / \mathrm{yr}$ TN and $67 \mathrm{lb} / \mathrm{yr}$ TP.

Blossom Brook Canal Conversion to Wet Detention in Series with Side-Bank Filters
The Blossom Brook Canal has a larger contributing area (549 acres) when compared to the Tanglewood system (103 acres), including portions of US-41 and adjacent commercial districts. The canal has one existing weir located just east of Brink Ave, and will be modified, along with installation of two additional weirs, at Tuttle Ave and Shade Ave. Contributing areas for each of the three weirs with ICPR basin delineation are provided Figure 38.


Figure 38-Blossom Brook Canal BMP System

## BMP TRAINS 2020 Report Tuttle Blossom Brook Area Wet Detention with BAM Side-bank Media Filters

The BMP TRAINS 2020 input and output for the in-line wet detention system with side-bank filters (split into 3 Areas, corresponding with Figure 38) in the existing Blossom Brook Canal is presented here:

Tuttle Blossom Brook Area 1 Project - Wet Detention with CTS 24 Side-bank Media Filters Site and Catchment Information
Analysis: BMP Analysis

| Catchment Name | Area 1 Subarea 1 | Area 1 Subarea 2 | catchment 4 |
| :--- | :--- | :--- | :--- |
| Rainfall Zone | Florida Zone 4 | Florida Zone 4 | Florida Zone 4 |


| Annual Mean Rainfall 52.00 | 52.00 | 52.00 |
| :--- | :--- | :--- |

Post-Condition Land Use Information

| Land se | User Defined Values | User Defined Values | User Defined Values |
| :--- | :--- | :--- | :--- |
| Area (acres) | 167.07 | 242.18 | 409.25 |
| Rational Coefficient (0-1) | 0.28 | 0.36 | 0.33 |
| Non DCIA Curve Number | 82.63 | 81.77 | 82.10 |
| DCIA Percent (0-100) | 18.00 | 31.54 | 26.00 |
| Wet Pond Area (ac) | 0.00 | 0.52 | 0.52 |
| Nitrogen EMC (mg/l) | 2.059 | 1.894 | 1.950 |
| Phosphorus EMC (mg/l) | 0.323 | 0.296 | 0.299 |
| Runoff Volume (ac-ft/yr) | 200.477 | 378.035 | 577.626 |
| Nitrogen Loading (kg/yr) | 508.959 | 882.825 | $1,388.815$ |
| Phosphorus Loading (kg/yr) | 79.842 | 137.971 | 212.952 |

Catchment Number: 1 Name: Area 1 Subarea 1
No BMPs in this Catchment, loadings only

## Watershed Characteristics

| Catchment Area (acres) | 167.07 |
| :--- | :--- |
| Contributing Area (acres) | 167.070 |
| Non-DCIA Curve Number | 82.63 |
| DCIA Percent | 18.00 |
| Rainfall Zone | Florida Zone 4 |
| Rainfall (in) | 52.00 |



## Catchment Number: 2 Name: Area 1 Subarea 2

No BMPs in this Catchment, loadings only

## Watershed Characteristics

| Catchment Area (acres) | 242.18 |
| :--- | :--- |
| Contributing Area (acres) | 241.660 |
| Non-DCIA Curve Number | 81.77 |
| DCIA Percent | 31.54 |
| Rainfall Zone | Florida Zone 4 |
| Rainfall (in) | 52.00 |

Load Diagram for None (stand-alone)

| Load <br> $\mathrm{N}: 882.83 \mathrm{~kg} / \mathrm{yr}$ <br> $\mathrm{P}: 137.97 \mathrm{~kg} / \mathrm{yr}$ |  |
| :--- | :--- | :--- |
|  | $\rightarrow$Treatment <br> $\mathrm{N}: \%$ <br> $\mathrm{P}: \%$ |
| $\downarrow$ |  |$\rightarrow$| Surface Discharge |
| :--- |
| $\mathrm{N}: 882.83 \mathrm{~kg} / \mathrm{yr}$ |
| $\mathrm{P}: 137.97 \mathrm{~kg} / \mathrm{yr}$ |


| Catchment Number: 4 Name: catchment 4 |  |  |  |
| :---: | :---: | :---: | :---: |
| This is catchments 1 and 2 combined |  |  |  |
| Date: 10/12/2021 |  |  |  |
| Multiple BMP in Series Design Parameters |  |  |  |
| BMP in Series Number: 1 |  |  |  |
| BMP Type: Wet Detention |  |  |  |
| Permanent Pool Volume (ac-ft) |  | 0.210 |  |
| Permanent Pool Volume (ac-ft) for 31 days residence 49.059 |  |  |  |
| Annual Residence Time (days) |  |  |  |
| Littoral Zone Efficiency Credit |  | 0 |  |
| Wetland Efficiency Credit |  | 0 |  |
| BMP in Series Number: 2 |  |  |  |
| BMP Type: Filtration |  |  |  |
| Treatment Depth (in) 0.500 |  |  |  |
| Hydraulic Capture Efficiency (\%) 60 |  |  |  |
| Media Type | B\&G |  |  |
| Media N Reduction (\%) | 75 |  |  |
| Media P Reduction (\%) | 95 |  |  |
| Watershed Characteristics |  |  |  |
| Catchment Area (acres) |  |  | 409.25 |
| Contributing Area (acres) |  |  | 408.730 |
| Non-DCIA Curve Number |  |  | 82.10 |
| DCIA Percent |  |  | 26.00 |
| Rainfall Zone |  |  | Florida Zone 4 |
| Rainfall (in) |  |  | 52.00 |

## Surface Water Discharge

Provided TN Treatment Efficiency (\%) 46
Provided TP Treatment Efficiency (\%) 69

## Load for Multiple BMP in Series

Load
$\mathrm{N}: 1,388.81 \mathrm{~kg} / \mathrm{yr}$

$\mathrm{P}: 212.95 \mathrm{~kg} / \mathrm{yr}$$\rightarrow$| Treatment |
| :--- |
| $\mathrm{N}: 46 \%$ |
| $\mathrm{P}: 69 \%$ |$\rightarrow$| Surface Discharge |
| :--- |
| $\mathrm{N}: 750.32 \mathrm{~kg} / \mathrm{yr}$ |
| $\mathrm{P}: 65.29 \mathrm{~kg} / \mathrm{yr}$ |

$\downarrow$
Mass Reduction
$\mathrm{N}: 638.49 \mathrm{~kg} / \mathrm{yr}$
$\mathrm{P}: 147.66 \mathrm{~kg} / \mathrm{yr}$

| Summary Report <br> Nitrogen <br> Surface Water Discharge |  |  |
| :--- | :--- | :--- |
| Total N post load | $1388.81 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent N load reduction | $46 \%$ |  |
| Provided N discharge load | $750.32 \mathrm{~kg} / \mathrm{yr}$ | $1654.46 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $638.49 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{1 4 0 7 . 8 7 \mathrm { lb } / \mathrm { yr }}$ |
|  |  |  |
| Phosphorus |  |  |
| $\quad$ Surface Water Discharge | $212.952 \mathrm{~kg} / \mathrm{yr}$ |  |
| Total P post load | $69 \%$ | $143.96 \mathrm{lb} / \mathrm{yr}$ |
| Percent P load reduction | $65.288 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{3 2 5 . 5 9 7} \mathrm{lb} / \mathrm{yr}$ |

## Media Filter Report

Catchment Name: catchment 4
Treatment Depth (in): 0.50
Rate (GPM/SF): 0.05
Effective Impervious Area (acres): 107.89
Minimum Filter Area (sf): 9,777.71

BMP TRAINS 2020 Report
Area 2 Project Wet Detention with Side-bank CTS12 Or CTS24 Media Filters

## Site and Catchment Information

Analysis: BMP Analysis

| Catchment Name | Area 2 |
| :--- | :--- |
| Rainfall Zone | Florida Zone 4 |
| Annual Mean Rainfall | 52.00 |
| Post-Condition Land Use Information |  |
| Land use | User Defined Values |
| Area (acres) | 125.51 |
| Rational Coefficient (0-1) | 0.27 |
| Non DCIA Curve Number | 83.42 |
| DCIA Percent (0-100) | 16.00 |
| Wet Pond Area (ac) | 0.58 |
| Nitrogen EMC (mg/l) | 2.053 |
| Phosphorus EMC (mg/l) | 0.323 |
| Runoff Volume (ac-ft/yr) | 146.505 |
| Groundwater $\mathrm{N}(\mathrm{kg} / \mathrm{yr})$ | 0.000 |


| Groundwater P (kg/yr) |  | 0.000 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Nitrogen Loading (kg/yr) |  | 370.855 |  |  |
| Phosphorus Loading (kg/yr) |  | 58.347 |  |  |
| Multiple BMP in Series Design Parameters |  |  |  |  |
| BMP in Series Number: 1 |  |  |  |  |
| Permanent Pool Volume (ac-ft) |  |  |  | 0.470 |
| Permanent Pool Volume (ac-ft) for 31 days residence |  |  |  | 12.443 |
| Annual Residence Time (days) |  |  |  | 1 |
| Littoral Zone Efficiency Credit |  |  |  | 0 |
| Wetland Efficiency Credit |  |  |  | 0 |
| WITH CTS 24 FILTER MEDIA |  |  |  |  |
| BMP in Series Number: 2 |  |  |  |  |
| BMP Type: Filtration with CTS24 Media |  |  |  |  |
| Treatment Depth (in) |  | 0.500 |  |  |
| Hydraulic Capture Efficiency (\%) 58 |  |  |  |  |
| Media Type |  | B\&G CTS24 |  |  |
| Media N Reduction (\%) 75 |  |  |  |  |
| Media P Reduction (\%) 95 |  |  |  |  |
| Surface Water Discharge |  |  |  |  |
| Provided TN Treatment Efficiency (\%) 49 |  |  |  |  |
| Provided TP Treatment Efficiency (\%) 74 |  |  |  |  |
| Load for Multiple BMP in Series |  |  |  |  |
| Load <br> $\mathrm{N}: 370.86 \mathrm{~kg} / \mathrm{yr} \rightarrow$ P: $58.35 \mathrm{~kg} / \mathrm{yr}$ | Treatment$\mathrm{N}: 49 \%$$\mathrm{P}: 74 \%$$\quad \rightarrow$Surface Discharge <br> $\mathrm{N}: 189.31 \mathrm{~kg} / \mathrm{yr}$ <br> $\mathrm{P}: 15.31 \mathrm{~kg} / \mathrm{yr}$ |  |  |  |
|  | $\downarrow$ |  |  |  |
|  | Mass <br> $\mathrm{N}: 1$ <br> P: 43 |  |  |  |
| Summary Report |  |  |  |  |
| Nitrogen |  |  |  |  |
| Surface Water Discharge |  |  |  |  |
| Total N post load |  | $370.86 \mathrm{~kg} / \mathrm{yr}$ |  |  |
| Percent N load reduction |  | 49 \% |  |  |
| Provided N discharge load |  | $189.31 \mathrm{~kg} / \mathrm{yr}$ | $417.42 \mathrm{lb} / \mathrm{yr}$ |  |
| Provided N load removed |  | $181.55 \mathrm{~kg} / \mathrm{yr}$ | $400.31 \mathrm{lb} / \mathrm{yr}$ |  |



```
BMP Type: Wet Detention
```



## Summary Report Nitrogen

Surface Water Discharge

| Total N post load | $45.24 \mathrm{~kg} / \mathrm{yr}$ |  |
| :--- | :--- | :--- |
| Percent N load reduction | $57 \%$ |  |
| Provided N discharge load | $19.39 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{4 2 . 7 6 \mathrm { lb } / \mathrm { yr }}$ |
| Provided N load removed | $25.85 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{5 7 ~ l b} / \mathrm{yr}$ |

## Phosphorus

Surface Water Discharge

| Total P post load | $7.145 \mathrm{~kg} / \mathrm{yr}$ |  |
| :--- | :--- | :--- |
| Percent P load reduction | $84 \%$ |  |
| Provided P discharge load | $1.149 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{2 . 5 3 \mathrm { lb } / \mathrm { yr }}$ |
| Provided P load removed | $5.996 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{1 3 . 2 2 1} \mathrm{lb} / \mathrm{yr}$ |

## Media Filter Report

Catchment Name: Blossom Brook Area 3
Treatment Depth (in): 1.00
Rate (GPM/SF): 0.05
Effective Impervious Area (acres): 4.83
Minimum Filter Area (sf): 875.72
The low flow weir with side bank filter will remove 1,865 pounds of TN and 434 pounds of TP annually. The estimated costs for the Blossom Brook Canal project total $\$ 1,882,305$.

## Sediment Removal, Dam Removal and Sediment Sump

The sediment removal, dam removal, and sediment sump installation were originally proposed in the Sarasota County Sediment Management Project 1: Phillippi Creek Barrier Removal Feasibility Study Final Report by Weiler Engineering Corporation, dated January 2019. The location of each component is presented in Figure 39. The original report is included as Appendix C.

The removal of the remnants of the dam will provide for a more natural flow regime in Phillippi Creek and the removal will preclude additional sedimentation issues from occurring at that location. This project will provide a sedimentation sump that provides easier access for maintenance crews to frequently remove the sediment and any associated nutrients.


Figure 39 - Tuttle Sediment Removal, Dam Removal and Sediment Sump

Estimated Excavation for the canal, dam and sediment sump will result in approximately 20,062 cubic yards of material removed. Removing accumulated sediment and the barrier will help to restore the channel profile to a more natural state and should allow the creek flow rates to return to natural levels. The proposed sediment sump should collect suspended solids from upstream in a controlled location for removal by County maintenance staff.

Sediment removal via excavation during initial construction yields $36,107 \mathrm{lbs}$ of TN and $17,387 \mathrm{lbs}$ of TP removed from an estimated 767 cubic yards of material. Values were obtained by utilizing the Florida Stormwater Association MS4 Load Reduction Assessment Tool, dated June 2019, accessed from the Florida Department of Environmental Protection's site (FSA-MS4 Load Reduction Tool updated 2019 | Florida Department of Environmental Protection)

The tool's input screen is presented in Figure 40, while the results are shown in Figure 41.


Figure 40-Phillippi Creek Sediment Sump \& Sediment Removal Load Reduction Assessment Tool Input


Figure 41 - Phillippi Creek Sediment Sump \& Sediment Removal Load Reduction Assessment Tool Results

Annual TN and TP reductions for the Sediment Sump previously calculated in the Phillippi Creek Barrier Removal Feasibility Study Report (Appendix C) based on the estimated performance of the sediment sump are $160 \mathrm{lb} / \mathrm{yr}$ and $64 \mathrm{lb} / \mathrm{yr}$, respectively.

The proposed conceptual BMPs for the Tuttle Circle PMA provide annual reductions of 2,274 lb/yr of TN and $565 \mathrm{lb} / \mathrm{yr}$ of TP. Initial excavation also provides a one-time removal of 36,107 lbs of TN and 17,387 Ibs of TP.

The estimated costs for the Sediment removal, dam removal and sediment sump installation total \$1,046,663.

The estimated cost for all the Tuttle Circle PMA conceptual BMPs is $\mathbf{\$ 3 , 0 1 3 , 2 2 7}$.

## Pinecraft Priority Management Area Conceptual BMP



Figure 42 - Pinecraft Area BMPs

## Pond Conversion

Conceptual BMPs in the Pinecraft PMA include converting the existing wet detention pond located just east of Phillippi Creek, south of Bahia Vista Street to a dry detention pond. The existing wet pond does not function as intended, with considerable algae and shallow water depth leading to unsightly appearances. Converting to dry retention with percolation will increase the TN treatment efficiency and improve the cosmetic appearance of an existing BMP. Installing a layer of BAM for the dry pond to percolate through provides additional treatment benefits through biosorption during the groundwater infiltration recharge process. The local soils were reviewed and mounding analysis was performed calculation was performed to show that recovery time is less than 72 hours per SWFWMD rules. According to USGS soil survey, the soil type in the vicinity of the subject pond is Pineda fine sand-Urban land complex, which has a saturated permeability rate (Ksat) of 92.0 micrometers per second, or 26 feet per day.

## Mounding Analysis - Simplified Analytical Method



Mounding analysis calculation shows Recovery Time is 71.96 hours, less than the required 72 hour maximum.

BMP TRAINS 2020 Report - Pinecraft Park Convert Wet Detention to Dry Retention with CTS12 Filter Media

The BMP TRAINS 2020 input and output for the existing wet detention and proposed dry retention pond with BAM configurations is presented here:

```
Site and Catchment Information
BMP Analysis Existing Wet Detention
```

30663
Florida Zone 4
52.00

## Post-Condition Land Use Information

| Land use | User Defined Values |
| :--- | :--- |
| Area (acres) | 33.89 |
| Rational Coefficient (0-1) | 0.42 |
| Non DCIA Curve Number | 91.20 |
| DCIA Percent (0-100) | 23.00 |
| Wet Pond Area (ac) | 0.00 |
| Nitrogen EMC (mg/l) | 1.925 |
| Phosphorus EMC (mg/l) | 0.294 |
| Runoff Volume (ac-ft/yr) | 62.392 |
| Nitrogen Loading (kg/yr) | 148.088 |
| Phosphorus Loading (kg/yr) | 22.617 |

## Wet Detention Design

Permanent Pool Volume (ac-ft) 0.270

Permanent Pool Volume (ac-ft) for 31 days residence 5.299
Annual Residence Time (days) 2
Littoral Zone Efficiency Credit 0
Wetland Efficiency Credit 0

## Watershed Characteristics

| Catchment Area (acres) | 33.89 |
| :--- | :--- |
| Contributing Area (acres) | 33.890 |
| Non-DCIA Curve Number | 91.20 |
| DCIA Percent | 23.00 |
| Rainfall Zone | Florida Zone 4 |
| Rainfall (in) | 52.00 |

## Surface Water Discharge

Provided TN Treatment Efficiency (\%) 12
Provided TP Treatment Efficiency (\%) 43
Load Diagram for Existing Wet Detention (stand-alone)


## Summary Report <br> Nitrogen

Surface Water Discharge

| Total N post load | $148.09 \mathrm{~kg} / \mathrm{yr}$ |
| :--- | :--- |
| Percent N load reduction | $12 \%$ |


| Provided N discharge load | $130.92 \mathrm{~kg} / \mathrm{yr}$ | $288.67 \mathrm{lb} / \mathrm{yr}$ |
| :--- | :--- | :--- |
| Provided N load removed | $17.17 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{3 7 . 8 6} \mathrm{lb} / \mathrm{yr}$ |

## Phosphorus

Surface Water Discharge

| Total P post load | $22.617 \mathrm{~kg} / \mathrm{yr}$ |  |
| :--- | :--- | :--- |
| Percent P load reduction | $43 \%$ |  |
| Provided P discharge load | $12.872 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{2 8 . 3 8 \mathrm { lb } / \mathrm { yr }}$ |
| Provided P load removed | $9.745 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{2 1 . 4 8 8} \mathrm{lb} / \mathrm{yr}$ |

Retention area with CTS12 media

## Retention Design

| Retention Depth (in) | 0.270 |
| :--- | :--- |
| Retention Volume (ac-ft) | 0.763 |

## Media Mix Information

Type of Media Mix B\&G CTS12
Media N Reduction (\%) 60
Media P Reduction (\%) 90
Load Diagram for Proposed Dry Retention (stand-alone)

| Load |
| :--- | :--- |
| $\mathrm{N}: 148.09 \mathrm{~kg} / \mathrm{yr}$ |
| $\mathrm{P}: 22.62 \mathrm{~kg} / \mathrm{yr}$ |$\rightarrow$| Treatment |
| :--- |
| $\mathrm{N}: 35 \%$ |
| $\mathrm{P}: 35 \%$ |$\rightarrow$| Surface Discharge |
| :--- |
| $\mathrm{N}: 95.55 \mathrm{~kg} / \mathrm{yr}$ |
| $\mathrm{P}: 14.59 \mathrm{~kg} / \mathrm{yr}$ |


| Into Media <br> $\mathrm{N}: 52.540 \mathrm{~kg} / \mathrm{yr}$ <br> P: $8.024 \mathrm{~kg} / \mathrm{yr}$ | $\downarrow$ | Mass Reduction <br> N: $52.54 \mathrm{~kg} / \mathrm{yr}$ <br> P: $8.02 \mathrm{~kg} / \mathrm{yr}$ |
| :---: | :---: | :---: |
|  | GW Treatment $\begin{aligned} & \text { N: } 60 \% \\ & \text { P: } 90 \% \end{aligned}$ | GW Discharge $\begin{aligned} & \rightarrow \quad \mathrm{N}: 21.016 \mathrm{~kg} / \mathrm{yr} \\ & \mathrm{P}: 0.802 \mathrm{~kg} / \mathrm{yr} \end{aligned}$ |
|  | $\downarrow$ |  |
|  | Retained |  |
|  | $\mathrm{N}: 31.52 \mathrm{~kg} / \mathrm{yr}$ | (69.5 lbs/yr) |
|  | P: $7.22 \mathrm{~kg} / \mathrm{yr}$ | (15.9 lbs/yr) |

## Summary Report <br> Nitrogen

Surface Water Discharge

| Total N post load | $148.09 \mathrm{~kg} / \mathrm{yr}$ |  |
| :--- | :--- | :--- |
| Percent N load reduction | $35 \%$ |  |
| Provided N discharge load | $95.55 \mathrm{~kg} / \mathrm{yr}$ | $210.69 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $52.54 \mathrm{~kg} / \mathrm{yr}$ | $115.85 \mathrm{lb} / \mathrm{yr}$ |

Groundwater Discharge
Average Annual Recharge $\quad$ 7.213 MG/yr

| Provided N recharge load | $21.016 \mathrm{~kg} / \mathrm{yr}$ | $46.34 \mathrm{lb} / \mathrm{yr}$ |
| :--- | :--- | :--- |
| Provided N Concentration | $.77 \mathrm{mg} / \mathrm{l}$ |  |
| Phosphorus |  |  |
| Surface Water Discharge |  |  |
| Total P post load | $22.617 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent P load reduction | $35 \%$ |  |
| Provided P discharge load | $14.593 \mathrm{~kg} / \mathrm{yr}$ | $32.18 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed | $8.024 \mathrm{~kg} / \mathrm{yr}$ | $17.693 \mathrm{lb} / \mathrm{yr}$ |
|  |  |  |
| Groundwater Discharge |  |  |
| Average Annual Recharge | $7.213 \mathrm{MG} / \mathrm{yr}$ |  |
| Provided P recharge load | $.8024 \mathrm{~kg} / \mathrm{yr}$ | $1.7693 \mathrm{lb} / \mathrm{yr}$ |
| Provided P Concentration | $.0294 \mathrm{mg} / \mathrm{l}$ |  |

The existing and proposed treatment efficiency and annual TN and TP removal estimates are presented in Table 3.

Table 3 - Pinecraft Pond Conversion Treatment Efficiency

|  | Treatment Efficiency TN | Treatment Efficiency TP | Estimated TN <br> Reduction <br> $(\mathrm{lb} / \mathrm{yr})$ | Estimated TP <br> Reduction (lb/yr) |
| :--- | :---: | :---: | :---: | :---: |
| Existing Wet <br> Detention | $11.6 \%$ | $43 \%$ | 21 | 18 |
| Proposed Dry <br> Retention with <br> BAM | $35 \%$ - Surface Water <br> $60 \%$ - Groundwater | $35 \%$ - Surface Water <br> $90 \%-$ Groundwater | $\mathbf{1 8 5 . 5}$ | $\mathbf{3 3 . 7}$ |

## The estimated cost for the Pond conversion conceptual BMP is $\mathbf{\$ 2 6 7 , 7 2 5}$.

## Aloha Mobile Home Park Denitrification Trench

The Aloha mobile home park (MHP) is located between Bahia Vista Street and Hyde Park Street in Sarasota. It is adjacent to Phillippi Creek. The MHP consists of 15.84 acres with 280 units, all served by on-site treatment and disposal systems (OSTDS). In general, stormwater and ground water flow from the MHP flow into a ditch that is adjacent to North Street. This ditch is designated in Sarasota County's Stormwater Asset Data Base as C4-84.2 (Legacy ID) aka CT_112016_000749 (FacilityID).

High values of TN and TP have been recorded in this ditch over the years.
To reduce the TN and TP loading from the ditch into Phillippi Creek, a denitrification trench is proposed to be constructed on the south side bank of the ditch. The denitrification trench will be 660' long and be $3^{\prime}$ by $3^{\prime}$ in size. A biosorption activated media (BAM) will be used in the trench to promote removal of TN and TP.

Unfortunately, neither ground water nor surface water monitoring has been done in the ditch adjacent to the Aloha MHP in several years. Therefore, literature values from a recent monitoring project in Brevard County are being used to calculate the TN and TP loadings. The project, Final Report for the

Groundwater Pollution, Engaging the Community in Solutions (FDEP Contract \#LP05112) and Save Our Indian River Lagoon Project Plan (SOIRLPP) Groundwater Quality Monitoring, was published in 2020. The project examined groundwater nutrient concentrations in residential communities that had different wastewater treatment types: 1) septic tanks; 2) municipal sewer systems; or 3) municipal sewer systems with reclaimed irrigation. Monitoring wells were installed in 13 residential neighborhoods and 3 natural areas located in five regions of Brevard County including the mainland and barrier islands. The Turkey Creek and Suntree areas have soil types and water table conditions similar to those at the Aloha MHP.

Table 4 below summarizes the TN and TP ground water monitoring data for the Turkey Creek and Suntree areas.

Table 4-TN and TP groundwater monitoring data for the Turkey Creek and Suntree Areas

| Location/Analyte | Mean | Median | $25^{\text {th }}$ Percentile | $75^{\text {th }}$ Percentile |
| :--- | :--- | :--- | :--- | :--- |
| Turkey Creek TN | $7.19 \mathrm{mg} / \mathrm{L}$ | $4.80 \mathrm{mg} / \mathrm{L}$ | $1.55 \mathrm{mg} / \mathrm{L}$ | $7.35 \mathrm{mg} / \mathrm{L}$ |
| Turkey Creek TP | $0.938 \mathrm{mg} / \mathrm{L}$ | $0.970 \mathrm{mg} / \mathrm{L}$ | $0.580 \mathrm{mg} / \mathrm{L}$ | $1.200 \mathrm{mg} / \mathrm{L}$ |
| Suntree TN | $7.52 \mathrm{mg} / \mathrm{L}$ | $6.05 \mathrm{mg} / \mathrm{L}$ | $2.08 \mathrm{mg} / \mathrm{L}$ | $8.63 \mathrm{mg} / \mathrm{L}$ |
| Suntree TP | $0.576 \mathrm{mg} / \mathrm{L}$ | $0.42 \mathrm{mg} / \mathrm{L}$ | $0.16 \mathrm{mg} / \mathrm{L}$ | $0.93 \mathrm{mg} / \mathrm{L}$ |
| Mean of TC/ST TN | $7.355 \mathrm{mg} / \mathrm{L}$ |  | $1.815 \mathrm{mg} / \mathrm{L}$ | $7.99 \mathrm{mg} / \mathrm{L}$ |
| Mean of TC/ST TP | $0.757 \mathrm{mg} / \mathrm{L}$ |  | $0.37 \mathrm{mg} / \mathrm{L}$ | $1.065 \mathrm{mg} / \mathrm{L}$ |

The annual average ground water flow is 19.91 ac-ft or 0.03 cfs . Using the mean concentrations above, this leads to the following estimates of the average annual TN and TP loadings, which were calculated for the mean, $25^{\text {th }}$ percentile, and $75^{\text {th }}$ percentile values, as shown in Table 5.

Table 5 - Estimated Average Annual TN and TP Loading for Aloha Mobile Home Park

| Parameter | Mean Annual Loading <br> $\mathrm{lbs} / \mathrm{yr}$ | $25^{\text {th }}$ Percentile Annual <br> Loading $\mathrm{lbs} / \mathrm{yr}$ | $75^{\text {th }}$ Percentile Annual <br> Loading $\mathrm{lbs} / \mathrm{yr}$ |
| :--- | :--- | :--- | :--- |
| TN | 397.20 | 98.01 | 432.66 |
| TP | 40.99 | 20.04 | 57.67 |

Given that the density of OSTDS within the Aloha MHP is much greater than the density of OSTDS within either the Turkey Creek or Suntree areas, we believe the $75^{\text {th }}$ percentile loading is appropriate for use in this project.

To reduce the TN and TP loading from the ditch into Phillippi Creek, a denitrification trench is proposed to be constructed on the south side bank of the ditch. The wall will be $660^{\prime}$ long and 3 ' by 3 ' in size. A typical section of the trench is provided in Figure 43.


Figure 43 - Aloha Mobile Home Park Denitrification Trench Typical Detail
BAM will be used in the denitrification trench to promote removal of TN and TP. The FDEP approved BAMs are listed in Table 6 below.

Table 6 - Biosorption Media Details

| Media $^{1}$ | Minimum | Treatment <br> 2 | Treatment <br> Efficiency $^{3}$ |  | Sustain | OP <br> Removal | Density $^{\mathbf{5}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Depth <br> (in) | Rate <br> (GPM/SF) | TN (\%) | TP(\%) | Void <br> $\%^{4}$ | Rate <br> (mg/g) | Lbs/CF |
| B\&G ECT3 | 24 | 1 | $45 / 25^{7}$ | $45 / 25^{7}$ | 30 | 0.2 | 43 |
| B\&G CTS12 | 12 | 0.052 | 60 | 90 | 30 | 0.2 | 95 |
| B\&G CTS24 | 24 | 0.052 | 75 | 95 | 30 | 0.2 | 95 |
| Per Pave $^{8}$ | 3 | 0.052 | 60 | 90 | 20 | 0.2 | 95 |
| SAT $^{9}$ | 24 | 0.02 | 30 | 45 | 30 | 0 | 100 |

Based on the average annual flow rate of 0.03 cubic feet per second and the desired pollutant load reduction, the B\&G CTS24 BAM is proposed for use in the Denitrification Wall. The estimated load reductions for the Mean and $75^{\text {th }}$ percentile loadings are shown below in Table 7 below.

Table 7 - Aloha Mobile Home Park Denitrification Wall Estimated Load Reductions

| Parameter | Mean Annual <br> Loading Ibs/yr | Mean Annual Load <br> reduction | 75 <br> th Percentile <br> Annual Loading <br> $\mathrm{lbs} / \mathrm{yr}$ | $7^{\text {th }}$ Percentile <br> Annual Load <br> reduction |
| :--- | :--- | :--- | :--- | :--- |
| TN | 397.20 | $\mathbf{2 9 7 . 9}$ | 432.66 | 324.50 |
| TP | 40.99 | $\mathbf{3 8 . 9 4}$ | 57.67 | 43.25 |

The estimated costs for the denitrification trench conceptual BMP total \$125,840.

## Stream Restoration along Phillippi Creek

The segment of Phillippi Creek downstream of the Bahia Vista Street bridge and extending to approximately 600 feet downstream of the Pinecraft Park presents the opportunity to implement stream restoration techniques aimed at improving water quality, enhancing a variety of habitat functions, and improving accessibility to the public. This reach is located at the interface between riverine and tidal influences and exhibits indicators of channel instability and aquatic habitat impairment typical of riverine responses to urban development within the watershed, encroachment of adjacent developments, and historic channelization activities. This segment of creek is characterized as an entrenched, single stage channel without adequate floodplain connectivity, and steep unstable banks dominated by shallow rooted non-native grasses and invasive vegetation. Visual observations noted signs of mass wasting and toe erosion that contribute to decreases in aquatic habitat diversity and elevated sediment loading to the downstream channel and ultimately Sarasota Bay.


Figure 44 - Phillippi Creek Stream Restoration Concept Plan
This preliminary concept focuses on utilizing available adjacent land within the limited channel right-ofway to improve floodplain connectivity, implementation of bioengineered stabilization to promote long term and resilient bank protection, and replacement of exotic vegetation with native plantings. The proposed laying back of the channel side slopes and creating a bankfull bench will provide an increase in flood flow conveyance capacity, while improving water quality by reducing erosion potential, providing in-line treatment, and depositional areas for sediment/entrained pollutants. The bankfull benches will be revegetated with appropriate native plants which improve shear strength of the creek bank soils, by establishment of deep root masses.


SECTION ONE: The proposed laying bank of the channel side slopes, and adjacent multi-stage wetland provides a diversity of aquatic and riparian habitat, while allowing for settling of entrained sediment and nutrients during high flow. Establishment of native vegetation will improve soil structure stability and restore a variety of terrestrial habitat.


SECTION TWO: The wood toe bioengineered bank protection structure consists of locally salvaged logs and woody debris placed along the unstable right bank. The roughness of the woody debris reduces nearbank shear stress, provides aquatic habitat enhancement, and conducive subbase medium for vegetation establishment. Vegetated soil lifts create a resilient upper bank and the bankfull bench allows for increase in floodplain connectivity and support of native riparian vegetation community.

Figure 45 - Stream Restoration Plan Sections 1 and 2

The wood toe protection structure utilizes locally salvaged woody debris that serves to provide long term bank stabilization, acts as a hydraulic energy dissipater, and supports biological habitat and carbon sources. Typical historic maintenance operations generally focused on removal of woody debris as they were seen as potentially threats to infrastructure. However, absence of woody debris in channels results in the lack of naturally occurring aquatic habitats critical to a healthy ecosystem. The process of utilizing woody debris in a manner that is embedded into the creek bed or bank such that the wood stays submerged beneath the low water elevation can help to address both the maintenance concerns and habitat improvement goals of restoration projects. The new channel bank above the wood toe will be stabilized with bioengineered soil wraps vegetated with live cuttings (also known as Vegetation Reinforced Soil Slope - VRSS). The use of native live cuttings provides resilient slope stability that gets stronger with time as the root masses mature.


Figure 46 - Wood Toe Protection with Vegetated Soil Lifts Details
The headwater channel stabilization structure is a naturalized way to utilize on-site woody debris that would otherwise require haul-off and disposal in a method that provides effective channel grade and bank protection in steep and/or incised channels. The structure can be incredibly effective in channels dominated by sand and/or fine-grained creek beds, that have experienced erosion or downcutting due to changes in hydrology or lowering of baselevel. The creek bed and banks are reconstructed using a
mixture of various size classes of woody debris mixed with native soil, which emulates the naturally occurring subbase in natural channels. The matrix of wood in the subbase provides a "rebar" like effect in improve subsurface soil structure resistant to erosion and scour, which providing improved aquatic habitat.


Figure 47-Stream Restoration Headwater Channel Details

The cost estimate for the stream restoration conceptual BMP is $\$ 701,393$. With shoreline restoration spanning approximately 2000 linear feet, the unit cost for the project is approximately $\$ 350$ per linear foot of shoreline.

The proposed water quality improvements for the Pinecraft PMA include annual reductions of 483.4 $\mathrm{lb} / \mathrm{yr}$ of TN and $72.6 \mathrm{lb} / \mathrm{yr}$ of TP.

The total cost for all conceptual BMPs in the Pinecraft PMA is $\$ 1,094,958$.

Sarasota Memorial Hospital and US-41 Priority Management Area Conceptual BMP


Figure 48 - SMH \& US 41 Area BMPs

## Nutrient Separating Baffle Box

The first conceptual BMP for the Sarasota Memorial Hospital and US-41 PMA area is a nutrient separating baffle box near the intersection of Harbor Drive and Flower Drive providing treatment for an 81-acre contributing area, as shown in Figure 48. Most of that contributing area does not have any BMPs. Additional nutrient separating baffle boxes were considered at the Bahia Vista Street and Hillview Drive stormwater outfalls, however these locations do not warrant these BMPs due the relatively small size and the low water quality LOS deficiency ranking of their contributing areas. Figure 49 provides a typical detail diagram for a nutrient-separating baffle box.


Figure 49 - Nutrient-Separating Baffle Box Diagram (source: Oldcastleinfrastructure.com)

## BMP TRAINS 2020 Report - SMH and US41 Nutrient Separating Baffle Box

The BMP TRAINS 2020 input and output for the Nutrient-Separating Baffle Box are presented here:

| Site and Catchment Information <br> Analysis: BMP Analysis <br> Catchment Name |  |
| :--- | :--- |
| Rainfall Zone | H0680 |
| Annual Mean Rainfall | 52.00 |
| Post-Condition Land use Information |  |
| Land use | User Defined Values |
| Area (acres) | 81.01 |
| Rational Coefficient (0-1) | 0.34 |
| Non DCIA Curve Number | 87.00 |
| DCIA Percent (0-100) | 20.70 |
| Wet Pond Area (ac) | 0.00 |
| Nitrogen EMC (mg/l) | 1.796 |
| Phosphorus EMC (mg/I) | 0.284 |
| Runoff Volume (ac-ft/yr) | 119.866 |
| Nitrogen Loading (kg/yr) | 265.439 |
| Phosphorus Loading (kg/yr) | 41.974 |

Catchment Number: 1 Name: H0680

## Nutrient Separating Baffle Box

Contributing Catchment Area (acres) 81.010

Provided Nitrogen Treatment Efficiency (\%) 19
Provided Phosphorus Treatment Efficiency (\%) 16


The proposed nutrient separating baffle box provides annual reductions of $111.5 \mathrm{lb} / \mathrm{yr}$ of TN and 14.3 $\mathrm{lb} / \mathrm{yr}$ of TP.

One-way Check Valves and Stormwater Pipe Improvements
Existing street flooding on Harbor Drive, Hillview Drive and Flower Drive in the Harbor Acres subdivision is a function of tidal influence as well as being downstream from a dense commercial development with minimal BMP's. The drainage within this subbasin drains from the natural ridge (US-41) to the bay through the existing neighborhoods.

The 2021 report titled Harbor Acres Alternatives Analysis, performed by Kimley Horn and Associates (KHA) for Sarasota County, was reviewed for this study. The report included modeling the Harbor Acres neighborhood using ICPR version 3 to determine the extent of the existing flooding as well as modeling for three alternative projects to reduce flooding.

The hydrology component of the KHA models did not include the calculation of directly connected impervious area (DCIA), as is the standard modeling practice for Sarasota County watershed models. For this analysis, the modeling was modified to include the calculation of DCIA.

In the KHA report, the alternative with the highest cost benefit ratio was Alternative 1, with a ratio of 0.51. Alternative 1 was shown to achieve the reduction of street flooding to within the local street LOS criteria ( 12 inches or less of street flooding) and a reduction in the number of structures flooded from 53 to 11 , by the additional of inlets and the upsizing of 25 pipes.

Using the revised model with DCIA, the Alternative 1 improvements to find the optimal proposed inlet and pipe improvements that would eliminate the roadway LOS deficiencies within the area. The improvements include changes to 25 pipes, as detailed below in Table 8, and shown in Figure 50.

The BCA tool was used to determine the cost-benefit for this conceptual BMP based on the revised modeling and is determined to be 0.50 .

To address the tidal influence in the outfall pipes that is contributing to street flooding, 11 check-valves are proposed with the new concrete pipes to ensure optimal operation and maintenance of the valves on the downstream end. Check valve locations are provided in Figure 48, while an image of an example check valve is shown in Figure 50.


Figure 50 - Harbor Acres ICPR3 Model with Proposed Pipe Changes


Figure 51 - Example One-Way Check Valve (source: redvalve.com/Tideflex)
Table 8 - SMH and US41 ICPR pipe changes

| Pipe | Change | Length (ft) |
| :---: | :---: | :---: |
| RHA011A-P | from elliptical 18"x12" RCP to elliptical $24{ }^{\prime \prime} \times 38^{\prime \prime}$ RCP | 30 |
| RHA012A-P | from circular 15" CMP to elliptical 24"x38" RCP | 90 |
| RHA013A-P | from circular 15" CMP to elliptical (2) 29 "x45" RCP | 365 |
| RHA021A-P | from circular 18" CMP to elliptical 29"x45" RCP | 50.9 |
| RHA022A-P | from circular 12" RCP to elliptical (2) 29'x45' RCP | 380 |
| RHA031A-P | from circular 12" RCP to elliptical 19'x30' RCP | 40 |
| RHA032A-P | from circular 12" RCP to elliptical $29{ }^{\prime \prime} \times 45^{\prime \prime}$ RCP | 5 |
| RHA033A-P | from circular 12" RCP to elliptical $48^{\prime \prime} \times 76^{\prime \prime}$ RCP | 250 |
| RHA041A-P | from circular 12" RCP to elliptical 19'x30' RCP | 30 |
| RHA042A-P | from circular 12" CMP to elliptical 19"x30" RCP | 275 |
| RHA051A-P | from circular 12" RCP to elliptical $29{ }^{\prime \prime} \times 45^{\prime \prime}$ RCP | 30 |
| RHA057A-P | from circular 12" RCP to elliptical $24{ }^{\prime \prime} \times 38^{\prime \prime}$ RCP | 8 |
| RHA061A-P | from circular 12" CMP to elliptical 14"x23" RCP | 25 |
| RHA062A-P | from circular 12" RCP to elliptical $14{ }^{\prime \prime} \times 23^{\prime \prime}$ RCP | 150 |
| RHA071A-P | from elliptical 23'x14" RCP to elliptical 19' $\times 30^{\prime \prime}$ RCP | 32 |
| RHA072A-P | from elliptical 23'x14" CMP to elliptical 19'x30' RCP | 150 |
| RHA081A-P | from circular 12" RCP to elliptical 19'x30' RCP | 22 |
| RHA082A-P | from circular 12" CMP to elliptical 24"x38" RCP | 175 |
| RHA091A-P | from circular 12" RCP to elliptical $19{ }^{\prime \prime} \times 30^{\prime \prime}$ RCP | 30 |
| RHA092A-P | from circular 12" RCP to elliptical 19'x30' RCP | 190 |


| RHA101A-P | from circular 12" RCP to elliptical 24' $x 38^{\prime \prime}$ RCP | 24 |
| :---: | :---: | :---: |
| RHA102A-P | from circular 12" RCP to elliptical 24'"x38" RCP | 190 |
| RHA112A-P | from circular 12" CMP to elliptical 12" RCP | 140 |
| RHA0500A-P | new pipe: elliptical $34^{\prime \prime} \times 53^{\prime \prime}$ RCP | 220 |
| RHA501A-P | new pipe: elliptical (2) 43"x68' RCP | 205 |

Measurable benefits from the BMP include:

- Reduction of the number of model basins with roadway LOS deficiency from 10 of 11 to 0 of 11
- Reduction of the number of residential structures in the 100-year horizontal floodplain from 53 to 12 (structure flooding as measured by floodplain adjacent to structure polygon consistent with the previous study).
- Elimination of 5500 linear feet of roadway level of service deficiencies within Harbor Acres
- Flood Cost Benefit Ratio $\mathbf{=} \mathbf{0 . 5 0}$

The estimated cost for Sarasota Memorial Hospital and US-41 PMA conceptual BMPs are \$2,463,173.

Downtown Priority Management Area Conceptual BMP


Figure 52 - Downtown Area BMPs
This is a challenging area to fit any projects due to fully developed landscape with very little green space or right of way; however, green infrastructure or low impact development techniques area ideal in this situation because they can be small in size and fit into landscape beds or under parking lots. Techniques to disconnect the impervious area leading to storm pipes can include landscaped raingardens and bioswales, pervious sidewalks and parking lots with storage underneath the surface.

With greater than 20 outfalls that directly discharge to Sarasota Bay in the Downtown PMA this is a target area for pollutant load techniques. Two technologies that utilize minimal space are proposed: a nutrient-separating baffle box followed by an upflow filter with BAM and denitrification trenches.

Nutrient Separating Baffle Box with Upflow filter and BAM
The baffle box and filter are proposed west of Gulfstream Ave, between two FDOT ponds, as shown in Figure 52.


Figure 52 - Downtown Nutrient Separating Baffle Box Conceptual BMP
A typical configuration for the up-flow filter is presented in Figure 53.


Figure 53 - Up-flow Filter Typical Detail (source: BMP Trains 2020)

## BMP TRAINS 2020 Report Downtown PMA -Nutrient Separating Baffle Box

The BMP TRAINS 2020 input and output data for the nutrient separating baffle box and up-flow filter with BAM is provided here:


## Surface Water Discharge

| Provided TN Treatment Efficiency (\%) 28 |  |  |  |
| :---: | :---: | :---: | :---: |
| Provided TP Treatment Efficiency (\%) 27 |  |  |  |
| Load for Multiple BMP in Series |  |  |  |
| Load$\begin{aligned} & \mathrm{N}: 47.71 \mathrm{~kg} / \mathrm{yr} \quad \rightarrow \\ & \mathrm{P}: 6.86 \mathrm{~kg} / \mathrm{yr} \end{aligned}$ | $\begin{aligned} & \text { Treatment } \\ & \text { N: } 28 \% \\ & \text { P: } 27 \% \end{aligned}$ |  | Surface Discharge N: $34.41 \mathrm{~kg} / \mathrm{yr}$ <br> P: $4.99 \mathrm{~kg} / \mathrm{yr}$ |
|  | $\downarrow$ |  |  |
|  |  | uction <br> kg/yr <br> /yr |  |
| Summary Report |  |  |  |
| Nitrogen |  |  |  |
| Surface Water Discharge |  |  |  |
| Total N post load |  | $47.71 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent N load reduction |  | 28 \% |  |
| Provided N discharge load |  | $34.41 \mathrm{~kg} / \mathrm{yr}$ | $75.87 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed |  | 13.3 kg/yr | $29.33 \mathrm{lb} / \mathrm{yr}$ |
| Phosphorus |  |  |  |
| Surface Water Discharge |  |  |  |
| Total P post load |  | $6.859 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent P load reduction |  | 27 \% |  |
| Provided P discharge load |  | $4.995 \mathrm{~kg} / \mathrm{yr}$ | $11.01 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed |  | $1.864 \mathrm{~kg} / \mathrm{yr}$ | $4.11 \mathrm{lb} / \mathrm{yr}$ |

## Media Filter Report

Catchment Name: Downtown PMA
Treatment Depth (in): 0.10
Rate (GPM/SF): 0.05
Effective Impervious Area (acres): 2.43
Minimum Filter Area (sf): 43.97

## Denitrification Trench

Two denitrification trenches are proposed, which will provide a water quality treatment mechanism for 17.3 acres of contributing area to four (4) outfalls that currently discharge directly into Sarasota Bay with no stormwater treatment. The trench profile is shown in Figure 54, with an 18-inch diameter perforated pipe that allows stormwater runoff to percolate through a BAM layer and into the groundwater.


Figure 54 - Downtown Denitrification Trench Detail (source: Stantec)
Locations for the 2,110 total linear feet denitrification trench are shown in Figure 55.


Figure 55 - Downtown Denitrification Trench Locations and Contributing Areas

## BMP TRAINS 2020 Report Downtown - Retention Trenches with CTS 24 Media

The BMP TRAINS 2020 input and output data for the denitrification trench system is provided here:


TN Concentration (mg/L) 0.475
TP Mass Load (kg/yr) 0.027
TP Concentration (mg/L) 0.014

Load Diagram for Retention (stand-alone)

| Load |
| :--- | :--- |
| $\mathrm{N}: 15.02 \mathrm{~kg} / \mathrm{yr}$ |
| $\mathrm{P}: 2.17 \mathrm{~kg} / \mathrm{yr}$ |$\rightarrow$| Treatment |
| :--- |
| $\mathrm{N}: 25 \%$ |
| $\mathrm{P}: 25 \%$ |$\rightarrow$| Surface Discharge |
| :--- |
| $\mathrm{N}: 11.23 \mathrm{~kg} / \mathrm{yr}$ |
| $\mathrm{P}: 1.63 \mathrm{~kg} / \mathrm{yr}$ |

$\downarrow \quad \mathrm{N}: 3.80 \mathrm{~kg} / \mathrm{yr}(8.4 \mathrm{lb} / \mathrm{yr})$
P: $0.55 \mathrm{~kg} / \mathrm{yr}(1.21 \mathrm{lb} / \mathrm{yr})$

| Into Media | GW Treatment |  | GW Discharge |
| :---: | :---: | :---: | :---: |
| $\mathrm{N}: 3.795 \mathrm{~kg} / \mathrm{yr}$ | N: $75 \%$ | $\rightarrow$ | $\mathrm{N}: 0.949 \mathrm{~kg} / \mathrm{yr}$ |
| P: $0.549 \mathrm{~kg} / \mathrm{yr}$ | P: $95 \%$ |  | P: $0.027 \mathrm{~kg} / \mathrm{yr}$ |


| Retained |  |
| :--- | :--- |
| N: $2.85 \mathrm{~kg} / \mathrm{yr}$ | $(6.28 \mathrm{lb} / \mathrm{yr})$ |
| P: $0.52 \mathrm{~kg} / \mathrm{yr}$ | $(\mathbf{1 . 1 5 \mathrm { lb } / \mathrm { yr } )}$ |

BMP TRAINS 2020 Report
DOWNTOWN PMA RETENTION TRENCH 2 WITH CTS24
Site and Catchment Information
Analysis: BMP Analysis

| Catchment Name | All basins together |
| :--- | :--- |
| Rainfall Zone | Florida Zone 4 |
| Annual Mean Rainfall | 52.00 |

Post-Condition Land Use Information

| Land use | User Defined Values |
| :--- | :--- |
| Area (acres) | 14.16 |
| Rational Coefficient (0-1) | 0.39 |
| Non DCIA Curve Number | 85.60 |
| DCIA Percent (0-100) | 32.20 |
| Wet Pond Area (ac) | 0.00 |
| Nitrogen EMC (mg/l) | 1.988 |
| Phosphorus EMC (mg/I) | 0.400 |
| Runoff Volume (ac-ft/yr) | 24.234 |
| Nitrogen Loading (kg/yr) | 59.403 |
| Phosphorus Loading (kg/yr) | 11.952 |

Catchment Number: 1 Name: All basins together
Project: Downtown PMA Retention Trench with CTS24
Retention Design
Retention Depth (in) $\quad 0.030$

## Watershed Characteristics

Catchment Area (acres) 14.16
Contributing Area (acres) 14.160
Non-DCIA Curve Number 85.60
DCIA Percent $\quad 32.20$
Rainfall Zone Florida Zone 4

Rainfall (in) 52.00

## Surface Water Discharge

Provided TN Treatment Efficiency (\%) 5
Provided TP Treatment Efficiency (\%) 5

Load Diagram for Retention (stand-alone)


| Summary Report <br> Nitrogen |  |  |
| :--- | :--- | :--- |
| Surface Water Discharge |  |  |
| Total N post load | $59.4 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent N load reduction | $5 \%$ |  |
| Provided N discharge load | $56.64 \mathrm{~kg} / \mathrm{yr}$ | $124.88 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $2.77 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{6 . 1} \mathrm{lb} / \mathbf{y r}$ |

## Groundwater Discharge

| Average Annual Recharge | $.368 \mathrm{MG} / \mathrm{yr}$ |  |
| :--- | :--- | :--- |
| Provided N recharge load | $.692 \mathrm{~kg} / \mathrm{yr}$ | $1.53 \mathrm{lb} / \mathrm{yr}$ |
| Provided N Concentration | $.497 \mathrm{mg} / \mathrm{l}$ |  |


| Phosphorus <br> Surface Water Discharge |  |  |
| :--- | :--- | :--- |
| Total P post load | $11.952 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent P load reduction | $5 \%$ |  |
| Provided P discharge load | $11.395 \mathrm{~kg} / \mathrm{yr}$ | $25.13 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed | $.557 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{1 . 2 2 8 ~ \mathrm { lb } / \mathrm { yr }}$ |
|  |  |  |
| Groundwater Discharge |  |  |
| Average Annual Recharge | $.368 \mathrm{MG} / \mathrm{yr}$ | $.0614 \mathrm{lb} / \mathrm{yr}$ |
| Provided P recharge load | $.0278 \mathrm{~kg} / \mathrm{yr}$ |  |
| Provided P Concentration | $.02 \mathrm{mg} / \mathrm{l}$ |  |

The proposed denitrification trench and baffle box conceptual BMPs provide annual reductions of $60.5 \mathrm{lb} / \mathrm{yr}$ of TN and $10 \mathrm{lb} / \mathrm{yr}$ of TP.

The estimated cost for the Downtown PMA conceptual BMPs is $\mathbf{\$ 1 , 1 0 4 , 7 0 0}$.

Bee Ridge and US-41 Priority Management Area Conceptual BMP


Figure 56 - Bee Ridge and US 41 Area BMPs
Stormwater Pipe Improvements and Nutrient Separating Baffle Box
These improvements will provide a water quality and flood protection component to an area with existing LOS deficiency on an evacuation route and direct discharge to Sarasota Bay, this conceptual BMP proposes removing and replacing 2,340 linear feet of existing stormwater pipe and installation of a nutrient-separating baffle box. The improvements were modeled in the Coastal Fringe Roberts Bay North ICPR model and include changes to 8 pipes, as detailed in Table 8, and shown in Figure 56.

Table 8 - Bee Ridge and US-41 ICPR pipe changes

| Pipe | Change | Length |
| :---: | :---: | :---: |
| RA0030G-P | from circular 24" to circular 36" | 260 |
| RA0085-P | from elliptical 34 "x53" to elliptical 38 "x60" | 355 |
| RA0120C-P | from elliptical 34 "x53" to elliptical 38 "x60" | 235 |
| RA0150D-P | from elliptical 38 "x60" to elliptical 43 "x68" | 215 |
| RA0165-P | from elliptical 38 "x60" to elliptical 43"x68" | 475 |
| RA0220B-P | from elliptical 38 "x60" to elliptical 43 "x68" | 170 |
| RA0225-P | from elliptical 38 "x60" to elliptical 43"x68" | 180 |
| RA0230D-P | from elliptical 43 "x68" to elliptical 48"x76" | 450 |

## Measurable benefits from the flood protection improvements include:

- 220 linear feet of roadway removed from 100-year LOS deficiency, including 186 linear feet of Evacuation Route
- Flood Cost-Benefit Ratio $=0.22$
- Portions of the project will be somewhat affected by the NOAA 2100 sea level rise projection but can be slightly modified with minimum cost


## BMP TRAINS 2020 Report - Bee Ridge and US41 Nutrient Separating Baffle Box

Water quality benefits for the baffle box were estimated with BMP TRAINS 2020. All input and output data are presented here:

Site and Catchment Information
Analysis: BMP Analysis

| Catchment Name | AO10 AO70 | AO180 30148 |
| :--- | :--- | :--- |
| Rainfall Zone | Florida Zone 4 | Florida Zone 4 |
| Annual Mean Rainfall | 52.00 | 52.00 |
| Phosphorus Loading (kg/yr) | 0.000 | 0.000 |
| Post-Condition Land Use Information |  |  |
| Land use | User Defined Values | User Defined Values |
| Area (acres) | 44.25 | 44.98 |
| Rational Coefficient (0-1) | 0.43 | 0.27 |
| Non DCIA Curve Number | 81.95 | 82.18 |
| DCIA Percent (0-100) | 41.70 | 16.98 |
| Wet Pond Area (ac) | 0.00 | 0.00 |
| Nitrogen EMC (mg/l) | 2.131 | 2.081 |
| Phosphorus EMC (mg/l) | 0.325 | 0.323 |
| Runoff Volume (ac-ft/yr) | 82.566 | 51.906 |
| Nitrogen Loading (kg/yr) | 216.944 | 133.184 |
| Phosphorus Loading (kg/yr) | 33.086 | 20.672 |

Catchment Number: 1 Name: A010 A070 Routes to catchment 2 for treatment

## Watershed Characteristics

Catchment Area (acres) 44.25
Contributing Area (acres) 44.250
Non-DCIA Curve Number 81.95

| DCIA Percent | 41.70 |
| :--- | :--- |
| Rainfall Zone | Florida Zone 4 |
| Rainfall (in) | 52.00 |

Load Diagram for None (stand-alone)

| Load <br> $\mathrm{N}: 216.94 \mathrm{~kg} / \mathrm{yr}$ <br> $\mathrm{P}: 33.09 \mathrm{~kg} / \mathrm{yr}$ |
| :--- | :--- | :--- |$\rightarrow$| Treatment |
| :--- |
| $\mathrm{N}: \%$ |
| $\mathrm{P}: \%$ |$\rightarrow$| Surface Discharge |
| :--- |
| $\mathrm{N}: 216.94 \mathrm{~kg} / \mathrm{yr}$ |
| $\mathrm{P}: 33.09 \mathrm{~kg} / \mathrm{yr}$ |

$$
\begin{array}{ll} 
& \text { Mass Reduction } \\
\downarrow & \mathrm{N}: 0.00 \mathrm{~kg} / \mathrm{yr} \\
\mathrm{P}: 0.00 \mathrm{~kg} / \mathrm{yr}
\end{array}
$$

## Catchment Number: 2 Name: AO180 30148

## Nutrient Separating Baffle Box

Contributing Catchment Area (acres) 44.980

Provided Nitrogen Treatment Efficiency (\%) 19
Provided Phosphorus Treatment Efficiency (\%) 16

## Watershed Characteristics

| Catchment Area (acres) | 44.98 |
| :--- | :--- |
| Contributing Area (acres) | 44.980 |
| Non-DCIA Curve Number | 82.18 |
| DCIA Percent | 16.98 |
| Rainfall Zone | Florida Zone 4 |
| Rainfall (in) | 52.00 |

## Surface Water Discharge

Provided TN Treatment Efficiency (\%) 19
Provided TP Treatment Efficiency (\%) 16
Load Diagram for Nutrient Separating Baffle Box Catchment 2 loadings only


Load Diagram for Nutrient Separating Baffle Box for both catchment 1 and 2 ( As Used In Routing)


Mass Removed
$\mathrm{N}: 66.70 \mathrm{~kg} / \mathrm{yr}$
P: $8.33 \mathrm{~kg} / \mathrm{yr}$

## Summary Report <br> Nitrogen

Surface Water Discharge
Total N post load $350.13 \mathrm{~kg} / \mathrm{yr}$

| Percent N load reduction | $19 \%$ |  |
| :--- | :--- | :--- |
| Provided N discharge load | $283.43 \mathrm{~kg} / \mathrm{yr}$ | $624.96 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $66.7 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{1 4 7 . 0 7} \mathrm{lb} / \mathrm{yr}$ |
|  |  |  |
| Phosphorus |  |  |
| Surface Water Discharge | $53.758 \mathrm{~kg} / \mathrm{yr}$ |  |
| Total P post load | $16 \%$ |  |
| Percent P load reduction | $45.426 \mathrm{~kg} / \mathrm{yr}$ | $100.16 \mathrm{lb} / \mathrm{yr}$ |
| Provided P discharge load | $8.333 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{1 8 . 3 7 3} \mathrm{lb} / \mathrm{yr}$ |

## The proposed nutrient separating baffle box water conceptual BMP provides annual reductions of $147.1 \mathrm{lb} / \mathrm{yr}$ of TN and $18.4 \mathrm{lb} / \mathrm{yr}$ of TP.

The estimate project cost for the Storm pipe improvements and nutrient-separating baffle box is \$1,475,894.

## Convert Existing Parking Spots to Pervious Pavement

This conceptual BMP includes removal of existing asphalt in the parking spots and replacing with pervious pavement, similar to the US-41 and Highlands PMA to provide another benchmarking source for the retrofit of impervious to pervious surfaces. The drive aisles will remain impervious asphalt, and the existing drainage inlets and storm pipes will remain in place for all runoff that does not percolate into the pervious pavement. Existing grass islands can also be converted to rain gardens to allow for additional stormwater percolation and nutrient removal. In total, 2.45 acres of parking spots within a 5.18-acre contributing area would be converted from impervious to pervious, with 6 -inch of pervious concrete over an 8 -inch layer of stone. Parking areas to be converted are shown in Figure 57.


Figure 57-Westfield Mall Parking Lot Conversion to Pervious Pavement

## BMP TRAINS 2020 Report - Bee Ridge and US 41 Westfield Mall Pervious Parking Lot

BMP TRAINS 2020 input and output data for the parking lot conversion to pervious pavement is provided here:

## Site and Catchment Information

Analysis: BMP Analysis

| Catchment Name | Parking Lot |
| :--- | :--- |
| Rainfall Zone | Florida Zone 4 |
| Annual Mean Rainfall | 52.00 |

## Post-Condition Lands Use Information

| Land use | Highway: TN=1.520 TP=0.200 |
| :--- | :--- |
| Area (acres) | 5.18 |
| Rational Coefficient (0-1) | 0.80 |
| Non DCIA Curve Number | 96.44 |
| DCIA Percent (0-100) | 92.00 |
| Wet Pond Area (ac) | 0.00 |
| Nitrogen EMC (mg/l) | 1.520 |
| Phosphorus EMC (mg/l) | 0.200 |


| Runoff Volume (ac-ft/yr) | 17.928 |
| :--- | :--- |
| Nitrogen Loading (kg/yr) | 33.600 |
| Phosphorus Loading (kg/yr) | 4.421 |

Catchment Number: 1 Name: Parking Lot

## Pervious Pavement Design

Surface Area of Pavement (acres) 2.450
Treatment Volume (in over watershed) 1.419

| Pavement Type | Thickness (in) Storage (in) Storage (ac-ft) |  |  |
| :--- | :---: | :---: | :---: |
| Concrete Permeable Pavement 4.00 | 1.000 | 0.204 |  |
| \#89 pea rock | 8.00 | 2.000 | 0.408 |
| Total |  | 3.000 | 0.613 |

## Watershed Characteristics

Catchment Area (acres) 5.18
Contributing Area (acres) 2.730
Non-DCIA Curve Number 96.44
DCIA Percent 92.00
Rainfall Zone Florida Zone 4
Rainfall (in) 52.00

## Surface Water Discharge

Provided TN Treatment Efficiency (\%) 77
Provided TP Treatment Efficiency (\%) 77

Load Diagram for Pervious Pavement (stand-alone)

| Load <br> $\mathrm{N}: 33.60 \mathrm{~kg} / \mathrm{yr}$ <br> $\mathrm{P}: 4.42 \mathrm{~kg} / \mathrm{yr}$$\rightarrow$Treatment <br> $\mathrm{N}: 77 \%$ <br> $\mathrm{P}: 77 \%$ |
| :--- |$\rightarrow$| Surface Discharge |
| :--- |
| $\mathrm{N}: 7.73 \mathrm{~kg} / \mathrm{yr}$ |
| $\mathrm{P}: 1.02 \mathrm{~kg} / \mathrm{yr}$ |

$$
\begin{array}{ll} 
& \text { Mass Reduction } \\
\downarrow & \mathrm{N}: 25.87 \mathrm{~kg} / \mathrm{yr} \\
& \mathrm{P}: 3.40 \mathrm{~kg} / \mathrm{yr}
\end{array}
$$

| Summary Report |  |  |
| :--- | :--- | :--- |
| Nitrogen |  |  |
| Surface Water Discharge |  |  |
| Total N post load | $33.6 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent N load reduction | $77 \%$ |  |
| Provided N discharge load | $7.73 \mathrm{~kg} / \mathrm{yr}$ | $17.04 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $25.87 \mathrm{~kg} / \mathrm{yr}$ | $57.05 \mathrm{lb} / \mathrm{yr}$ |


| Phosphorus <br> Surface Water Discharge |  |  |
| :--- | :--- | :--- |
| Total P post load | $4.421 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent P load reduction | $77 \%$ |  |
| Provided P discharge load | $1.017 \mathrm{~kg} / \mathrm{yr}$ | $2.24 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed | $3.404 \mathrm{~kg} / \mathrm{yr}$ | $\mathbf{7 . 5 0 6} \mathrm{lb} / \mathbf{y r}$ |

The proposed parking lot pervious pavement conceptual BMP provides annual reductions of $57.1 \mathrm{lb} / \mathrm{yr}$ of TN and $7.5 \mathrm{lb} / \mathrm{yr}$ of TP.

The estimate cost for the pervious pavement conceptual BMP is $\mathbf{\$ 2 , 2 1 8 , 3 3 9}$.

## Stickney Point Priority Management Area Conceptual BMP



Figure 58 - Stickney Point Area BMPs
This area experiences exceptional street flooding associated with stormwater and tidal influences noted at least once a year. The areas are well established and exist with minimal stormwater BMP's; most of the drainage discharges directly into the intercoastal waterway.

The conceptual BMP includes removal and replacement of two lengths of existing stormwater pipe with a larger pipe size, installation of one-way check valves on the new pipes, and installation of a concrete flume for surface water to pop-off into a lot-line swale.

The two existing 18 -inch diameter pipe locations are shown on Figure 58 and they will be increased to 36 -inch diameter pipes. The concrete flume location is proposed over the north pipe. An example flume is provided in Figure 59.


Figure 59 - Concrete Flume Example
The conceptual BMP was modeled in ICPR with the Coastal Fringe-Roberts Bay model.
Measurable flood protection benefits include:

- Removal of 225 linear feet of roadway from Level of Service (LOS) deficiency
- Improvement of existing stormwater infrastructure.
- Resilient in NOAA 2100 future condition
- Reduction of high tide flooding events
- Peak stage reductions: 0.08 to 0.12 feet for $\mathbf{1 0 0}$-year, 0.23 to 0.25 feet for the $\mathbf{2 5}$-year, and 0.36 to 0.42 feet for the 10 -year storms

The estimated conceptual BMP costs total \$186,115.

US-41 and Proctor Priority Management Area Conceptual BMP


Figure 60-US41 and Proctor Area BMPs
The US-41 and Proctor Priority Management area includes a substantial portion of the contributing area to a County-Maintained stormwater pond (Facility ID: CT_04142010_001779, Legacy ID: P10-6) located within The Landings private community. This stormwater pond is one of the oldest BMPs in Sarasota County, with significant sediment loading from the upstream commercial and residential contributing area flowing into the bay.

Sediment Removal in Pond, Nutrient Separating Baffle Box and Beemats
Sediment removal from the pond is proposed, which would remove approximately 6,800 cubic yards of material from the pond, providing an estimated 4.2 ac-ft of permanent pool volume available to provide water quality treatment. Installation of a nutrient-separating baffle box at the primary inflow point of the pond (eastern end) will provide additional pollutant loading reductions for the stormwater before entering the pond. Floating Beemats, as shown in Figure 31, will cover approximately $5 \%$ of the pond's surface, providing additional nutrient uptake pathways. Best practices for Beemats should be followed during the design and construction to ensure adequate coverage and maintenance frequency.

The full contributing area for The Landings Pond is presented in Figure 61 along with the location of the pond and proposed nutrient-separating baffle box.


Figure 61 - The Landings Pond Contributing Area

Sediment removal via excavation during initial construction yields $12,239 \mathrm{lbs}$. of TN and 5,893 lbs of TP removed from an estimated 6,800 cubic yards of material. Values were obtained by utilizing the Florida Stormwater Association MS4 Load Reduction Assessment Tool, dated June 2019, accessed from the Florida Department of Environmental Protection's site (FSA-MS4 Load Reduction Tool updated 2019 | Florida Department of Environmental Protection)

The tool's input screen is presented in Figure 62, while the results are shown in Figure 63.


Figure 62- The Landings Pond Sediment Removal Load Reduction Assessment Tool Input


Figure 63 - The Landings Pond Sediment Removal Load Reduction Assessment Tool

The BMP Trains 2020 input and output for the US41 and Proctor Conceptual BMPs is presented here:

| Existing Conditions (prior to sediment removal) |  |
| :---: | :---: |
| Site and Catchment Information |  |
| Analysis: BMP Analysis |  |
| Catchment Name | Composite 1 |
| Rainfall Zone | Florida Zone 4 |
| Annual Mean Rainfall | 52.00 |
| Post-Condition Land Use Information |  |
| Land use | User Defined Values |
| Area (acres) | 126.15 |
| Rational Coefficient (0-1) | 0.34 |
| Non DCIA Curve Number | 82.00 |
| DCIA Percent (0-100) | 28.30 |
| Wet Pond Area (ac) | 0.00 |
| Nitrogen EMC ( $\mathrm{mg} / \mathrm{l}$ ) | 1.909 |
| Phosphorus EMC ( $\mathrm{mg} / \mathrm{l}$ ) | 0.291 |
| Runoff Volume (ac-ft/yr) | 186.357 |
| Nitrogen Loading (kg/yr) | 438.647 |
| Phosphorus Loading (kg/yr) | 66.866 |

Catchment Number: 1 Name: Composite 1
Wet Detention Design
Permanent Pool Volume (ac-ft) 4.230

Permanent Pool Volume (ac-ft) for 31 days residence 15.828
Annual Residence Time (days)
8
Littoral Zone Efficiency Credit
Wetland Efficiency Credit

## Watershed Characteristics

Catchment Area (acres) 126.15
Contributing Area (acres) 126.150
Non-DCIA Curve Number 82.00

| DCIA Percent | 28.30 |
| :--- | :--- |
| Rainfall Zone | Florida Zone 4 |
| Rainfall (in) | 52.00 |

## Surface Water Discharge

Provided TN Treatment Efficiency (\%) 29
Provided TP Treatment Efficiency (\%) 55

Load Diagram for Wet Detention (stand-alone)

| Load $\begin{aligned} & \mathrm{N}: 438.65 \mathrm{~kg} / \mathrm{yr} \quad \rightarrow \\ & \mathrm{P}: 66.87 \mathrm{~kg} / \mathrm{yr} \end{aligned}$ | Treatment <br> N: 29 \% <br> P: 55 \% | $\rightarrow \quad \begin{aligned} & \text { Surface Discharge } \\ & \mathrm{N}: 313.11 \mathrm{~kg} / \mathrm{yr} \\ & \mathrm{P}: 30.39 \mathrm{~kg} / \mathrm{yr} \end{aligned}$ |
| :---: | :---: | :---: |
|  | $\downarrow$ | Mass Reduction <br> $\mathrm{N}: 125.54 \mathrm{~kg} / \mathrm{yr}$ <br> P: $36.48 \mathrm{~kg} / \mathrm{yr}$ |


| Summary Treatment Report |  |  |
| :---: | :---: | :---: |
| Nitrogen |  |  |
| Surface Water Discharge |  |  |
| Total N post load | $438.65 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent N load reduction | 29 \% |  |
| Provided N discharge load | $313.11 \mathrm{~kg} / \mathrm{yr}$ | $690.4 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $125.54 \mathrm{~kg} / \mathrm{yr}$ | $276.81 \mathrm{lb} / \mathrm{yr}$ |
| Phosphorus |  |  |
| Surface Water Discharge |  |  |
| Total P post load | $66.866 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent P load reduction | 55 \% |  |
| Provided $P$ discharge load | $30.387 \mathrm{~kg} / \mathrm{yr}$ | $67 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed | $36.479 \mathrm{~kg} / \mathrm{yr}$ | $80.436 \mathrm{lb} / \mathrm{yr}$ |


| BMP TRAINS 2020 Report |
| :--- |
| Project: US41 \& Proctor Nutrient Separating Baffle Box and Wet Detention with Beemats Floating Wetlands after |
| dredging |
| Treatment Train |
| Project: US41 _ Proctor baffle box and wet detention with BEEMATS |
| Multiple BMP in Series Design Parameters |
| BMP in Series Number: 1 |
| BMP Type: Nutrient Separating Baffle Box |
| Contributing Catchment Area (acres) |
| Provided Nitrogen Treatment Efficiency (\%) |
| Provided Phosphorus Treatment Efficiency (\%) 15 |
|  |
| BMP in Series Number: 2 |
| BMP Type: Wet Detention with BEEMATS <br> Permanent Pool Volume (ac-ft) <br> Permanent Pool Volume (ac-ft) for 31 days residence <br> Annual Residence Time (days) <br> Littoral Zone Efficiency Credit <br> Wetland Efficiency Credit <br> Combined Report of all BMP's <br> Catchment Area (acres) <br> Watershed Non-DCIA Curve Number |


| Watershed DCIA Percent |  | 28.30 |
| :---: | :---: | :---: |
| Rainfall Zone |  | Florida Zone 4 |
| Calculated Annual Coefficient (0-1) |  | 0.34 |
| Total (accumulated) Retention Depth (in over watershed) |  | 0.000 |
| Overall Provided Nitrogen Treatment Efficiency (\%) |  | 52 |
| Overall Provided Phosphorus Treatment Efficiency (\%) |  | 69 |
| Overall Nitrogen Load (kg/yr) |  | 208.993 |
| Overall Phosphorus Load (kg/yr) |  | 20.603 |
| Load for Multiple BMP in Series |  |  |
| $\begin{aligned} & \text { Load } \\ & \mathrm{N}: 438.65 \mathrm{~kg} / \mathrm{yr} \quad \rightarrow \\ & \mathrm{P}: 66.87 \mathrm{~kg} / \mathrm{yr} \end{aligned}$ | Treatment$\mathrm{N}: 52 \%$$\mathrm{P}: 69 \%$$\quad \rightarrow \quad$Surface <br> $\mathrm{N}: 208.9$ <br> $\mathrm{P}: 20.60$ | Discharge <br> $\mathrm{kg} / \mathrm{yr}$ <br> kg/yr |
|  | $\downarrow$ |  |
|  | Mass Reduction <br> $\mathrm{N}: 229.65 \mathrm{~kg} / \mathrm{yr}$ <br> P: $46.26 \mathrm{~kg} / \mathrm{yr}$ |  |


| Summary Report |  |  |
| :---: | :---: | :---: |
| Nitrogen |  |  |
| Surface Water Discharge |  |  |
| Total N post load | $438.65 \mathrm{~kg} / \mathrm{yr}$ |  |
| Percent N load reduction | 52 \% |  |
| Provided N discharge load | $209.12 \mathrm{~kg} / \mathrm{yr}$ | $461.11 \mathrm{lb} / \mathrm{yr}$ |
| Provided N load removed | $229.53 \mathrm{~kg} / \mathrm{yr}$ | 506.1 lb/yr |
| Phosphorus |  |  |
| Surface Water Discharge |  |  |
| Total P post load | 66.866 kg/yr |  |
| Percent P load reduction | 69 \% |  |
| Provided P discharge load | $20.615 \mathrm{~kg} / \mathrm{yr}$ | $45.46 \mathrm{lb} / \mathrm{yr}$ |
| Provided P load removed | 46.251 kg/yr | $101.983 \mathrm{lb} / \mathrm{yr}$ |

The existing and proposed treatment efficiency and annual TN and TP removal estimates are presented in Table 9.

Table 9-The Landings Pond Sediment Removal Treatment Efficiency

|  | Treatment <br> Efficiency TN | Treatment <br> Efficiency TP | Estimated TN <br> Reduction <br> $(\mathrm{lb} / \mathrm{yr})$ | Estimated <br> TP <br> Reduction <br> $(\mathrm{lb} / \mathrm{yr})$ |
| :--- | :---: | :---: | :---: | :---: |
| Existing Wet Detention | $29 \%$ | $55 \%$ | 277 | 80 |
| Proposed Wet Detention <br> After Sediment Removal | $52 \%$ | $69 \%$ | 506 | 102 |

With the proposed improvements $506 \mathrm{lb} / \mathrm{yr}$ of TN and $102 \mathrm{lb} / \mathrm{yr}$ of TP will be removed annually with the treatment system.

In addition, approximately $\mathbf{1 2 , 2 3 9} \mathrm{lb}$ of TN and $5,893 \mathrm{lb}$ of TP are removed as a result of the initial sediment removal during construction.

The estimated cost for the sediment removal, nutrient-separating baffle box and floating Beemats is \$328,676.

Faubel Street Priority Management Area Conceptual BMP


Figure 64 - Faubel Street Area BMPs
Faubel Street is an existing residential street on the north end of Siesta Key in which residents contend with multiple flooding events along their roadway on a regular basis during the wet season. The area needs to have upgrades completed to the stormwater system to ensure that the drainage is treated and discharged - instead of attenuating in the roadway.

The conceptual BMPs include storm structure installation and regrading on the west end of the street as well as rehabilitation for the existing saltwater marsh downstream.

The locations of the regrading area, proposed stormwater structure and wetland plantings is shown on Figure 65.


Figure 65 - Faubel Street Stormwater Improvements
Benefits include:

- Reduction of 400 linear feet of nuisance street flooding and level of service deficiencies
- Reduction of operation and maintenance of roadway and stormwater infrastructure
- Reduction of inflow and infiltration of sanitary system infrastructure, and water quality treatment benefits.

The total cost for the Faubel Street Stormwater Improvements is $\mathbf{\$ 3 7 , 3 3 4}$.

### 4.0 Water Quality Level of Service Analysis

Once the conceptual BMPs were finalized with measurable benefits calculated for annual pounds of nitrogen and phosphorus removed, the next step was incorporation of the annual load reductions for each BMP into the SIMPLE model. Janicki Environmental accomplished this by comparing the nutrient loading level of service (LOS) identified in Task 3.6 (Janicki Environmental, 2021c) for Whitaker Bayou, Hudson Bayou and Phillippi Creek to loading estimates from the SIMPLE model developed in Task 3.4 (Janicki Environmental, 2021a), updated with the proposed conceptual BMP projects.

Basin specific loading targets (Janicki Environmental, 2021b) were compared to the mean TN and TP loadings from the most recent 5 -year period to the target loadings to determine their achievement of their Strategic LOS (Janicki Environmental, 2021c) (Table 10). Whitaker Bayou is the only basin that is currently meeting its LOS for nutrient loading. Both Hudson Bayou and Phillippi Creek require further reductions to meet their LOS.

Table 10-Basins meeting or not meeting the Strategic LOS

| Basins meeting (green shading) or not meeting (orange shading) the Strategic LOS. |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Basin | Total Nitrogen <br> (lbs/year) |  |  | Total Phosphorus <br> (Ibs/year) |  |
|  | Target | Latest 5-year <br> Mean | Target | Latest 5-year <br> Mean |  |
|  | 53,387 | 47,574 | 8,977 | $\mathbf{8 , 2 9 5}$ |  |
| Hudson Bayou | 22,534 | $\mathbf{2 3 , 7 4 4}$ | 3,936 | $\mathbf{4 , 1 4 2}$ |  |
| Phillippi Creek | 402,323 | $\mathbf{4 1 5 , 4 1 0}$ | 64,377 | $\mathbf{6 9 , 0 8 2}$ |  |

### 4.1 Methodology

The SIMPLE model's BMP spatial layer (Janicki Environmental, 2021a) was updated with the proposed project's contributing areas, each provided with a unique identifier. The same identifier was used to identify the project's pollution reduction efficiencies calculated via the BMP Trains 2020 analysis. The SIMPLE model was then run for the same period to estimate post-project basin loads with the proposed projects in place.

### 4.2 Results

The project reductions shown in Tables 11 and 12 are the result of comparing the pre-and post-project loading estimates. The reductions were then used to determine the percent achievement of the corresponding nutrient LOS. The reductions due to the proposed conceptual BMP project's nitrogen load reductions (Table 11) result in Whitaker Bayou continuing to meet its nitrogen LOS at 100\%, while the Hudson Bayou and Philippi Creek Basins achieve 37\% and 14\% of their nitrogen LOS, respectively.

Table 11 - Percent of Nitrogen LOS target met by proposed conceptual BMP reductions

| Percent of Nitrogen LOS target met by proposed project reductions. |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Total Nitrogen (lbs/yr) |  |  |  |
|  | Target | 2015-2019 <br> Mean | Conceptual <br> BMP <br> Reductions | \%Target Reduction |
| Whitaker Bayou | 53,387 | 47,574 | 678 | 100 |
| Hudson Bayou | 22,534 | 23,744 | 442 | 37 |
| Phillippi Creek | 402,323 | 415,410 | 1,778 | 14 |

The proposed conceptual BMPs also make progress toward achieving the phosphorus LOS (Table 12). Again, the Whitaker Bayou basin achieves $100 \%$ of its phosphorus LOS. Hudson Bayou and Phillippi Creek achieve $62 \%$ and $10 \%$ of their LOS, respectively.

Table 12 - Percent of Phosphorous LOS Target met by Conceptual CMP Reductions ${ }^{1}$

| Percent of Phosphorus LOS target met by conceptual BMP reductions. |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| BASIN | Total Phosphorus (lbs/yr) |  |  |  |
|  | Target | $\mathbf{2 0 1 5 - 2 0 1 9}$ <br> Mean | Conceptual <br> BMP <br> Reductions | \%Target Reduction |
|  | 8,977 | 8,295 | 260 | 100 |
| Hudson Bayou | 3,936 | 4,142 | 128 | 62 |
| Phillippi Creek | 64,377 | 69,082 | 496 | 10 |

${ }^{1}$ future discussion will be required with County to consider the removal of TP from scoring
The progress towards achieving the Strategic LOS only accounts for the stormwater management conceptual BMPs proposed by this project. Additional progress towards meeting the loading targets may be gained through additional non-stormwater recommendations, i.e., septic-to-sewer conversions and wastewater treatment facility upgrades, additional sediment removal, and non-structural recommendations.

### 5.0 Conclusion

To improve the health of the Sarasota Bay Watershed, conceptual BMPs were identified from a menu of improvement strategies with varying levels of flood protection and pollutant load reduction benefits as determined through the technical ICPR flood modeling and BMP Trains pollutant removal efficiency modeling. The original intent was to propose up to 10 conceptual BMP concepts for the 18 PMAs, however 22 BMPs were developed for 13 PMAs, with a cost totaling \$22,780,789.

The Conceptual BMP Cost-Benefit Matrix found in Appendix A, Exhibit 9, contains a list of all Priority Management Areas and the following information for each proposed conceptual BMPs:

- Construction cost estimates
- Flooding LOS deficiency removal
- Pollutant removal efficiency
- Shoreline Restoration benefits

Additionally, several BMPs can be used as a unit cost basis when opportunities arise to replicate the improvement strategy throughout the County, through Programmatic Maintenance. For instance, specific BMPs in the US41 \& Highland PMA (a rehabilitation of an existing sand filtration system to be replaced with bio absorption material); the unit costs and cost-benefit results of that BMP can be used to determine applicability of that solution throughout the county. Another example of a BMP that can be replicated throughout the County is the rehabilitation of existing stormwater ponds (sediment removal for capacity). The goal is to ensure that the plan provides site-specific improvement strategies that can be implemented through the County, with the unit costs and cost-benefit of those improvements able to be considered, providing the County with many options for improvements.

Each conceptual BMP was scored using traditional cost per benefit over the 20-year expected life of the BMP according to SWFWMD CFI levels 0-25. A score for resiliency between 0-5 was determined for resilient, somewhat resilient and affected by sea level rise as outlined in the Community Rating System NOAA 2100 Intermediate-High projection for sea level rise. Table 13 contains the individual conceptual BMP scoring as well as the combined score if there is more than one BMP in a Priority Management Area.

| Conceptual BMP Cost-Benefit Scoring |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Priority Management Area | Conceptual BMP | Conceptual Plan Cost Estimate ${ }^{1}$ | Shoreline Restoration 2 | TN <br> Remove <br> $d^{2}$ | TP <br> Removed <br> 2 | Cost per Acre ${ }^{3}$ | Flood ${ }^{4}$ | Resiliency ${ }^{5}$ | TOTAL |
| Tri Par | DRY RETENTION AREA; NUTRIENT SEPARATING BAFFLE BOX | \$ 3,153,810 | 0 | 25 | 25 | 25 | 20 | 5 | 100 |
| Tri Par | LINEAR TREATMENT AREA; FLOODPLAIN BENCH | \$ 633,957 | 0 | 25 | 25 | 25 | 0 | 5 | 80 |
|  | Combined ${ }^{6}$ | \$ 3,787,767 | 0 | 25 | 25 | 25 | 20 | 5 | 100 |
| US41 \& Highland | CONVERT EXISTING UNDERGROUND TREATMENT MEDIA FROM SAND TO BAM | \$ 21,400 | 0 | 25 | 25 | 15 | 0 | 5 | 70 |
| MLK \& Orange | STORM PIPE IMPROVEMENTS | \$ 1,242,021 | 0 | 5 | 5 | 10 | 20 | 5 | 45 |
| US41 \& 10th St | CONVERT EXISTING PARKING SPOTS TO PERVIOUS PAVMENT | \$ 1,485,640 | 0 | 0 | 5 | 0 | 0 | 0 | 5 |
| US41 \& 10th St | LOW FLOW WEIRS WITH SIDE-BANK FILTRATION | \$ 1,212,640 | 0 | 25 | 25 | 25 | 0 | 5 | 80 |
| US41 \& 10th St | SEDIMENT SUMP | \$ 274,346 | 0 | 15 | 25 | 15 | 0 | 5 | 60 |
|  | Combined | \$ 2,972,626 | 0 | 25 | 25 | 25 | 0 | 5 | 80 |
| Bee Ridge \& Beneva | FOREST LAKES POND SEDIMENT REMOVAL \& BEE MATS; NUTRIENT SEPARATING BAFFLE BOX | \$ 858,535 | 0 | 25 | 25 | 25 | 0 | 5 | 80 |
| Bee Ridge \& Beneva | LOW FLOW WEIRS WITH SIDE-BANK FILTRATION | \$ 1,917,525 | 0 | 15 | 25 | 25 | 0 | 5 | 70 |
|  | Combined | \$ 2,776,060 | 0 | 25 | 25 | 25 | 0 | 5 | 80 |
| Tuttle Circle | TANGLEWOOD CONVERSION OF CANAL TO WET DETENTION WITH BEE MATS | \$ 84,259 | 0 | 25 | 25 | 25 | 0 | 3 | 78 |
| Tuttle Circle | CONVERSION OF BLOSSOM BROOK CANAL TO WET DETENTION IN SERIES | \$ 1,882,305 | 0 | 25 | 25 | 25 | 0 | 3 | 78 |
| Tuttle Circle | PHILLIPPI CREEK DAM REMOVAL; SEDIMENT REMOVAL; SEDIMENT SUMP INSTALLATION | \$ 1,046,663 | 0 | 25 | 25 | 25 | 0 | 5 | 80 |
|  | Combined | \$ 3,013,227 | 0 | 25 | 25 | 25 | 0 | 5 | 80 |
| Pinecraft | CONVERT EXISTING WET POND TO DRY POND | \$ 267,725 | 0 | 25 | 25 | 25 | 0 | 0 | 75 |
| Pinecraft | DENITRIFICATION TRENCH - ALOHA MOBILE HOME PARK | \$ 125,840 | 0 | 25 | 25 | 25 | 0 | 5 | 80 |
| Pinecraft | STREAM RESTORATION PHILLIPPI CREEEK | \$ 701,393 | 25 | 0 | 0 | 0 | 0 | 5 | 30 |
|  | Combined | \$ 1,094,958 | 25 | 25 | 25 | 25 | 0 | 5 | 105 |
| SMH \& US41 | NUTRIENT SEPARATING BAFFLE BOX; STORM PIPE \& CHECK VALVES | \$ 2,463,173 | 0 | 5 | 5 | 10 | 5 | 5 | 30 |
| Downtown | NUTRIENT SEPARATING BAFFLE BOX \& UPFLOW FILTER WITH BAM; DENITRIFICATION TRENCHES | \$ 1,104,700 | 0 | 0 | 0 | 25 | 0 | 3 | 28 |
| Bee Ridge \& US41 | STORM PIPE IMPROVEMENTS; NUTRIENT SEPARATING BAFFLE BOX | \$ 1,475,894 | 0 | 5 | 5 | 25 | 15 | 3 | 53 |
| Bee Ridge \& US41 | CONVERT EXISTING PARKING SPOTS TO PERVIOUS PAVEMENT | \$ 2,218,339 | 0 | 0 | 0 | 0 | 0 | 5 | 5 |
|  | Combined ${ }^{6}$ | \$ 3,694,233 | 0 | 5 | 5 | 25 | 15 | 5 | 55 |
| Stickney Point | STORM PIPE CHECK VALVES | \$ 186,115 | 0 | 0 | 0 | 0 | 15 | 5 | 20 |
| US41 \& Proctor | THE LANDINGS POND SEDIMENT REMOVAL \& BEE MATS; NUTRIENT SEPARATING BAFFLE BOX | \$ 328,676 | 0 | 25 | 25 | 25 | 0 | 3 | 78 |
| Faubel Street | STORM STRUCTURE INSTALLATION; SALT WATER MARSH REHABILITATION | \$ 37,334 | 0 | 0 | 0 | 25 | 15 | 0 | 40 |

1) Conceptual Plan Cost Estimate does not include O\&M costs; O\&M can be found on Project Sheets
2) Methodology adapted from proposed SWFWMD FY2023 CFI - Water Quality Projects
3) Methodology adapted from proposed SWFWMD FY2023 CFI - Natural Systems Restoration
4) Methodology adapted from proposed SWFWMD FY2023 CFI - Flood Protectio
5) Determined whether project will be inundated by 2100 projected SLR
6) Score for combined BMP concepts assigned to highest individual group

## References

Atkins, 2020, Phillippi Creek Verification Report (ICPR v3 to ICPR v4), Sarasota County, 2020
BMP Trains, stars.library.ucf.edu/bmptrains.com
FEMA Benefit-Cost Analysis Tool, fema.gov/grants/guidance-tools/benefit-cost-analysis.com
Gulf Coast Community Foundation, 2019, Community Playbook for Healthy Waterways
Janicki Environmental, 2021a. Final Technical Memorandum, Sarasota Bay Watershed Management Plan BMP Analysis, Surface Water Resource Assessment, Task 3.4 Spatially Integrated Model for Pollutant Loading Estimates (SIMPLE), Sarasota County \& SWFWMD

Janicki Environmental, 2021b. Final Technical Memorandum, Sarasota Bay Watershed Management Plan BMP Analysis, Surface Water Resource Assessment, Task 3.5 Identification of Nutrient Loading Targets, Sarasota County \& SWFWMD

Janicki Environmental, 2021c. Final Technical Memorandum, Sarasota Bay Watershed Management Plan BMP Analysis, Surface Water Resource Assessment, Task 3.6 Identification of Nutrient Loading Levels of Service, Sarasota County \& SWFWMD

Jones Edmunds, 2019, Future Conditions Floodplain Analysis, Sarasota County
Jones Edmunds, 2010, Roberts Bay North WMP, Sarasota County
Jones Edmunds, 2012, Sarasota Bay Water Quality Management Plan, Sarasota County
Kimley Horn and Associates, 2021, Harbor Acres Alternatives Analysis, Sarasota County
Kimley Horn and Associates, 2020, FDOT Gulfstream Ponds FPID 438137-1-52-01, FDOT Stantec, 2018
Stantec, 2018, Cost Benefit Analysis for Stormwater Projects, Sarasota County
Stantec, 2020, Sarasota Bay Watershed Management Plan BMP Analysis, Model Migration Report, Sarasota County \& SWFWMD

Stantec, 2020, Whitaker Bayou Analysis, Sarasota County
SWFWMD, FY2022 \& FY2023, Cooperative Funding Initiative Guidelines
SWFWMD, 2019, Watershed Management Program Guidelines and Specifications
SWFWMD, 2019, Watershed Management Plan Modernization Pilot Study
Weiler, 2019, Dam Removal Feasibility Report, Sarasota County
arms.scgov.net/datawise/xdw2/index.php
sarco.maps.arcgis.com
redvalve.com/tideflex
oldcastlerinfrastructure.com/brands/nutrient-seperating-baffle-box-nsbb.com

## Appendices

Appendix A - Exhibits 1 through 9
Appendix B - Conceptual BMP Project Sheets
Appendix C - The Sarasota County Sediment Management Project 1: Phillippi Creek Barrier Removal Feasibility Study Final Report by Weiler Engineering Corporation, dated January 2019.

Appendix D - Harbor Acres Alternatives Analysis Report by Kimley Horn and Associates, dated 2021.
Appendix E - Whitaker Bayou Analysis Report by Stantec Consulting Services Inc., dated 2020
Appendix F - The Cost Benefit Analysis for Stormwater Projects Report by Stantec Consulting Services Inc., dated 2018.

Appendix G - The Future Conditions Floodplain Analysis Report by Jones Edmunds, dated 2019.

Appendix A
Exhibits









| Conceptual BMP Cost-Benefit Matrix |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Project Management Area | Conceptual BMP | Conceptual Plan Cost Estimate ${ }^{1}$ |  | Initial TN Removed during construction (lbs) | TN Removed (lbs/yr) | Cost TN (\$/1b/yr) | Initial TP Removed during construction (lbs) | $\begin{array}{c\|} \text { Tp } \\ \text { Removed } \\ (\text { (Ibs/yr) } \end{array}$ | Cost TP $(\$ / 1 / y r)$ <br> ( $\$ / \mathrm{lb} / \mathrm{yr}$ ) | $\begin{gathered} \text { Contributing } \\ \text { Area }(\mathrm{ac}) \end{gathered}$ | Linear Feet Road Removed from 100Yr Flood Risk | $\left\lvert\, \begin{gathered} \text { Structures Removed } \\ \text { From 1000r Flood } \\ \text { Risk } \end{gathered}\right.$ | Linear Feet Stream Restoration | Flood Cost <br>  Benefit Ratio ${ }^{2}$ | Cost Per Acre | Cost Per Linear Foot Shoreline Restoration | $\begin{gathered} \text { TN Removed } \\ (\text { Cost/b. } / 2 \text { Oyr })^{3} \end{gathered}$ | TP Removed (Cost/lb./20yr) |
| Tripar | DRY RETENTION AREA; NUTRIENT SEPARATING BAFFLE BOX | \$ | 3,153,810 | N/A | 5,465 | \$ 577 | N/A | 912 | \$ 3,458 | 3,502 | N/A | 12 | N/A |  | \$ 901 | N/A | \$ 28.85 | \$ 172.91 |
| Tripar | LINear treatment area; Floodplain bench | \$ | 633,957 | N/A | 1,154 | 549 | N/A | 251 | 2,526 | 1,281 | 1,018 | N/A | N/A |  | 494.89 | N/A | 27.47 | 126.29 |
|  | Combined | \$ | 3,787,767 | N/A | 6,619 | 572 | N/A | 1,163 | 3,257 | 4,783 | 1,018 | 12 | N/A | 1.08 | 791.92 | N/A | 28.61 | \$ $\quad 162.84$ |
| US41 \& Highland | $\begin{gathered} \hline \text { CONVERT EXISTING UNDERGROUND TREATMENT } \\ \text { MEDIA FROM SANDTO BAM } \\ \hline \end{gathered}$ | \$ | 21,400 | N/A | 14.9 | 1,436 | N/A | 2.7 | \$ 7,926 | 3 | N/A | N/A | N/A | N/A | \$ 6,993.46 | N/A | 71.81 | \$ 396.30 |
| MLK \& Orange | STORM PPE IMPROVEMENTS; NUTRRIENT SEPARATING BAFFLE BOX | \$ | 1,242,021 | N/A | 105.7 | \$ 11,750 | N/A | 13.2 | \$ 94,092 | 22 | 292 | 5 | N/A | 0.94 | \$ 56,123.84 | N/A | \$ 587.52 | \$ 4,704.62 |
| US41 \& 10th st | CONVERT EXISTING PARKING SPOTS TO PERVIOUS PAVMENT | \$ | 1,485,640 | N/A | 49.82 | 29,820 | N/A | 6.56 | \$ 226,470 | 3.5 | N/A | N/A | N/A | N/A | \$ 425,684,81 | N/A | \$ 1,491.01 | \$ 11,323.48 |
| us41 \& 10th St | Low flow werrs with side-bank flitation | \$ | 1,212,640 | N/A | 619.9 | 1,956 | N/A | 149.5 | \$ 8,111 | 239 | N/A | N/A | N/A | N/A | \$ $\quad 5,073.81$ | N/A | \$ 97.81 | \$ 405.57 |
| us41 \& 10th St | SEDIMENT SUMP | \$ | 274,346 | 1,380 | 40.77 | 6,729 | 665 | 58.75 | \$ $\quad 4,670$ | 41 | N/A | N/A | N/A | N/A | \$ $\quad 6,620.33$ | N/A | \$ 124.96 | \$ 149.10 |
|  | Combined | \$ | 2,972,626 | 1,380 | 710.49 | 4,184 | 665 | 215 | \$ $\quad 13,838$ | 284 | N/A | N/A | N/A | N/A | \$ 10,469.57 | N/A | \$ 209.20 | \$ 691.92 |
| Bee Ridge \& Beneva | FOREST LAKES POND SEDIMENT REMOVAL \& BEE MATS; NUTRIENT SEPARATING BAFFLE BOX | \$ | 858,535 | 87,110 | 526 | \$ 1,632 | 41,946 | 126 | \$ 6,814 | 140 | N/A | N/A | N/A | N/A | \$ 6,149.96 | N/A | 81.61 | \$ 340.69 |
| Bee Ridge \& Beneva | LOW FLOW WERRS WITH SIDE-BANK FILTRATION | \$ | 1,917,525 | N/A | 382.2 | 5,017 | N/A | 102.9 | \$ $\quad 18,635$ | 89 | N/A | N/A | N/A | N/A | 21,618.09 | N/A | \$ 250.85 | \$ 931.74 |
|  | Combined | \$ | 2,776,060 | 87,110 | 908.2 | 3,057 | 41,946 | 228.9 | \$ $\quad 12,128$ | 228 | N/A | N/A | N/A | N/A | \$ 12,159.70 | N/A | \$ 152.83 | \$ $\quad 606.39$ |
| Tuttle Circle | TANGLEWOOD CONVERSION OF CANAL TO WET DETENTION WITH BEE MATS | \$ | 84,259 | N/A | 249 | \$ 338 | N/A | 67 | \$ 1,258 | 104 | N/A | N/A | N/A | N/A | \$ 814.10 | N/A | 16.92 | 62.88 |
| Tuttle Circle | CONVERSION OF BLOSSOM BROOK CANAL TO WET DETENTION IN SERIES | \$ | 1,882,305 | N/A | 1,865 | \$ 1,009 | N/A | 434 | \$ $\quad 4,337$ | 549 | N/A | N/A | N/A | N/A | \$ $\quad 3,427.36$ | N/A | 50.46 | \$ $\quad 216.86$ |
| Tuttle Circle | PHILLIPII CREEK DAM REMOVAL; SEDIMENT REMOVAL; SEDIMENT SUMP INSTALLATION | \$ | 1,046,663 | 36,107 | 160 | 6,542 | 17,387 | 64 | \$ 16,354 | 31,210 | N/A | N/A | N/A | N/A | 33.54 | N/A | 26.63 | 56.07 |
|  | Combined | \$ | 3,013,227 | 36,107 | 2,274 | 1,325 | 17,387 | 565 | \$ 5,333 | ${ }^{31,863}$ | N/A | N/A | N/A | N/A | 94.57 | N/A | 66.25 | \$ ${ }^{266.66}$ |
| Pinecraft | CONVERT EXIITING WET POND TO DRY POND | \$ | 267,725 | N/A | 185.5 | 1,443 | N/A | 33.7 | \$ 7,944 | 34 | N/A | N/A | N/A | N/A | \$ 7,851.17 | N/A | 72.16 | \$ 397.22 |
| Pinecraft | DENITRIFICATION TRENCH-ALOHA MOBILE HOME <br> PARK | \$ | 125,840 | N/A | 297.9 | \$ 422 | N/A | 38.9 | \$ 3,235 | 12 | N/A | N/A | N/A | N/A | \$ 10,646.36 | N/A | \$ 21.12 | \$ 161.75 |
| Pinecraft | STREAM RESTORATION PHILLIPPI CREEEK | \$ | 701,393 | N/A | 2,000 | N/A | N/A | \$ 351 | N/A | N/A |
|  | Combined | \$ | 1,094,958 | N/A | 483.4 | \$ 2,265 | N/A | ${ }^{72.6}$ | \$ 15,082 | 46 | N/A | N/A | 2,000 | N/A | N/A | N/A | \$ $\quad 113.26$ | \$ $\quad 754.10$ |
| SMH \& US41 |  | \$ | 2,463,173 | N/A | 111.5 | \$ 22,091 | N/A | 14.3 | \$ 172,250 | 154 | 5,500 | 41 | N/A | 0.5 | \$ 16,007.10 | N/A | \$ 1,104.56 | \$ 8,612.49 |
| Downtown | NUTRIENT SEPARATING BAFFLE BOX \& UPFLOW FILTER WITH BAM; DENITRIFICATION TRENCHES | \$ | 1,104,700 | N/A | 60.5 | \$ 18,260 | N/A | 10 | \$ 110,470 | 27 | N/A | N/A | N/A | N/A | \$ 41,483,29 | N/A | \$ 912.98 | \$ 5,523.50 |
| Bee Ridge \& US41 | STORM PIPE IMPROVEMENTS; NUTRIENT SEPARATING BAFFLE BOX | \$ | 1,475,894 | N/A | 147.1 | \$ 10,033 | N/A | 18.4 | \$ 80,212 | 89 | 220 | 0 | N/A | 0.22 | \$ 16,540.34 | N/A | \$ 501.66 | \$ 4,010.58 |
| Bee Ridge \& Us41 | CONVERT EXISTING PARKING SPOTS TO PERVIOUS PAVEMENT | \$ | 2,218,339 | N/A | 57.1 | \$ 38,850 | N/A | 7.5 | \$ 295,779 | 5.2 | N/A | N/A | N/A | N/A | \$ 428,250.77 | N/A | \$ 1,942.50 | \$ 14,788.93 |
|  | Combined | \$ | 3,694,233 | N/A | 204.2 | \$ 18,091 | N/A | 25.9 | \$ 142,634 | 94 | N/A | N/A | N/A | 0.22 | \$ $\quad 39,129.68$ | N/A | \$ 904.56 | \$ 7,131.72 |
| Stickney Point | Storm Pipe check valves | \$ | 186,115 | N/A | 225 | 0 | N/A | 0.21 | N/A | N/A | N/A | N/A |
| US41 \& Proctor | THE LANDINGS POND SEDIMENT REMOVAL \& BEE MATS; NUTRIENT SEPARATING BAFFLE BOX | \$ | 328,676 | 12,239 | 506 | \$ 650 | 5,893 | 102 | \$ 3,222 | 126 | N/A | N/A | N/A | N/A | \$ 2,605.44 | N/A | \$ 14.70 | \$ 41.43 |
| Faubel Street | STORM STRUCTURE INSTALLATION; SALT WATER MARSH REHABILITATION | \$ | 37,334 | N/A | N/A | N/A | N/A | N/A | N/A | 2.8 | 400 | N/A |
|  |  | 5 | 22,722,289 | ¢ 136,836 | 11,997.89 |  | 65,891 | 2.412 |  |  | 7,435 | 58 | 2,000 |  |  |  |  |  |

[^0]Sarasota Bay Watershed

Appendix B
Conceptual BMP Project Sheets

## Tri-Par - Whitaker Bayou



Project Management Area
The Tri-Par Area has historic long-standing flooding located within Whitaker Bayou basin at two main confluences (Canal/Trib A and Trib A/B) The area includes high nutrient loading due to the age and intensity of land-use (commercial/industrial).

## Conceptual BMP

- Linear treatment system channel retrofit with floodplain bench and weirs for storage and pollutant removal.
- Large dry retention area to provide floodplain storage
- Nutrient separating baffle box at retention area inflow will capture sediment, vegetation, and trash

Score 100
Cost \$3,787,767

## Benefits

- Annual TN removal 6,619 lbs
- \$28/lb TN removed over 20 year life expectancy of BMP
- 12 structures removed from 100yr storm risk
- 1018 linear feet of roadway removed from LOS Deficiency including 416 feet of evacuation route
- Flood Cost-Benefit Ratio = 1.08
- Resilient in NOAA 2100 future condition



## US-41 and Highland - Coastal



Project Management Area
Older, highly impervious corridor representative of US41 development throughout watershed with little treatment and high nutrient loading. This section has a roadway Flood LOS deficiency.

## Conceptual BMP

- Opportunity to convert commonly found existing sand filters in urban commercial development to biosorption activated media (BAM) for increased nutrient removal.
- Modification of existing underground treatment facility can be replicated with similar cost efficiency.

Score 70
Cost \$21,400

## Benefits

- More than 4 times more TN removal with BAM vs. current sand filter media
- $14.9 \mathrm{lb} / \mathrm{yr}$ TN removed annually
- \$72/yr TN removed over 20 year life expectancy of filter system
- Provides Stormwater Environmental Utility with unit cost of retrofitting existing stormwater infrastructure with more efficient media for nitrogen removal
- Resilient in NOAA 2100 future condition

PROJECT MANAGEMENT AREA: US-41 \& HIGHLAND
CONCEPTUAL PLAN COST ESTIMATE - CONVERT EXISTING UNDERGROUND TREATMENT MEDIA FROM
SAND TO BAM


Martin Luther King Jr. Way and Orange Ave. - Whitaker Bayou


## Project Management Area

Contributing area to Whitaker Bayou Tributary C with history of structure flooding ( $\sim 6$ ) and no water quality management systems. Nutrient loading is primarily due to the age and intensity of land-use as well as land-use types (residential).

Conceptual BMP

- Upsize capacity of existing 2400 linear feet of stormwater pipes shown in yellow
- Nutrient Separating Baffle Box will capture sediment, vegetation, and trash at large outfall before discharging to Whitaker Bayou


## Score 45

Cost \$1,242,021
Benefits

- Annual TN Removal $105.7 \mathrm{lb} / \mathrm{yr}$
- $\$ 588 / / \mathrm{b}$ TN reduction over the 20 year expected life of the project
- 5 structures removed from 100 yr storm risk
- 292 linear feet of roadway removed from LOS Deficiency
- Benefit-Cost Ratio $=0.94$

| PROJECT MANAGEMENT AREA: MARTIN LUTHER KING JR \& ORANGE AVE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CONCEPTUAL PLAN COST ESTIMATE - STORM PIPE IMPROVEMENTS |  |  |  |  |  |  |
| DESCRIPTION | UNIT | QUANTITY |  | t COST |  | COST |
| Nutrient Separating Baffle Box - 54" Pipe | EA | 1 | \$ | 130,000 | \$ | 130,000 |
| Storm Pipe - 42" RCP | LF | 2,390 | \$ | 148 | \$ | 353,720 |
| Storm Structures | EA | 14 | \$ | 8,200 | \$ | 114,800 |
| Storm Structure - MES - 42" | EA | 2 | \$ | 5,500 | \$ | 11,000 |
| Subsoil Excavation | CY | 8000 | \$ | 6 | \$ | 48,000 |
| Clearing and Grubbing | AC | 0.20 | \$ | 18,800 | \$ | 3,760 |
| Silt Fence | LF | 5019 | \$ | 2 | \$ | 10,038 |
| Floating Turbidity Barrier | LF | 100 | \$ | 9 | \$ | 900 |
| Inlet Protection | EA | 30 | \$ | 140 | \$ | 4,200 |
| Roadway Restoration | LS | 1 | \$ | 125,000 | \$ | 125,000 |
| Materials Subtotal |  |  |  |  | \$ | 801,418 |
| Temporary Traffic Control (2.5\%) |  |  |  |  | \$ | 20,035 |
| Mobilization (10\%) |  |  |  |  | \$ | 80,142 |
| Contingency (30\%) |  |  |  |  | \$ | 240,425 |
| Construction Total |  |  |  |  | \$ | 340,603 |
| Design and Permitting |  |  |  |  | \$ | 100,000 |
| Annual Operations \& Maintenance Cost |  |  |  |  | \$ | 1,000 |
| CONCEPTUAL PLAN COST <br> Note: Percentages based on Materials Subtotal |  |  |  |  | \$ | 1,243,021 |
|  |  |  |  |  |  |  |

US-41 and 10th Street - Coastal


Project Management Area
A large part of the intensely urbanized downtown core drains directly into the bay at the $10^{\text {th }} \mathrm{St}$. boat ramp. Largely untreated stormwater with a few BMPs is found in this area. There are flood LOS deficiencies in part of the roadways.

## Conceptual BMP

- A sediment sump (pink) will capture sediment and nutrients prior to discharge into the Bay.
- Existing open conveyance will be improved with low flow weirs and side-bank BAM filter
- LID retrofit of existing impervious parking area

Score 80
Cost \$2,972,626

## Benefits

- Annual TN Removal = $710 \mathrm{lb} / \mathrm{yr}$
- $\$ 209 / l b$ TN over 20 year expected life of the three combined BMPs
- Resilient in NOAA 2100 future condition
- No feasible flood protection project was identified for this area due to lack of available land.



## Bee Ridge Rd. and Beneva Rd. - Phillippi Creek



## Project Management Area

Bee Ridge Road is an evacuation route with existing street flooding. The stormwater ponds in the Forest Lakes subdivision have experienced significant sediment loading throughout the years.

## Conceptual BMP

- Low flow weirs and side-bank filtration with BAM to maximize removal in existing linear system (yellow)
- Nutrient separating baffle box will reduce sediment, vegetation, and trash from entering the ponds
- Sediment removal program to restore existing stormwater facility to permitted capability
- Floating wetlands will remove nutrients in ponds

Cost \$2,776,060

## Benefits

- Annual TN Removal = $908 \mathrm{lb} / \mathrm{yr}$
- \$153/lb TN removed over 20 year life expectancy of improvements
- Reduced sedimentation
- Resilient in NOAA 2100 future condition
- No flood reduction concept feasible

PROJECT MANAGEMENT AREA: BEE RIDGE ROAD AND BENEVA ROAD
CONCEPTUAL PLAN COST ESTIMATE - FOREST LAKES POND SEDIMENT REMOVAL \& BEE MATS; NUTRIENT SEPARATING BAFFLE BOX

| DESCRIPTION | UNIT | QUANTITY | UNIT COST | TOTAL COST |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nutrient Separating Baffle Box - 48" Pipe | EA | 1 | \$ 126,000.00 | \$ | 126,000 |
| Storm Pipe - 48" RCP | LF | 16 | \$ 230 | \$ | 3,680 |
| Subsoil Excavation | CY | 48,400 | \$ 6 | \$ | 290,400 |
| Floating Bee Mats | SY | 2400 | \$ 47 | \$ | 112,800 |
| Silt Fence | LF | 1,000 | \$ 2 | \$ | 2,000 |
| Floating Turbidity Barrier | LF | 90 | \$ 9 | \$ | 810 |
| Materials Subtotal |  |  |  | \$ | 535,690 |
| Temporary Traffic Control (5\%) |  |  |  | \$ | 26,785 |
| Staging Area (5\%) |  |  |  | \$ | 26,785 |
| Mobilization (10\%) |  |  |  | \$ | 53,569 |
| Contingency (30\%) |  |  |  | \$ | 160,707 |
| Construction Total |  |  |  | \$ | 803,535 |
| Design and Permitting |  |  |  | \$ | 55,000 |
| Annual Operations \& Maintenance Cost |  |  |  | \$ | 3,500 |
| CONCEPTUAL PLAN COST |  |  |  | \$ | 862,035 |


| DESCRIPTION | UNIT | QUANTITY | UNIT COST |  | TOTAL COST |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Regular Excavation | CY | 3800 | \$ | 7 | \$ | 26,600 |
| Embankment | CY | 780 | \$ | 9 | \$ | 7,020 |
| underdrain pipe -6" | LF | 6,000 | \$ | 90 | \$ | 540,000 |
| Bedding Stone | TN | 1211 | \$ | 130 | \$ | 157,430 |
| Biosorption Activated Media | CY | 2,220 | \$ | 200 | \$ | 444,000 |
| Concrete weir - form and pour in place | CY | 40 | \$ | 900 | \$ | 36,000 |
| Rip-Rap | TN | 80 | \$ | 120 | \$ | 9,600 |
| Sod | SY | 4000 | \$ | 2 | \$ | 8,000 |
| silt fence | LF | 6,800 | \$ | 2 | \$ | 13,600 |
| floating turbidity barrier | LF | 300 | \$ | 9 | \$ | 2,700 |
| Materials Subtotal |  |  |  |  | \$ | 1,218,350 |
| Temporary Traffic Control (5\%) |  |  |  |  | \$ | 60,918 |
| Staging Area (5\%) |  |  |  |  | \$ | 60,918 |
| Mobilization (10\%) |  |  |  |  | \$ | 121,835 |
| Contingency (30\%) |  |  |  |  | \$ | 365,505 |
| Construction Total |  |  |  |  | \$ | 1,827,525 |
| Design and Permitting |  |  |  |  | \$ | 90,000 |
| Annual Operations \& Maintenance Cost |  |  |  |  | \$ | 4,000 |
| CONCEPTUAL PLAN COST <br> Note: Percentages based on Materials Subtotal |  |  |  |  |  | 1,921,525 |

## Tuttle Circle - Phillippi Creek



Project Management Area
This area was ditched and drained for historical agricultural use with a salinity dam placed in Phillippi Creek. In the 1950's, it was converted to single family residential and today has significant sediment build up and direct discharge of stormwater without treatment to tidal systems resulting in significant nutrient loading to the Creek.
Conceptual BMP

- Removal of historic dam (yellow), accumulated sediment (orange) and installation of a sediment sump (green) to capture future sediment at a central point for maintenance
- Improve quality of drainage ditches with in-line wet detention and side-bank filtration to maximize efficiency (purple); install floating wetlands in ditch

Score 80
Cost \$3,013,227

## Benefits

- Annual TN Removal 2,274 lbs
- \$66/lb TN removed over 20 year life expectancy
- Improve natural systems in Phillippi Creek
- Reduce sediment accumulation within the natural creek system
- Portions of the BMPs will be somewhat affected by the NOAA 2100 sea level rise projection but can be slightly modified with minimal cost.

PROJECT MANAGEMENT AREA: TUITLECIRCLE
CONCEPTUAL PLAN COST ESTIMATE - TANGLEWOOD CONVERSIN OF CANALTO WET DETENTION WITH BEE MATS

| DESCRIPTION | UNIT | QUANTITY | UNIT COST |  | TOTAL COST |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Subsoil Excavation | CY | 1,100 | \$ | 6 | \$ | 6,600 |
| Concrete weir - form and pour in place | CY | 24 | \$ | 900 | \$ | 21,600 |
| Rip Rap | TN | 45 | \$ | 120 | \$ | 5,400 |
| Floating Bee Mats | SY | 8 | \$ | 47 | \$ | 376 |
| Silt Fence | LF | 750 | \$ | 2 | \$ | 1,500 |
| Floating Turbidity Barrier | LF | 90 | \$ | 9 | \$ | 810 |
| Sod | SY | 250 | \$ | 2 | \$ | 500 |
| Materials Subtotal |  |  |  |  | \$ | 36,786 |
| Temporary Traffic Control (2.5\%) |  |  |  |  | \$ | 920 |
| Staging Area (5\%) |  |  |  |  | \$ | 1,839 |
| Mobilization (10\%) |  |  |  |  | \$ | 3,679 |
| Contingency (30\%) |  |  |  |  | \$ | 11,036 |
| Construction Subtotal |  |  |  |  | \$ | 54,259 |
| Design and Permitting |  |  |  |  | \$ | 30,000 |
| Annual Operations \& Maintenance Cost |  |  |  |  | \$ | 1,000 |
| CONCEPTUAL PLAN COST |  |  |  |  | \$ | 85,259 |

CONCEPTUAL PLAN COST ESTIMATE - CONVERSION OF BLOSSOM BROOK CANALTO WET DETENTION IN SERIES WITH SIDEBANK FILTRATION

| DESCRIPTION | UNIT | QUANTITY | UNIT COST |  | TOTALCOST |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Subsoil Excavation | CY | 1,950 | \$ | 6 | \$ | 11,700 |
| Regular Excavation | CY | 4,250 | \$ | 7 | \$ | 29,750 |
| Embankment | CY | 800 | \$ | 9 | \$ | 7,200 |
| Underdrain-6" | LF | 5,460 | \$ | 90 | \$ | 491,400 |
| Bedding Stone | TN | 1,242 | \$ | 130 | \$ | 161,460 |
| Biosorption Activated Media | CY | 2,630 | \$ | 200 | \$ | 526,000 |
| Sod | SY | 4850 | \$ | 2 | \$ | 9,700 |
| Concrete weir - form and pour in place | CY | 24 | \$ | 900 | \$ | 21,600 |
| Rip Rap | TN | 67 | \$ | 120 | \$ | 8,040 |
| Silt Fence | LF | 11,000 | \$ | 2 | \$ | 22,000 |
| Floating Turbidity Barrier | LF | 180 | \$ | 9 | \$ | 1,620 |
| Materials Subtotal |  |  |  |  |  | 1,249,020 |
| Temporary Traffic Control (2.5\%) |  |  |  |  | \$ | 31,226 |
| Staging Area (5\%) |  |  |  |  | \$ | 62,451 |
| Mobilization (10\%) |  |  |  |  | \$ | 124,902 |
| Contingency (30\%) |  |  |  |  | \$ | 374,706 |
| Construction Total |  |  |  |  |  | 1,842,305 |
| Design and Permitting |  |  |  |  | \$ | 40,000 |
| Annual Operations \& Maintenance Cost |  |  |  |  | \$ | 4,000 |
| CONCEPTUAL PLAN COST |  |  |  |  |  | 1,886,305 |

CONCEPTUAL PLAN COST ESTIMATE - PHILLIPPI CREEK DAM REMOVAL; SEDIMENT REMOVAL; SEDIMENT SUMP INSTALLATION

| DESCRIPTION | UNIT | QUANTITY | UNIT COST | TOTAL COST |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Subsoil Excavation | CY | 9,644 | \$ | \$ | 57,864 |
| Channel Excavation | CY | 10,418 | \$ 46 | \$ | 479,228 |
| Sod | SY | 4855.55556 | \$ | \$ | 9,711 |
| Embankment | CY | 5,000 | \$ | \$ | 45,000 |
| Floating Turbidity Barrier | LF | 600 | \$ | \$ | 5,400 |
| Clearing and Grubbing | AC | 2 | \$ 18,800 | \$ | 32,900 |
| Silt Fence | LF | 850 | \$ | \$ | 1,700 |
| Compost Material | CY | 367 | \$ 18 | \$ | 6,606 |
| Remove Existing Bulkhead | LF | 177 | \$ 350 | \$ | 61,950 |
| Wetland plantings | AC | 0 | \$ 6,000 | \$ | 2,700 |
| Materials Subtotal |  |  |  | \$ | 645,195 |
| Temporary Traffic Control (2.5\%) |  |  |  | \$ | 16,130 |
| Staging Area (5\%) |  |  |  | \$ | 32,260 |
| Mobilization (10\%) |  |  |  | \$ | 64,520 |
| Contingency (30\%) |  |  |  | \$ | 193,559 |
| Construction Total |  |  |  | \$ | 951,663 |
| Design and Permitting |  |  |  | \$ | 95,000 |
| Annual Operations \& Maintenance Cost |  |  |  | \$ | 1,750 |
| CONCEPTUAL PLAN COST <br> Note: Percentages based on Materials Subtotal |  |  |  | \$ 1,048,413 |  |
|  |  |  |  |  |  |

## Pinecraft - Phillippi Creek



Project Management Area
This is the historic headwaters of Phillippi Creek where tidal influence becomes negligible. Significant sediment deposition occurs at Beneva Road Bridge and the Trestle Bridge. Large dense development exists along both sides of the creek with little stormwater treatment.

## Conceptual BMP

- Convert existing wet pond to dry pond with media for higher pollutant removal
- Denitrification wall to intercept groundwater impacted by septic systems in Aloha Mobile Home Park
- Stream restoration along Phillippi Creek
- Sediment removal along creek system

Score 105
Cost \$1,094,958

## Benefits

- Annual TN Removal $484 \mathrm{lb} / \mathrm{yr}$
- \$113/lb TN removed annually assuming 20 year project life expectancy
- 2000 linear feet of shoreline restoration at a cost of \$350 / LF
- Stabilized creek banks will reduce erosion to create more natural system
- Resilient in NOAA 2100 future condition

PROJECT MANAGEMENT AREA: PINECRAFT
CONCEPTUAL PLAN COST ESTIMATE - CONVERT EXISTING WET POND TO DRY POND

| DESCRIPTION | UNIT | QUANTITY | UNIT COST |  | TOTAL COST |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Embankment | CY | 500 | \$ | 9 | \$ | 4,500 |
| Regular Excavation | CY | 250 | \$ | 7 | \$ | 1,750 |
| Storm Structure - Junction Box | EA | 1 | \$ | 5,100 | \$ | 5,100 |
| Storm Pipe - 18" RCP | LF | 80 | \$ | 90 | \$ | 7,200 |
| Biosorption Activated Media | CY | 610 | \$ | 200 | \$ | 122,000 |
| Sod | SY | 1,800 | \$ | 2 | \$ | 3,600 |
| Rip Rap | TN | 10 | \$ | 120 | \$ | 1,200 |
| Silt Fence | LF | 680 | \$ | 2 | \$ | 1,360 |
| Floating Turbidity Barrier | LF | 100 | \$ | 9 | \$ | 900 |
| Materials Subtotal |  |  |  |  | \$ | 147,610 |
| Temporary Traffic Control (2.5\%) |  |  |  |  | \$ | 3,690 |
| Staging Area (5\%) |  |  |  |  | \$ | 7,381 |
| Mobilization (10\%) |  |  |  |  | \$ | 14,761 |
| Contingency (30\%) |  |  |  |  | \$ | 44,283 |
| Construction Total |  |  |  |  | \$ | 217,725 |
| Design and Permitting |  |  |  |  | \$ | 50,000 |
| Annual Operations \& Maintenance Cost |  |  |  |  | \$ | 1,000 |
| CONCEPTUAL PLAN COST |  |  |  |  | \$ | 268,725 |

CONCEPTUAL PLAN COST ESTIMATE - DENITRIFICATION TRENCH - ALOHA MOBILE HOME PARK

| DESCRIPTION | UNIT | QUANTITY | UNIT COST |  | TOTAL COST |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Regular Excavation | CY | 400 | \$ | 7 | \$ | 2,800 |
| Biosorption Activated Media | CY | 220 | \$ | 200 | \$ | 44,000 |
| Silt Fence | LF | 1400 | \$ | 2 | \$ | 2,800 |
| Floating Turbidity Barrier | LF | 40 | \$ | 9 | \$ | 360 |
| Sod | SY | 300 | \$ | 2 | \$ | 600 |
| Materials Subtotal |  |  |  |  | \$ | 50,560 |
| Temporary Traffic Control (5\%) |  |  |  |  | \$ | 2,528 |
| Staging Area (5\%) |  |  |  |  | \$ | 2,528 |
| Mobilization (10\%) |  |  |  |  | \$ | 5,056 |
| Contingency (30\%) |  |  |  |  | \$ | 15,168 |
| Construction Total |  |  |  |  | \$ | 75,840 |
| Design and Permitting |  |  |  |  | \$ | 50,000 |
| Annual Operations \& Maintenance Cost |  |  |  |  | \$ | 1,000 |
| CONCEPTUAL PLAN COST |  |  |  |  | \$ | 126,840 |

CONCEPTUAL PLAN COST ESTIMATE - STREAM RESTORATION

| DESCRIPTION | UNIT | QUANTITY | UNIT COST |  | TOTAL COST |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Regular Excavation | CY | 3,548 | \$ | 7 | \$ | 24,836 |
| Clearing and Grubbing | AC | 1 | \$ | 18,800 | \$ | 21,056 |
| Channel Excavation | CY | 2027 | \$ | 46 | \$ | 93,242 |
| Headwater Channel Construction | LF | 320 | \$ | 120 | \$ | 38,400 |
| Wetland plantings | AC | 0 | \$ | 6,000 | \$ | 1,020 |
| Wood Toe Protection with Soil Lifts | LF | 279 | \$ | 200 | \$ | 55,800 |
| Riparian Revegetation | AC | 3.8 | \$ | 5,000 | \$ | 19,000 |
| Invasive Vegetation Removal | AC | 4 | \$ | 3,000 | \$ | 12,000 |
| Access Trail | LF | 5,000 | \$ | 30 | \$ | 150,000 |
| Floating Turbidity Barrier | LF | 600 | \$ | 9 | \$ | 5,400 |
| Silt Fence | LF | 4700 | \$ | 2 | \$ | 9,400 |
| Materials Subtotal |  |  |  |  | \$ | 384,262 |
| Temporary Traffic Control (5\%) |  |  |  |  | \$ | 19,213 |
| Staging Area (5\%) |  |  |  |  | \$ | 19,213 |
| Mobilization (10\%) |  |  |  |  | \$ | 38,426 |
| Contingency (30\%) |  |  |  |  | \$ | 115,279 |
| Construction Total |  |  |  |  | \$ | 576,393 |
| Design and Permitting |  |  |  |  | \$ | 125,000 |
| Annual Operations \& Maintenance Cost |  |  |  |  | \$ | 5,000 |
| CONCEPTUAL PLAN COST <br> Note: Percentages based on Materials Subtotal |  |  |  |  | \$ | 706,393 |

## Pinecraft - Phillippi Creek Concept Stream Restoration Plan

The segment of Phillippi Creek downstream of the Bahia Vista Street bridge and extending to approximately 600 feet downstream of the Pinecraft Park presents the opportunity to implement stream restoration techniques aimed at improving water quality, enhancing a variety of habitat functions, and improving accessibility to the public. This reach is located at the interface between riverine and tidal influences and exhibits indicators of channel instability and aquatic habitat impairment typical of riverine responses to urban development within the watershed, encroachment of adjacent developments, and historic channelization activities. This segment of creek is characterized as an entrenched, single stage channel without adequate floodplain connectivity, and steep unstable banks dominated by shallow rooted non-native grasses and invasive vegetation. Visual observations noted signs of mass wasting and toe erosion that contribute to decreases in aquatic habitat diversity and elevated sediment loading to the downstream channel and ultimately Sarasota Bay.
This preliminary concept focuses on utilizing available adjacent land within the limited channel right-ofway to improve floodplain connectivity, implementation of bioengineered stabilization to promote long term and resilient bank protection, and replacement of exotic vegetation with native plantings. The proposed laying back of the channel side slopes and creating a bankfull bench will provide increase in flood flow conveyance capacity while improving water quality by reducing erosion potential, providing in-line treatment, and depositional areas for sediment/entrained pollutants. The bankfull benches will be revegetated with appropriate native plants which improve shear strength of the creek bank soils by establishment of deep root masses.
The wood toe protection structure utilizes locally salvaged woody debris that serves to provide long term bank stabilization, acts as a hydraulic energy dissipater, and a supports biological habitat and carbon sources. Typical historic maintenance operations generally focused on removal of woody debris as they were seen as potentially threats to infrastructure. However, absence of woody debris in channels results in the lack of the naturally occurring aquatic habitats critical to a healthy ecosystem. The process of utilizing woody debris in a manner that is embedded into the creek bed or bank such that the wood stays submerged beneath the low water elevation can help to address both the maintenance concerns and habitat improvement goals of restoration projects. The new channel bank above the wood toe will be stabilized with bioengineered soil wraps vegetated with live cuttings (also known as Vegetation Reinforced Soil Slope - VRSS). The use of native live cuttings provides resilient slope stability that gets stronger with time as the root masses mature.
The Headwater channel stabilization structure is a naturalized way to utilize on-site woody debris that would otherwise require haul-off and disposal in a method that provides effective channel grade and bank protection in steep and/or incised channels. The structure can be incredibly effective in channels dominated by sand and/or fine-grained creek beds that have experience erosion or downcutting due to changes in hydrology or lowering of baselevel. The creek bed and banks are reconstructed using a mixture of various size classes of woody debris mixed with native soil, which emulates the naturally occurring subbase in natural channels. The matrix of wood in the subbase provides a "rebar" like effect in improve subsurface soil structure resistant to erosion and scour, which providing improved aquatic habitat.


LEGENO


Phillippi Creek Concept Restoration Plan
The Philippi Creek reach downstream of the Bahia Visla Street bridge and extending to approximately $600^{\prime}$ downstream of the Pinecratt Park presents the opportunity to implement stream restoration lechniques aimed at improving water quality, enhancing a voriety of habitat functions, and improving accessibility to the pubilc. This reach is located of the intertace between riverine and tidal inflivences and extibits symptoms of chaninel instabilify and aquatic habitat impairment fypical of tiverine responses to urban development in the upstream watersheud. encroochment of adjacent developments, and historic channelization activities.


SECTION ONE: The proposed laying bank of the channel side slopes, and adjacent multi-stage wetland provides a diversity of aquatic and riparian habitat, while allowing for settling of entrained sediment and nutrients during high flow. Establishment of native vegetation will improve soil structure stability and restore a variety of terrestrial habitat.


SECTION TWO: The wood toe bioengineered bank protection structure consists of locally salvaged logs and woody debris placed along the unstable right bank. The roughness of the woody debris reduces nearbank shear stress, provides aquatic habitat enhancement, and conducive subbase medium for vegetation establishment. Vegetated soil lifts create a resilient upper bank and the bankfull bench allows for increase in floodplain connectivity and support of native riparian vegetation community.

(1) Stantec


Sarasota Memorial Hospital and US-41 - Coastal


Project Management Area
Existing street flooding in the Harbor Acres subdivision
is a function of tidal influence as well as being
downstream from a dense commercial development with minimal stormwater infrastructure. The drainage within this subbasin drains from the natural ridge (US-41) to the bay through the existing neighborhoods.

## Conceptual BMP Description

- Nutrient Separating Baffle Box will capture sediment, vegetation, and trash at large outfall before it enters the bay
- Outfall pipes will be enlarged resulting in reduced street flooding and removing structures from the horizontal floodplain.
- One-way check valves installed at end of outfall pipes will reduce tidal nuisance flooding.

Score 30
Cost \$2,463,173

## Benefits

- Annual TN Removal $111.5 \mathrm{lb} / \mathrm{yr}$
- \$1,104/lb TN reduction estimated annually over the 20 year expected life of the project
- Elimination 5500 LF of roadway level of service deficiencies (100 year flooding 12" or less for local streets) within Harbor Acres
- Reduction of residential structure flooding from 53 flooded structures to 12 within Harbor Acres.
- Benefit-Cost Ratio 0.50
- Resilient in NOAA 2100 future condition

PROJECT MANAGEMENT AREA: SARASOTA MEMORIAL HOSPITAL \& US 41
CONCEPTUAL PLAN COST ESTIMATE - NUTRIENT SEPARATING BAFFLE BOX; STORM PIPE \& CHECK VALVES

| DESCRIPTION | UNIT | QUANTITY | UNIT COST | TOTAL COST |
| :---: | :---: | :---: | :---: | :---: |
| Nutrient Separating Baffle Box-36" Pipe | EA | 1 | \$122,000.00 | \$122,000 |
| One-Way check valve - 12" pipe | EA | 1 | \$4,000.00 | \$4,000 |
| One-Way check valve - 18" pipe | EA | 1 | \$9,000.00 | \$9,000 |
| One-Way check valve - 24" pipe | EA | 3 | \$14,000.00 | \$42,000 |
| One-Way check valve - 30" pipe | EA | 1 | \$18,000.00 | \$18,000 |
| One-Way check valve - 36" pipe | EA | 4 | \$22,000.00 | \$88,000 |
| One-Way check valve - 42" pipe | EA | 1 | \$32,000.00 | \$32,000 |
| One-Way check valve - 54" pipe | EA | 2 | \$56,000.00 | \$112,000 |
| One-Way check valve - 60" pipe | EA | 1 | \$74,000.00 | \$74,000 |
| Storm Pipe - 12" RCP | LF | 140 | \$97.00 | \$13,580 |
| Storm Pipe - 14" $\times 23$ " ERCP | LF | 175 | \$95.00 | \$16,625 |
| Storm Pipe -19" $\times$ 30" ERCP | LF | 769 | \$109.00 | \$83,821 |
| Storm Pipe - 24" x 38" ERCP | LF | 517 | \$157.00 | \$81,169 |
| Storm Pipe - 34" x 53" ERCP | LF | 1,576 | \$255.00 | \$401,880 |
| Storm Pipe - 29" $\times$ 45" ERCP | LF | 220 | \$184.50 | \$40,590 |
| Storm Pipe - 43" x 68" ERCP | LF | 410 | \$320.00 | \$131,200 |
| Storm Pipe - 48" x 76" ERCP | LF | 250 | \$456.00 | \$114,000 |
| Adjust Storm Structure | EA | 11 | \$750.00 | \$8,250 |
| Landscape/Wall/Infrastructure Replacement Allowance | EA | 11 | \$20,000.00 | \$220,000 |
| Silt Fence | LF | 0 | \$2.00 | \$- |
| Materials Subtotal |  |  |  | \$1,612,115 |
| Temporary Traffic Control (5\%) |  |  |  | \$80,606 |
| Staging Area (5\%) |  |  |  | \$80,606 |
| Contingency (30\%) |  |  |  | \$483,635 |
| Construction Total |  |  |  | \$2,418,173 |
|  |  |  |  |  |
| Design and Permitting |  |  |  | \$45,000 |
| Annual Operations \& Maintenance Cost |  |  |  | \$5,500 |

## CONCEPTUAL PLAN COST

\$2,468,673
Note: Percentages based on Materials Subtotal. Property acquisition costs (if needed) are not included

Sarasota Bay Watershed
Flood and Water Quality Improvements
Downtown - Coastal


Project Management Area
Highly urbanized, mostly impervious area in City of Sarasota that drains directly to Sarasota Bay through more than 20 outfalls. Challenging location due to little available land for traditional stormwater BMP's but ideal for Low Impact Development techniques. Existing ponds are tidally influenced. There is a linear open space buffer that exists between downtown and the bay, however, the open space is used often for civic and public events.

## Conceptual BMP

- Capture first flush of pollution through a nutrient separating baffle box with up-flow filter
- Denitrification trenches with media to remove nutrients from entering the Bay from target outfalls

Score 28
Cost \$1,104,700

## Benefits

- Annual TN Removal $60.5 \mathrm{lb} / \mathrm{yr}$
- \$913/lb TN removed annually over the 20 year life expectancy
- BMPs located underground so they won't impact available open space
- Baffle box will be resilient in 2100 sea level rise projection, but denitrification trench outfall may be submerged

| PROJECT MANAGEMENT AREA: DOWNTOWN |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CONCEPTUAL PLAN COST ESTIMATE - NUTRIENT SEPARATING BAFFLE BOX WITH UPFLOW FILTER AND BAM; DENITRIFICATION TRENCHES |  |  |  |  |  |
| DESCRIPTION | UNIT | QUANTITY | UNIT COST |  | COST |
| Nutrient Separating Baffle Box - 36" Pipe | EA | 1 | \$ 122,000 | \$ | 122,000 |
| Regular Excavation | CY | 1,950 | \$ 7 | \$ | 13,650 |
| Adjust Storm Structure | EA | 6 | \$ 750 | \$ | 4,500 |
| Underdrain-18" | LF | 2,110 | \$ 110 | \$ | 232,100 |
| Biosorption Activated Media | CY | 1,400 | \$ 200 | \$ | 280,000 |
| Silt Fence | LF | 5,000 | \$ 2 | \$ | 10,000 |
| Sod | SY | 16,900 | \$ 2 | \$ | 33,800 |
| Adjust Storm Structure | EA | 5 | \$ 750 | \$ | 3,750 |
| Materials Subtotal |  |  |  | \$ | 699,800 |
| Temporary Traffic Control (5\%) |  |  |  | \$ | 34,990 |
| Staging Area (5\%) |  |  |  | \$ | 34,990 |
| Mobilization (10\%) |  |  |  | \$ | 69,980 |
| Contingency (30\%) |  |  |  | \$ | 209,940 |
| Construction Total |  |  |  | \$ | 1,049,700 |
| Design and Permitting |  |  |  | \$ | 55,000 |
| Annual Operations \& Maintenance Cost |  |  |  | \$ | 2,500 |
| CONCEPTUAL PLAN COST <br> Note: Percentages based on Materials Subtotal |  |  |  |  |  |
|  |  |  |  |  |  |

Bee Ridge Rd. and US-41 - Coastal


Project Management Area
Bee Ridge Road is an evacuation route with existing street flooding. The neighborhoods were built in the 1940's-1960's without extensive stormwater BMP's. The system outfalls have been improved over the years (strainers to catch vegetation), but the improvements are not adequate to remove nutrients from the high pollutant loading area.

## Conceptual BMP

- 2,340 linear feet of pipe increased (yellow)
- Modification of existing stormwater strainer box
- Nutrient Separating Baffile Box (purple)
- 2.45 acres of impervious parking retrofitted with pervious concrete

Score 55
Cost \$3,694,233

## Benefits

- Annual TN Removal $204 \mathrm{lb} / \mathrm{yr}$
- \$502/lb annual TN removed over 20 year life expectancy of baffle box
- 220 linear feet of roadway removed from LOS Deficiency
- Cost-Benefit Ratio $=0.22$
- Portions of the project will be somewhat affected by the NOAA 2100 sea level rise projection but can be slightly modified with minimal cost

Sarasota Bay Watershed
Flood and Water Quality Improvements

| PROJECT MANAGEMENT AREA: BEE RIDGE \& US 41 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CONCEPTUAL PLAN COST ESTIMATE - STORM PIPE IMPROVEMENTS; NUTRIENT SEPARATING BAFFLE BOX |  |  |  |  |  |
| DESCRIPTION | UNIT | QUANTITY | UNIT COST |  | COST |
| Clearing and Grubbing | AC | 1 | \$ 18,800 | \$ | 20,304 |
| Nutrient Separating Baffle Box-54" Pipe | EA | 1 | \$ 130,000 | \$ | 130,000 |
| Storm Pipe - 36" RCP | LF | 260 | \$ 175 | \$ | 45,500 |
| Storm Pipe - 34" x 53" ERCP | LF | 590 | \$ 255 | \$ | 150,450 |
| Storm Pipe - 38" x 60" ERCP | LF | 1,040 | \$ 300 | \$ | 312,000 |
| Storm Pipe - 43" x 68"" RCP | LF | 450 | \$ 320 | \$ | 144,000 |
| Storm Structure - MES - 43" X 68" | EA | 1 | \$ 15,600 | \$ | 15,600 |
| Sod | SY | 16,900 | \$ 2 | \$ | 33,800 |
| Floating Turbidity Barrier | LF | 60 | \$ 9 | \$ | 540 |
| Silt Fence | LF | 4680 | \$ 2 | \$ | 9,360 |
| Inlet Protection | EA | 22 | \$ 140 | \$ | 3,080 |
| Roadway Restoration | LS | 1 | \$ 85,000 | \$ | 85,000 |
| Adjust Storm Structure | EA | 22 | \$ 750 | \$ | 16,500 |
| Materials Subtotal |  |  |  | \$ | 966,134 |
| Temporary Traffic Control (5\%) |  |  |  | \$ | 48,307 |
| Mobilization (10\%) |  |  |  | \$ | 96,613 |
| Contingency (30\%) |  |  |  | \$ | 289,840 |
| Construction Total |  |  |  | \$ | 1,400,894 |
| Design and Permitting |  |  |  | \$ | 75,000 |
| Annual Operations \& Maintenance Cost |  |  |  | \$ | 2,500 |
| CONCEPTUAL PLAN COST |  |  |  | \$ | 1,478,394 |
| CONCEPTUAL PLAN COST ESTIMATE - CONVERT EXISTING PARKING SPOTS TO PERVIOUS PAVEMENT |  |  |  |  |  |
| DESCRIPTION | UNIT | QUANTITY | UNIT COST |  | COST |
| Clearing and Grubbing | AC | 2 | \$ 18,800 | \$ | 46,060 |
| Pervious Concrete - 6" layer | SY | 11,900 | \$ 75 | \$ | 892,500 |
| Bedding Stone | TN | 4100 | \$ 130 | \$ | 533,000 |
| Silt Fence | LF | 1800 | \$ 2 | \$ | 3,600 |
| Inlet Protection | EA | 12 | \$ 140 | \$ | 1,680 |
| Materials Subtotal |  |  |  | \$ | 1,476,840 |
| Temporary Traffic Control (2.5\%) |  |  |  | \$ | 36,921 |
| Staging Area (5\%) |  |  |  | \$ | 73,842 |
| Mobilization (10\%) |  |  |  | \$ | 147,684 |
| Contingency (30\%) |  |  |  | \$ | 443,052 |
| Construction Total |  |  |  | \$ | 2,178,339 |
| Design and Permitting |  |  |  | \$ | 40,000 |
| Annual Operations \& Maintenance Cost |  |  |  | \$ | 2,500 |
| CONCEPTUAL PLAN COST |  |  |  | \$ | 2,220,839 |
| Note: Percentages based on Materials Subtotal |  |  |  |  |  |

Stickney Point - Coastal


## Project Management Area

This neighborhood experiences street flooding associated with stormwater runoff and tidal influences.
The areas have minimal stormwater treatment with most of the drainage discharging directly into the waterway.
There is high pollutant loading from the contributing area and potential for Low Impact Development in redevelopment.

## Conceptual BMP

- Increase outfall pipe size and install one-way storm pipe check valves (yellow/orange)
- Install concrete flume to channel water to outfall pipe (blue)

Score 20 (flood only)
Cost \$186,115

## Benefits

- 225 linear feet of roadway removed from LOS Deficiency
- Cost-Benefit Ratio $=0.21$
- Reduction of high tide flooding events
- Nutrient reduction possible with redevelopment opportunity
- Public-private partnership to incentivize LID in redevelopment at 41 and Stickney Point
- Resilient in NOAA 2100 future condition


US-41 and Proctor Road - Coastal


Project Management Area
This drainage flows through The Landings pond system with little BMPs to outfall directly into the Bay resulting in high nutrient loading. US-41 has experienced flooding in the past. The area is primarily developed residential, although there is a commercial corridor along the arterial roadways.

## Conceptual BMP

- Sediment removal program to restore existing pond to permitted capability
- Nutrient Separating Baffle Box to capture sediment, trash, and vegetation before entering the pond
- Floating Bee Mats


## Score 78

Cost \$328,676

## Benefits

- Annual TN Removal $506 \mathrm{lb} / \mathrm{yr}$
- \$14.70/lb annual TN removed during 20 year expected life of BMP
- Developed cost/benefit for pond restoration that can be transferred to other pond project planning
- Somewhat resilient in NOAA 2100 future condition

PROJECT MANAGEMENT AREA: US41 \& PROCTOR ROAD
CONCEPTUAL PLAN COST ESTIMATE - THE LANDINGS POND SEDIMENT REMOVAL \& BEE MATS;
NUTRIENT SEPARATING BAFFLE BOX

| DESCRIPTION | UNIT | QUANTITY | UNIT COST |  | TOTAL COST |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nutrient Separating Baffle Box - 48" Pipe | EA | 1 | \$ | 126,000 | \$ | 126,000 |
| Storm Pipe - 48" RCP | LF | 20 | \$ | 230 | \$ | 4,600 |
| Subsoil Excavation | CY | 6,800 | \$ | 6 | \$ | 40,800 |
| Floating Bee Mats | SY | 340 | \$ | 47 | \$ | 15,980 |
| Silt Fence | LF | 1000 | \$ | 2 | \$ | 2,000 |
| Floating Turbidity Barrier | LF | 60 | \$ | 9 | \$ | 540 |
| Rip Rap | TN | 50 | \$ | 120 | \$ | 6,000 |
| Materials Subtotal |  |  |  |  | \$ | 195,920 |
| Temporary Traffic Control (5\%) |  |  |  |  | \$ | 9,796 |
| Staging Area (10\%) |  |  |  |  | \$ | 19,592 |
| Mobilization (10\%) |  |  |  |  | \$ | 19,592 |
| Contingency (30\%) |  |  |  |  | \$ | 58,776 |
| Construction Total |  |  |  |  | \$ | 303,676 |
| Design and Permitting |  |  |  |  | \$ | 25,000 |
| Annual Operations \& Maintenance Cost |  |  |  |  | \$ | 3,500 |
| CONCEPTUAL PLAN COST |  |  |  |  | \$ | 332,176 |
| Note: Percentages based on Materials Subtotal |  |  |  |  |  |  |

Faubel Street - Coastal


Project Management Area
Northern end of Siesta Key in the City of Sarasota experiences regular flooding on the roadway during the wet season. The area needs to have upgrades completed to the stormwater system to ensure that the drainage is treated and discharged - instead of attenuating in the roadway and infiltrating the sanitary system infrastructure.

## Conceptual BMP

- Regrading of roadway to allow stormwater to flow through a saltwater marsh area before outfall into the Bay


## Score 40 (flood only)

Cost \$37,334

- Elimination of 400 LF of nuisance street flooding and level of service deficiencies
- Reduction of operation \& maintenance of roadway / stormwater infrastructure
- Reduction of inflow and infiltration of sanitary system infrastructure

PROJECT MANAGEMENT AREA: FAUBEL STREET - SIESTA KEY
CONCEPTUAL PLAN COST ESTIMATE - STORM STRUCTURE INSTALLATION; SALT WATER MARSH REHABILITATION

| DESCRIPTION | UNIT | QUANTITY | UNIT COST |  | TOTAL COST |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clearing and Grubbing | LS | 1 | \$ | 4,000 | \$ | 4,000 |
| Embankment | LS | 1 | \$ | 1,500 | \$ | 1,500 |
| Storm Structures | EA | 1 | \$ | 8,200 | \$ | 8,200 |
| Storm Pipe - 18" RCP | LF | 20 | \$ | 90 | \$ | 1,800 |
| Storm Structure - MES - 18" | EA | 1 | \$ | 1,810 | \$ | 1,810 |
| Wetland plantings | AC | 0.25 | \$ | 6,000 | \$ | 1,500 |
| Materials Subtotal |  |  |  |  | \$ | 18,810 |
| Temporary Traffic Control |  |  |  |  | \$ | 1,000 |
| Mobilization (10\%) |  |  |  |  | \$ | 1,881 |
| Contingency (30\%) |  |  |  |  | \$ | 5,643 |
| Construction Total |  |  |  |  | \$ | 27,334 |
| Design and Permitting |  |  |  |  | \$ | 10,000 |
| Annual Operations \& Maintenance Cost |  |  |  |  | \$ | 1,000 |
| CONCEPTUAL PLAN COST |  |  |  |  | \$ | 38,334 |
| Note: Percentages based on Materials Subtotal |  |  |  |  |  |  |

Appendix C
The Sarasota County Sediment Management Project 1: Phillippi Creek Barrier Removal Feasibility Study Final Report by Weiler Engineering Corporation, dated January 2019.

## Project 1: Phillippi Creek Barrier Removal Feasibility Study

 (Task 4 - Final Report)For

## Sarasota County Sediment Management

Owner:
Sarasota County
1001 Sarasota Center Blvd.
Sarasota, FL 34240

Work Assignment: WA666
Contract 2016-168

## Prepared by



201 WEST MARION AVENUE - SUITE 1306 | PUNTA GORDA | FL 33950 TEL 941-505•1700 | FAX 941-505•1702 | WWW.WEILERENGINEERING.ORG

WEC JOB NO. 17097.001

## TABLE OF CONTENTS

Executive Summary ..... 3
Effects on Water Quality ..... 4
Hydrology and Flood Protection (ICPR) ..... 4
Sediment Analysis/Removal ..... 12
Permitting ..... 24
Construction Cost Estimates ..... 25
Funding Opportunities ..... 27
Measurable Benefits ..... 29
Recommendations ..... 31
Reference ..... 33
Appendix A: Bathymetric Survey ..... 34
Appendix B: Survey with Revised ICPR Overlay ..... 38
Appendix C: Sediment Removal ..... 40
Appendix D: Proposed Sediment Sump ..... 45
Appendix E: Watershed Maximum Stage Comparison (NAVD) ..... 46
Appendix F: ICPR Input ..... 114
Appendix G: Estimate of Engineer's Probable BMP Cost ..... 141
Appendix H: 100-Year Floodplain Property Graphics ..... 144
Appendix I: Water Quality Calculations ..... 178
LIST OF TABLES
Table 1: ICPR Link Maximum Conditions Results (ECM, RECM, PCM 1) ..... 10
Table 2: ICPR Link Maximum Conditions Results (ECM, RECM, PCM 2) ..... 10
Table 3: ICPR Link Maximum Conditions Results (ECM, RECM, PCM 3) ..... 11
Table 4: Average Flow Rate of Downstream Channels. ..... 12
Table 5: Sediment Removal. ..... 17
Table 6: Proposed Sump Sediment Removal. ..... 22
Table 7: Measurable Benefit Ranking ..... 29
Table 8: Alternative Benefit Summary ..... 31
LIST OF FIGURES
Figure 1: ICPR PCM 1 Cross Section Graph ..... 5
Figure 2: ICPR PCM 2 Cross Section Graph ..... 6
Figure 3: ICPR PCM 3 Cross Section Graph ..... 6
Figure 4: ECM Node-Link Schematic ..... 7
Figure 5: RECM Node-Link Schematic ..... 8
Figure 6: PCM 1-3 Node-Link Schematic ..... 9
Figure 7: Path of Main Channel Flow Downstream of Barrier ..... 13
Figure 8: Sediment Deposit Island with White Ibis Presence ..... 14
Figure 9: Stations Map ..... 15
Figure 10: Proposed Sediment Sump Location ..... 18
Figure 11: Existing Conditions - Sediment Sump Area. ..... 19
Figure 12: Preliminary Sediment Sump Design - Plan ..... 20
Figure 13: Hjulstrom Curve. ..... 21
Figure 14: Alternative 3 (Littoral Zone) ..... 23
Figure 15: Cross Section A-A ..... 24
Figure 16: County Parcel 0059-04-0046 ..... 27
Figure 17: Delineation of Natural Systems Restoration Areas ..... 30
Figure 18: Sediment Drying Zone ..... 44

## Exec utive Summary

Approximately 3.6 miles upstream of the mouth of Phillippi Creek lies a historic barrier that was once used as a salinity gate for agricultural purposes. As the agricultural land was converted to residential, the barrier became obsolete and the stop logs were removed, allowing water to flow freely through the area. However, approximately 100 feet of the barrier wall extending from the NW side of Phillippi Creek and six standalone piles that supported the stop logs remain. The remaining concrete structure is causing suspended sediment from upstream sources to deposit both upstream and downstream of the structure. The County has implemented BMPs upstream in an attempt to decrease the amount of suspended sediment entering the bays, most notably instream sediment sumps RB3 and RB5. Both sumps are located at the confluence of two streams in order to maximize the amount of area served. As outlined in the Task 3 Analysis Report, the flows near RB5 (sampling stations RBW-BEN and RBW-F) had a much lower concentration of TSS compared to near the barrier (RBW-SALIN). A portion of the watershed approximately 2,000 acres in size contributes runoff to Phillippi Creek at the location of the barrier without passing through either upstream sediment sump location. Erosion within this area is likely the cause of the elevated TSS counts.

Sarasota County (County), with cooperative funding from Southwest Florida Water Management District (District) has opted to investigate the feasibility of removing the barrier structure. An analysis (Task 3) was completed, which examined the current state of the water quality, environmental conditions, hydrology, and other considerations, and the impact of the barrier on each. A bathymetric survey was completed and the Phillippi Creek Watershed Model (ECM) was updated to accurately depict the barrier and surrounding site conditions to establish a Revised Phillippi Creek Watershed Model (RECM).

This phase of the report (Task 4) analyzed the alternatives for removing the barrier to determine the post construction impacts in the same areas examined during the Task 3 analysis, along with alternatives to facilitate construction of the barrier removal and available funding options.

The three recommended alternatives proposed for construction include: (1) removing the barrier completely along with removing the sediment that has accumulated upstream and downstream of the barrier to restore flow back to the natural conditions, (2) completing all the activities described in alternative 1 with the addition of the construction of a sediment sump to isolate the accumulated sediment into one location that can be easily maintained by the County, and (3) alternative 2, except the potential sediment sump area would be used as a planted littoral zone to restore the natural habitat of this area. Constructability and cost estimates are included within this report, for review.

## Effects on Water Quality and Environmental Conditions

During the Task 3 analysis, the existing water quality of Phillippi Creek was established using data collected from existing water quality stations upstream and downstream of the barrier. It was determined that the barrier may contribute to the degradation of upstream water quality, thus the removal of the barrier should benefit Phillippi Creek. The water quality characteristics analyzed were dissolved oxygen, total nitrogen, total phosphorus, chlorophyll a, and total suspended solids. The data was compared for samples taken on the same day, minimizing the number of variables affecting the results. Over the time period analyzed, each water quality indicator was found to have deteriorated from the upstream sampling points to the sampling point downstream of the barrier. Analyzing the available data, the water quality characteristics of the major influent flows into Phillippi Creek between the upstream and downstream, it was determined that the deterioration of water quality within the observed region of Phillippi Creek was not caused by effluent flows. The data analysis performed shows no direct causation between the decrease in water quality and the presence of the barrier, but it does show that there is a decrease in water quality not due to a polluted influent flow.

Several relevant indicators of environmental conditions and health were analyzed during Task 3 including: bottom hardness, invasive species, and oyster bed habitats. The areas upstream and downstream of the barrier have a uniquely high bottom hardness compared to the surrounding areas of the creek. Since the only unique factor in this area of Phillippi Creek is the barrier, it can be inferred that the barrier is likely causing this phenomenon and its removal should have a positive impact on the bottom hardness, restoring it to a level similar to the surrounding areas.

There are several invasive species, both aquatic and terrestrial in the creek and along the creek banks. Removing the barrier will expand the surface area of free-flowing water and free-flowing conditions aid in the spread of many of these species, thus invasive species removal prior to barrier removal is essential. Removal of such species and restoration of the creek embankment will provide a natural habitat for the creek's ecosystem.

After review of the existing water quality conditions it was determined that the removal of the barrier should have no impact on the oyster populations in the creek. Optimal salinity for oysters is $17-29 \mathrm{ppt}$, and the salinity at the barrier is about 2 ppt ; identifying that the salinity gradient in the creek under existing conditions is not ideal for oyster habitat growth. The farthest upstream oyster habitat is located 1.86 miles south of the existing barrier, hydrology calculations herein show that the flow rates dissipates with the proposed construction alternatives approximately 1.3 miles downstream of the barrier, supporting the claim that the proposed construction will have no effect on the oyster habitat in the creek. See Table 4 herein for additional information.

## Hydrology and Flood Protection (ICPR)

There are three recommended alternatives for removing the barrier suggested within this report, including: (1) Removal of the barrier and the upstream and downstream sediment that has accumulated due to the restriction in flow caused by the barrier; (2) Alternative 1 plus the construction of a sediment sump on an adjacent vacant marsh parcel; and (3) Alternative 1 plus the construction of a planted littoral zone in the location of the Alternative 2 sediment sump. Additional detail is provided herein regarding the importance of sediment removal and construction of a sediment sump to improve the creek's ecosystem. For this section, these alternatives were used in the ICPR modeling to determine the feasibility of each option. The ICPR models were named "PCM" for "Post Construction Model" with the addition of a number coinciding with the construction alternative they represent.

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## Revised Pre-Development and Post-Development

As part of Task 3, the RECM was created to accurately model the conditions between Tuttle Ave. and Webber St. Survey data were used to input cross sections that account for sediment buildup within this region of the creek. Figures 1, 2, and 3 represent the updated channel cross sections utilized in the postconstruction design models (PCM 1, PCM 2, and PCM 3, respectively). Figures 4-6 represent the node-link layouts for the ICPR models (ECM, RECM, and PCM models).


Figure 1: ICPR PCM 1 Cross Section Graph

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Intervonnected Chumnel and Pond Routing Model (ICPK) C3002 Streamline Technologies. Ins.
Figure 2: ICPR PCM 2 Cross Section Graph


Figure 3: ICPR PCM 3 Cross Section Graph

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Figure 4: ECM Node-Link Schematic

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Figure 5: RECM Node-Link Schematic


Figure 6: PCM 1-3 Node-Link Schematic

## Post Construction - ICPR Results

The three PCM models were run for the 100 year- 24 hour storm event and compared to the RECM and ECM output for the same event. There are two important outputs that the model provides that were reviewed for this study, the maximum stage ( ft ) and the maximum flow rate (cfs). Maximum stage is used to assure that any construction impacts do not result in flooding, where maximum flow rate is utilized to ensure such construction does not alter the ecological and natural properties of the creek. The results from each model (PCM 1-3) are in Appendix E along with the results from the RECM and ECM. Tables 1-3 show the Link

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report
maximum results for the PCM 1-3 models, respectively. Values for 30384_CHA20, DAM, CHA14, CHA8, and CHA5 in the ECM result columns are represented by the channel 30384 results.

| Sarasota County Sediment Management |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Project 1- Phillippi Creek Barrier Removal Feasibility Study |  |  |  |  |  |  |  |  |
| Link Name | 100yr-24hr |  |  |  |  |  |  |  |
|  | Max Stage (NAVD) |  |  |  | Max Flow (cfs) |  |  |  |
|  | ECM | RECM | PCM 1 | Difference (PCM 1-RECM) | ECM | RECM | PCM 1 | Difference (PCM 1-RECM) |
| 30568 | 10.92 | 11.66 | 11.44 | -0.22 | 1246.19 | 1188.76 | 1452.85 | 264.09 |
| 30387 | 11.06 | 11.79 | 11.57 | -0.22 | 4619.30 | 4573.19 | 5201.25 | 628.06 |
| 30386B | 10.88 | 11.65 | 11.42 | -0.23 | 5665.25 | 5479.00 | 7847.34 | 2368.34 |
| 30385 | 10.87 | 11.61 | 11.37 | -0.24 | 5671.20 | 6192.01 | 8853.42 | 2661.41 |
| 30384 CHA20 | 10.82 | 11.53 | 11.27 | -0.26 | 5758.67 | 41935.13 | 24518.33 | -17416.80 |
| 30384_DAM | 10.82 | 11.23 | - | - | 5758.67 | 5259.01 | - | - |
| 30384_CHA14 | 10.82 | 10.62 | 10.75 | 0.13 | 5758.67 | 5126.23 | 6825.88 | 1699.65 |
| 30384 CHA8 | 10.82 | 10.51 | 10.61 | 0.10 | 5758.67 | 5111.54 | 5589.68 | 478.14 |
| 30384_CHA5 | 10.82 | 10.41 | 10.49 | 0.08 | 5758.67 | 5108.91 | 5517.47 | 408.56 |
| 30411 | 11.02 | 11.35 | 11.00 | -0.35 | 921.80 | 921.80 | 921.80 | 0.00 |
| 30410 | 10.80 | 11.16 | 10.71 | -0.45 | 371.80 | 780.07 | 467.28 | -312.79 |
| 30383 | 10.62 | 10.39 | 10.48 | 0.09 | 6131.55 | 5887.77 | 5940.45 | 52.68 |

Table 1: ICPR Link Maximum Conditions Results (ECM, RECM, PCM 1)

| Sarasota County Sediment Management |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Project 1- Phillippi Creek Barrier Removal Feasibility Study |  |  |  |  |  |  |  |  |
| Link Name | 100yr-24hr |  |  |  |  |  |  |  |
|  | Max Stage (NAVD) |  |  |  | Max Flow (cfs) |  |  |  |
|  | ECM | RECM | PCM 2 | Difference (PCM 2-RECM) | ECM | RECM | PCM 2 | Difference (PCM 2-RECM) |
| 30568 | 10.92 | 11.66 | 11.50 | -0.16 | 1246.19 | 1188.76 | 1155.62 | -33.14 |
| 30387 | 11.06 | 11.79 | 11.63 | -0.16 | 4619.30 | 4573.19 | 4561.38 | -11.81 |
| 30386B | 10.88 | 11.65 | 11.48 | -0.17 | 5665.25 | 5479.00 | 5387.35 | -91.65 |
| 30385 | 10.87 | 11.61 | 11.43 | -0.18 | 5671.20 | 6192.01 | 5390.36 | -801.65 |
| 30384 CHA20 | 10.82 | 11.53 | 11.34 | -0.19 | 5758.67 | 41935.13 | 5454.01 | -36481.12 |
| 30384 DAM | 10.82 | 11.23 | - | - | 5758.67 | 5259.01 | - | - |
| 30384 CHA14 | 10.82 | 10.62 | 10.71 | 0.09 | 5758.67 | 5126.23 | 5497.33 | 371.10 |
| 30384 CHA8 | 10.82 | 10.51 | 10.57 | 0.06 | 5758.67 | 5111.54 | 5497.13 | 385.59 |
| 30384 CHA5 | 10.82 | 10.41 | 10.46 | 0.05 | 5758.67 | 5108.91 | 5496.21 | 387.30 |
| 30411 | 11.02 | 11.35 | 10.93 | -0.42 | 921.80 | 921.80 | 921.80 | 0.00 |
| 30410 | 10.80 | 11.16 | 10.68 | -0.48 | 371.80 | 780.07 | 437.69 | -342.38 |
| 30383 | 10.62 | 10.39 | 10.44 | 0.05 | 6131.55 | 5887.77 | 5933.20 | 45.43 |

Table 2: ICPR Link Maximum Conditions Results (ECM, RECM, PCM 2)

| Sarasota County Sediment Management |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Project 1- Phillippi Creek Barrier Removal Feasibility Study |  |  |  |  |  |  |  |  |
| Link Name | 100yr-24hr |  |  |  |  |  |  |  |
|  | Max Stage (NAVD) |  |  |  | Max Flow (cfs) |  |  |  |
|  | ECM | RECM | PCM 3 | Difference (PCM 3-RECM) | ECM | RECM | PCM 3 | Difference (PCM 3-RECM) |
| 30568 | 10.92 | 11.66 | 11.43 | -0.23 | 1246.19 | 1188.76 | 1458.61 | 269.85 |
| 30387 | 11.06 | 11.79 | 11.56 | -0.23 | 4619.30 | 4573.19 | 5235.12 | 661.93 |
| 30386B | 10.88 | 11.65 | 11.41 | -0.24 | 5665.25 | 5479.00 | 7896.55 | 2417.55 |
| 30385 | 10.87 | 11.61 | 11.36 | -0.25 | 5671.20 | 6192.01 | 8922.94 | 2730.93 |
| 30384 CHA20 | 10.82 | 11.53 | 11.26 | -0.27 | 5758.67 | 41935.13 | 24515.24 | -17419.89 |
| 30384 DAM | 10.82 | 11.23 | - | - | 5758.67 | 5259.01 | - | - |
| 30384 CHA14 | 10.82 | 10.62 | 10.79 | 0.17 | 5758.67 | 5126.23 | 6873.32 | 1747.09 |
| 30384 CHA8 | 10.82 | 10.51 | 10.65 | 0.14 | 5758.67 | 5111.54 | 5622.88 | 511.34 |
| 30384 CHA5 | 10.82 | 10.41 | 10.54 | 0.13 | 5758.67 | 5108.91 | 5542.93 | 434.02 |
| 30411 | 11.02 | 11.35 | 11.03 | -0.32 | 921.80 | 921.80 | 921.80 | 0.00 |
| 30410 | 10.80 | 11.16 | 10.75 | -0.45 | 371.80 | 780.07 | 467.27 | -312.80 |
| 30383 | 10.62 | 10.39 | 10.53 | 0.14 | 6131.55 | 5887.77 | 5966.88 | 79.11 |

Table 3: ICPR Link Maximum Conditions Results (ECM, RECM, PCM 3)
The removal of the barrier from the model and the input of revised cross sections based on the proposed sediment removal created both increases and decreases in the stage within the watershed. Stage decreases primarily exist downstream of the barrier location and stage increases primarily exist upstream of the barrier location, according to the PCM models. The greatest stage increase was 0.10 feet at node 30384_STA8 for PCM 1. For the PCM 2 model, the greatest stage increase was 0.06 feet at node 30384_STA8. For the PCM 3 model, the greatest stage increase was 0.14 feet at node 30384_STA8. See Appendix E for the 100 -year floodplain maps, which illustrate the changes in peak stage. Based on the floodplain maps it appears that properties within the 100-year floodplain may be removed with the proposed construction, however, this should be further investigated by the County during the design phase. The full maximum stage results for all five models analyzed in Task 3 and Task 4 can be found in Appendix E.

The flow fluctuated most notably in link 30384_CHA20 between the RECM and the PCM models. In the RECM, the flow through this link was 41935.13 cfs. In the PCM 2, the flow was 5454.01 cfs , and in PCM 1 and PCM 3 the flows were in between the two. High flow rates can cause scouring along the channel banks. Though the peak flows reported are instantaneous flow rates that occur for less than 15 minutes, it can be concluded that removing the barrier reduces the likelihood of scouring through link 30384_CHA20 in all three PCM models.

In Task 3 it was reported that the nearest living oyster habitat in Phillippi Creek exists approximately 1.86 miles downstream of the existing barrier. As part of Task 4, the flow rates for the PCM models were analyzed to see how the oyster habitat might be affected. The average flow rates from hours $0-48$ of the ICPR models were calculated for several links between the existing barrier and the nearest oyster habitat. The results show an increase in flow rate just downstream of the barrier after removal that completely dissipates just downstream of Tuttle Ave. in link 30382. These results show that removal of the barrier will likely cause no shift in the salinity gradient of Phillippi Creek or change in velocity at the nearest oyster habitat. See Table 4 for the results.

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Link | Distance Downstream of | Average Flow Rate (cfs) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Existing Barrier (miles) | RECM | PCM 1 | PCM 2 | PCM 3 |
| 30384 CHA8 | 0.1 | 3136.6 | 3384.2 | 3370.5 | 3382.4 |
| 30382 | 0.4 | 2783.9 | 2782.8 | 2772.1 | 2782.1 |
| 30110 | 1.3 | 4018.5 | 4017.8 | 4005.0 | 4018.0 |
| 30106 | 1.7 | 4032.1 | 4031.3 | 4018.5 | 4031.5 |

Table 4: Average Flow Rate of Downstream Channels
While no change in salinity or velocity is expected in the location of the oyster habitats, the observed increase in flow rate immediately downstream of the existing barrier could affect the oyster habitats. According to the ICPR output, the flow rate increases downstream of the existing barrier in each of the Post Construction models. Even though the flow rates return to normal levels in a relatively short distance, the increase in flow rate in the region downstream of the barrier could resuspend the deposited sediment of the sediment island. Any resuspended sediment is at risk of travelling downstream and depositing on or near the oyster habitats. This supports the case for removing all built up sediment near the barrier if the barrier is to be removed.

## Sediment Analysis/Removal

The project area between the Tuttle Ave. and Webber St. bridges has experienced a large amount of sedimentation within the creek. Sediment has accumulated behind the upstream side of the barrier wall and is now covered in dense vegetation. A sediment island exists a couple hundred feet downstream of the barrier where the creek widens and the water flow decreases. The creek bottom is noticeably high throughout this area downstream of the barrier to Tuttle Ave. See Appendix A for the bathymetric survey of Phillippi Creek between Tuttle Ave. and Webber St. Sedimentation on both sides of the barrier is caused by the restricted flow through the area; as a result, suspended sediment levels are high compared to upstream levels over the time period analyzed. High levels of suspended solids block sunlight from reaching the channel bottom and decrease oxygen levels through absorbing heat, thus raising the water temperature. If the increased levels of sedimentation continue to accumulate, the channel morphology will change. Upon analyzing the bathymetric survey, it appears the primary channel flow is currently navigating to one side of the sediment island. Based on stations $12+00,13+00$, and $14+00$ of the survey, the SE side of the creek has a higher bottom than the NW side. If the process causing this continues then the bank along the NW side of the creek is in danger of receding, while the properties along the SE side will become farther from the creek through sediment deposition. Figure 7 illustrates the path of the stated flow. Note that the portion of flow perpendicular to the banks is the deepest portion of the creek (See station $15+00$ of the bathymetric survey, Appendix A).


Figure 7: Path of Main Channel Flow Downstream of Barrier
Removal of the sediment buildup is proposed upstream and downstream of the barrier along with the restoration of the creek banks to prevent future erosion. It is recommended that the sediment island downstream of the barrier be removed along with the barrier structure so that the creek can return to its natural path. The sediment buildup behind the barrier wall should also be removed, to avoid further accumulation downstream upon removal of the barrier wall. Analysis and construction cost estimates have been completed for the sediment removal in Phillippi Creek from Sta $6+00$ to Sta 18+00 of the survey and are contained herein. This area spans upstream of the proposed sump area to downstream of the sediment island.

The potential natural resource benefit created by the sediment deposits must also be accounted for when determining whether to remove the deposits or not. The sediment island is approximately 0.4 acres above the Annual Lowest Tide of -0.8 ft (NAVD 88, Sarasota Bay tidal station data 2018) and 0.0 acres above the Mean High Water Line of 1.6 (NAVD 88). The effect of the sediment deposits that could be considered a benefit is the creation of terrestrial habitat, although the terrestrial habitat gain is directly linked to aquatic habitat loss. This area is smaller than the area above the Annual Lowest Tide to be restored as part of Design Alternative 3, so both aquatic and terrestrial habitat will be restored as part of Design 3. Design 1 offers no terrestrial habitat restoration and Design 2 offer minimal restoration at this elevation. Figure 8 is a picture taken during a site visit on November 7, 2017. Several White Ibis can be seen on the sediment island in the picture. While the sediment deposits do sometimes create a natural resource benefit, the benefits from removing the sediment likely outweigh the benefit of leaving them.

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Figure 8: Sediment Deposit Island with White Ibis Presence

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## Mean High Water Line (MHWL)

A vertical baseline is required when comparing existing and proposed cross-sectional areas of the creek. The MHWL was estimated using linear interpolation between two points with known MHWL, one upstream of this section of Phillippi Creek and one downstream. These locations are illustrated in Figure 9.


Figure 9: Stations Map
Station 1 - ERP 41304: Phillippi Cove Dredging
Station 2 - Pinecraft Park

The water level for Pinecraft Park came from the Pinecraft Park Habitat Restoration Project (ERP 41178) (2014) and the other location from the Phillippi Cove Dredging Project (ERP 41304) (2012). Linear interpolation between these two points produced a MHWL at Sta $5+00$ from the survey of 1.565 ft and a MHWL at Sta $24+00$ from the survey of 1.626 ft . The MHWL values for all other stations fall between these two values.

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## Existing vs Proposed Cross Sections

Proposed cross sections were drawn in Autocad and overlaid to compare the existing versus the proposed conditions. The chosen sediment removal constraints were a - 4 ft NAVD creek bottom and 1:10 side slopes. The side slopes were taken to an elevation of +2 ft NAVD on each side (except where seawalls exist), which is just over the calculated MHWL at all locations. A bottom of -4 ft NAVD was used to be consistent with the elevation of the creek bottom in the 2008 "Phillippi Creek - Tuttle to Hyde Park Feasibility Study" and is the natural creek bottom based on the bathymetry data. The recommended side slope for bodies of active water lined with fine sand is $5^{\circ}$ or $1: 11.4$ (Yell, 1995). This shallow slope keeps the creek bed stable, preventing erosion. A 1:10 side slope was used based on this data and other projects with similar profiles. All creek cross sections are in Appendix C, and along with each cross section is the area beneath the MHWL for existing conditions and post-sediment removal conditions.

## Quantifying Sediment Removal

If the County elects to remove the sediment in the creek upstream of the barrier, whether a sump or littoral zone will be constructed or not, it is recommended that the existing pond area be surveyed because the sediment removal will extend into this area. The bathymetric survey presented in Appendix A does not include this area, therefore Lidar data were used to complete the cross sectional profile $16+00,17+00$, and $18+00$, and the estimated sediment removal in this area was assumed based on these data. Table 5 quantifies the amount of sediment to be removed between the stations.

| Creek Section | Station | Sediment Removal (ft ${ }^{2}$ ) | Fill ( $\mathrm{ft}^{2}$ ) | Volume of Sediment Removed (cyd) (Scenario 1)* | Volume of Sediment Removed (cyd) (Scenario 2)** |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6-7 | 6+00 | 152.34 | 83.32 | 555 | 177 |
|  | 7+00 | 147.51 | 120.72 |  |  |
| 7-8 | 7+00 | 147.51 | 120.72 | 577 | 104 |
|  | $8+00$ | 164.10 | 134.77 |  |  |
| 8-9 | $8+00$ | 164.10 | 134.77 | 596 | 194 |
|  | $9+00$ | 157.57 | 82.12 |  |  |
| 9-10 | 9+00 | 157.57 | 82.12 | 581 | 277 |
|  | $10+00$ | 156.12 | 81.94 |  |  |
| 10-11 | $10+00$ | 156.12 | 81.94 | 690 | 376 |
|  | $11+00$ | 216.52 | 87.84 |  |  |
| 11-12 | $11+00$ | 216.52 | 87.84 | 947 | 440 |
|  | $12+00$ | 295.04 | 186.36 |  |  |
| 12-13 | $12+00$ | 295.04 | 186.36 | 1260 | 780 |
|  | $13+00$ | 385.16 | 72.88 |  |  |
| 13-14 | $13+00$ | 385.16 | 72.88 | 1162 | 805 |
|  | $14+00$ | 242.24 | 119.97 |  |  |
| 14-15 | $14+00$ | 242.24 | 119.97 | 474 | 18 |
|  | $15+00$ | 13.91 | 126.45 |  |  |
| 15- <br> Barrier | $15+00$ | 13.91 | 126.45 | 443 | 326 |
|  | Barrier | 465.00 | 0.00 |  |  |


| Creek Section | Station | Sediment Removal (ft ${ }^{2}$ ) | Fill ( $\mathrm{ft}^{2}$ ) | Volume of Sediment Removed (cyd) (Scenario 1)* | Volume of Sediment Removed (cyd) (Scenario 2)** |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Barrier16 | Barrier | 465.00 | 0.00 | 895 | 865 |
|  | $16+00$ | 501.24 | 31.94 |  |  |
| 16-17 | $16+00$ | 501.24 | 31.94 | 1319 | 1148 |
|  | $17+00$ | 211.07 | 60.70 |  |  |
| 17-18 | $17+00$ | 211.07 | 60.70 | 915 | 658 |
|  | $18+00$ | 282.86 | 77.95 |  |  |
|  |  |  | Total | 10414 | 6167 |

*Scenario 1: Existing creek sediment is found NOT suitable for use in restructuring the creek bottom
**Scenario 2: Existing creek sediment is found suitable for use in restructuring the creek bottom

## Table 5: Sediment Removal

The creek was divided into 100 ft segments between the surveyed stations. To quantify the volume of the sediment removed for each segment, the areas of the sediment material for the cross sections bordering each segment were averaged and multiplied by the 100 ft length of the segment. The barrier is between Sta $15+00$ and Sta $16+00$, therefore a segment length of 50 ft was used for the " 15 -Barrier" and "Barrier- 16 " segments.

## Sediment Drying/ Dewatering Zone

The sediment removal activities will require an area designated for sediment dewatering/drying. This area was chosen to be the open space just west of the barrier at latitude 27.306455 , longitude -82.512033 . Figure 18 in Appendix C illustrates this area. The figure shows an area of approximately $6200 \mathrm{ft}^{2}$ of space as the drying zone, and more adjacent land is available if needed. The property, located at 3145 Southgate Circle and site of the Southgate Community Center, is owned by the South Gate Community Association. The Community Association members will need to grant permission for the use of their property prior to construction through a temporary construction easement. The members might be amenable to the easement as the removal of the barrier and sediment should increase the ease of recreational use of the creek.

## Alternative 2 - Proposed Sediment Sump

A portion of a parcel upstream of the barrier along the NW creek bank is vacant and acts as a floodplain for the creek. This area has been identified as a potential location for an instream sediment sump along with a small portion of the Southgate Community Center parcel. The role of an in-stream sediment sump is to slow the velocity of a flowing water body, and thus allow suspended sediments to settle in a controlled location. The proposed sump location is sufficiently large for a sump; this means lowering the creek bottom only a couple feet would significantly increase the size of the channel's cross section, which will lead to effective, controlled sedimentation. Figure 10 is a picture of this location taken during a site visit on November 7, 2017.

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report


Figure 10: Proposed Sediment Sump Location
The preliminary sediment sump design has the sump bottom set at -6.5 ft . This is 2.5 ft lower than proposed creek bottom. In the preliminary design, the side of the proposed sump along the NW side of the creek has a $1: 4$ vertical to horizontal slope. Due to the geometry of this area and how it connects to the creek, a $1: 4$ slope should be stable and not experience scouring. The remaining portion of the proposed sump exists in the center of the creek body and will have a 1:10 side slope, following the proposed sediment removal guidelines. Figure 11 shows the existing conditions at the proposed sediment sump area, including elevation contours. Figure 12 represents a plan view of the preliminary sediment sump design (note the parcel boundaries). Also proposed is the planting of native emergent plants on the $1: 4$ sloped banks of the sediment sump to prevent erosion and promote nutrient uptake. The plants are proposed in the transitional zone from +1 ft NAVD to +4 ft NAVD.


Figure 11: Existing Conditions - Sediment Sump Area
Under ideal conditions, the space below -4 ft is where sediment will collect and should be cleaned out once the volume of space reaches $50 \%$ capacity with sediment. If allowed to fill more than $50 \%$, sediment collected in the sump is at risk of becoming resuspended and distributed downstream.

The effectiveness of the proposed sediment sump design must be demonstrated for the option to be considered viable. The physical process of sedimentation happens when the flow velocity is low enough to allow the sediment particles to settle within the water column. Sediment sumps work because they increase the cross-sectional area of the water body. According to the volumetric flow rate equation $(\mathrm{Q}=\mathrm{A} * \mathrm{~V})$, increasing the cross-sectional area decreases the velocity for a constant flow rate.

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report


Figure 12: Preliminary Sediment Sump Design - Plan
The Hjulstrom Curve is a simple method used for determining deposition and erosion velocities. This method requires only the sediment particle grain size to obtain the deposition and erosion velocities. See Figure 13 for the Hjulstrom Curve labeled for a fine sediment particle of 2 mm (a metric graph was used). According to the graph, the deposition velocity threshold for a sediment particle of grain size 2 mm is approximately $1.5 \mathrm{~cm} / \mathrm{sec}$, or $0.049 \mathrm{ft} / \mathrm{sec}$. The Hjulstrom Curve is considered to be inadequate for accurately modeling sediment transport because of uncertainty in the erosion velocity curve and the lack of depth variance (Hjulstrøm, 1939). This analysis is not concerned with the erosion velocity and according to the note on the Figure 13 graph, this curve is approximated for a flow depth of 1 meter, which is appropriate for Phillippi Creek in this region. Therefore, the Hjulstrom Curve method would be a valid
approach to estimating the deposition velocity. The Shields method was also used and is considered a more accurate method for modeling sediment transport, and using this method yielded a bed shear velocity of $0.054 \mathrm{ft} / \mathrm{sec}$ (See Appendix D for equations) (Cao, 2006).


Figure 13: Hjulstrom Curve
These calculated velocities are very low and may be lower than what can naturally be expected in Phillippi Creek near the existing barrier. Approximately $2200 \mathrm{ft}^{2}$ of the proposed cross-sectional area at Sta $17+00$ of the creek is below MHWL. For a velocity as low as $0.054 \mathrm{ft} / \mathrm{sec}$ to occur, the flow rate would be approximately $120 \mathrm{ft}^{3} / \mathrm{sec}$ or lower. This is an estimate based on the cross-sectional area not being independent of flow rate in this open channel scenario - under realistic conditions, the amount of water flowing affects the elevation of the water surface, which affects the cross-sectional area. This location does not offer the benefit of a downstream weir to slow the flow rate, which in-stream sediment sumps generally rely on. The County should investigate during the design phase the normal flow rates of the creek in this location in order to determine if an in-stream sediment sump is a viable option. If data is collected on the stream velocity and coinciding water surface elevation, flow rates can be calculated using the existing conditions cross sections present in the Task 3 report. Once a normal flow rate is established, the value can be used with the proposed cross sections to calculate the post sump construction stream velocity and compare to the required settling velocity previously described. This method assumes water surface elevation is a constant. Available USGS stream gage data is inadequate for determining the normal flow rate at this location, and ICPR is inadequate because the program only models storm event conditions, under which the sump is not expected to operate normally.

## Additional Sediment Removal for Proposed Sediment Sump

Constructing an in-stream sediment sump will require additional sediment removal. Table 6 outlines the estimated amount of removal required for sump construction. The "Total Additional removal" is the amount of sediment that would need to be excavated in addition to the sediment removal already proposed in Table 6. If the removal activities described in Table 6 does not occur and the sump will still be constructed, then the amount of sediment to be removed for sump construction is the "Total".

| Creek Section | Station | Sediment <br> Removal <br> ( $\mathrm{ft}^{2}$ ) | Fill ( $\mathrm{ft}^{2}$ ) | Volume of Sediment Removed (cyd) (Scenario 1)* | Volume of Sediment Removed (cyd) (Scenario 2)** |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Barrier16 | Barrier | 465.00 | 0.00 | 1717 | 1686 |
|  | $16+00$ | 1389.01 | 33.07 |  |  |
| 16-17 | $16+00$ | 1389.01 | 33.07 | 5829 | 5655 |
|  | $17+00$ | 1758.40 | 60.70 |  |  |
| 17-18 | $17+00$ | 1758.40 | 60.70 | 5231 | 4974 |
|  | $18+00$ | 1066.21 | 77.95 |  |  |
|  |  |  | Total | 12776 | 12315 |
|  |  |  | Total Additional dredging | 9648 | 9644 |

*Scenario 1: Existing creek sediment is found NOT suitable for use in restructuring the creek bottom
**Scenario 2: Existing creek sediment is found suitable for use in restructuring the creek bottom
Table 6: Proposed Sump Sediment Removal

## Alternative 3 - Littoral Zone

In addition to the sediment sump option, another design was created as an alternative use for the area designated for the sump. This design utilizes the area as a littoral zone, which would create an environmentally low-impact area that could provide nutrient uptake. By definition, this area already serves as part of Phillippi Creek's littoral zone, but this design serves to enhance the area. Emergent plants help prevent erosion and provide a habitat for diverse aquatic life. The plants selected for use must be resistant to low levels of salinity. As shown in the Task 3 Report, the salinity at RBW-SALIN over the observed time period was 2.36 ppt. Freshwater is characterized by salinity levels below 0.5 ppt. Figure 14 shows the proposed littoral zone and Figure 15 shows cross section A-A as seen on Figures 12 and 14, which shows the existing creek cross section at Station 17+00 and the cross sections for the sediment sump and littoral zone design alternatives. Although this alternative does not provide an opportunity for collecting the sediment that is dispersed in the creek at this location, it provides the greatest opportunity to restore the natural conditions of the creek and the adjacent wetland marsh.

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Figure 14: Alternative 3 (Littoral Zone)


Figure 15: Cross Section A-A

## Permitting

In the completion of the barrier removal there will be a series of permits required for construction. This section details each permit and their associated requirements for construction completion.

Southwest Florida Water Management District (DISTRICT)/Florida Department of Environmental Protection (DEPARTMENT)- Environmental Resource Permit (ERP)

The SWFWMD and the FDEP have an operating agreement that was issued in 1998. The operating agreement clarifies the limits of regulation and agency responsibility for processing the statewide ERP required for projects based on their proposed impacts and overall project development. Section II.A. details the DEPARTMENT's responsibilities and states in Section II.A.i. "Docking facilities, boardwalks, shore protection structures and piers, including the adjacent docking and boating related development and navigational dredging. ... The DEPARTMENT shall also review and take final action on permit applications for docking, boating related, boardwalk, shore protection or pier projects which include existing project related commercial or residential development that does not have a previously issued DISTRICT permit under Part IV, Chapter 373, F.S., and which do not propose new project related commercial or residential development." Due to the environmental impact and that this project is not part of a larger development plan the DEPARTMENT should be the issuing agency for the ERP required for the barrier removal and associated dredging activities. However, a pre-application meeting with the DISTRICT will be required to delegate the appropriate agency.

The requirement for processing the ERP will include detailed construction plans with dredge and fill locations clearly defined and a detailed report of the environmental and hydrological impacts. Such information will include a wetland survey, any necessary mitigation required for wetland impacts, and a hydrology analysis to ensure post construction flow rates and staging do not cause adverse impacts to the
floodplain. Typical permit processing for similar projects can take 6-12 months depending on department reviews.

## Army Corps of Engineers (ACOE)- Nationwide Permit (NWP)

Due to the fact that the barrier is located in a navigable waterway an NWP through the ACOE will be required. In 2017, ACOE opted out of the Statewide Individual ERP permit and implemented a separate permitting process rather than the Joint Application with the DISTRICT/DEPARTMENT which was utilized in past years. The proposed barrier removal will fall under two different categories of the Nationwide permit Section B.27. Aquatic Habitat Restoration, Enhancement, and Establishment Activities for the dredging activities required to remove the sediment that has accumulate both upstream and downstream of the barrier, and Section B.53.Removal of Low-Head Dams for the removal of the remaining $\pm 100$ linear feet of the barrier. In order to process, permit coordination with Corps district office will be required to determine consistency with the NWP rules and requirements. The NWP will require no adverse impacts to species inhabiting navigable waters, no adverse effects to the aquatic system due to accelerating the passage of water, compliance with applicable FEMA-approved floodplain management requirements, and application of soil erosion and sediment controls. NWP often requires coordination with outside agencies such as: FWC, NMFS, and the Navy; typical permit processing timeline can be 8-18 months depending on coordination requirements.

All regulatory requirements should be reviewed with each agency through pre-application meetings during the design/plans process, in order to adequately meet all the regulations and expedite the permitting process.

## Federal Emergency Management Agency (FEMA)

Phillippi Creek is a FEMA regulated waterway and coordination with the agency should be completed during the design phase of any proposed construction altering the existing creek conditions.

## Construction Cost Estimates

The cost estimate for sediment removal and sediment sump construction were determined using the construction estimates provided by the County for the RB-3 and RB- 5 sumps. Using the estimates as a basis, the total proposed site area was divided by the RB-3 and RB-5 site areas, to develop relative ratios used in computing the amount of material necessary for construction. Once the material quantity was determined, the unit cost was calculated by using the County's current running construction costs, the FDOT's 12-month moving statewide averages and Area 10 12-month moving averages, and construction costs observed by WEC.

Itemized cost estimates for the implementation of each construction option are located in Appendix H .

## Alternative 1: Removal of the Barrier and Sediment Accumulated Upstream and Down Stream

Alternative 1 includes the removal of the barrier and removal of the built-up sediment upstream and downstream of the barrier. The region designated for sediment removal extends from Station $6+00$ to Station $18+00$ of the survey. Costs were calculated assuming the soil from the existing sediment deposits is not suitable for the restructuring of the creek banks. A deduction in cost was calculated to illustrate the change in cost if the sediment is found suitable for restructuring the creek banks. The deduction was made to the "Channel Excavation" item in the amount of the "Embankment" quantity. This method includes the
consideration of the labor involved in restructuring the creek banks. The total estimated construction cost for Alternative 1 is $\$ 882,297.67$.

## Alternative 2: Removal of the Barrier, Sediment Accumulated Upstream and Down Stream, and Construction of Sediment Sump

Alternative 2 includes the removal of the barrier, removal of the built-up sediment upstream and downstream of the barrier, and construction of an instream sediment sump. The region designated for sediment removal extends from Station $6+00$ to Station $18+00$ of the survey and the proposed sediment sump is located on the property of the West Coast Church of the Cross. This option assumes change in ownership of this land to the County. Alternative 2 includes changes in item quantities and new items relevant to the construction of the sediment sump. Costs were calculated assuming the soil from the existing sediment deposits is not suitable for the restructuring of the creek banks. A deduction in cost was calculated to illustrate the change in cost if the sediment is found suitable for restructuring the creek banks. The deduction was made to the "Channel Excavation" item in the amount of the "Embankment" quantity. This method includes the consideration of the labor involved in restructuring the creek banks. The total estimated construction cost for Alternative 2 is $\$ 1,246,820.99$.

## Alternative 3: Removal of the Ba rrier, Sediment Accumulated Upstream and Down Stream, and Construction/Restoration of Natural Habitat

Alternative 3 is the same as Alternative 2, except the sediment sump area will be utilized as a littoral zone. Alternative 3 involves restructuring the littoral zone through embankment to create a gentler slope into the littoral zone, preparation of the littoral zone soil, and emergent plant cover over the flat littoral shelf set at +1 ft NAVD. The existing area designated for a sediment sump or littoral zone enhancement hosts some emergent plants, but much of the area has no plant cover. Costs were calculated assuming the soil from the existing sediment deposits is not suitable for the restructuring of the creek banks. A deduction in cost was calculated to illustrate the change in cost if the sediment is found suitable for restructuring the banks. The quantity for "Embankment" is greater than the quantity for "Channel Excavation" for this design alternative, thus, the deduction quantity is equal to the total amount of "Channel Excavation" specified. The total estimated construction cost for Alternative 3 is $\$ 1,156,779.05$.

## Construc tion Alterna tives

The cost estimates for the three design alternatives were made with the most desirable construction method in mind: the use of the South Gate Community Center's property for construction staging and sediment drying through a temporary easement. The County requires the analysis of alternatives in the event that the Southgate Community Center property is not available for construction staging, sediment dewatering, or both.

If the property is unavailable for both construction staging and dewatering, the following option was investigated: utilizing a barge with all the necessary equipment from the mouth of Phillippi Creek up to the project site, loading the barge with sediment and the barrier structure, and transporting the material downstream to be unloaded and disposed of. This option would not only be exceedingly costly, it does not appear feasible in terms of construction, water depths, and bridge locations. The bridges that span Phillippi Creek, specifically S Tuttle Avenue, do not offer enough clearance for a barge loaded with the necessary equipment to pass under. Due to sediment buildup in the creek, a barge would require high tide to navigate to the project site, and high tide would lead to even less clearance under the bridges. Because of this, this construction alternative is not considered a valid option.

In the event the South Gate Community Association only agrees to allow construction staging on their property, an alternative location for sediment drying has been identified. Parcel ID 0059-04-0046 is owned by the County and exists between the two portions of the West Coast Church of the Cross property. This parcel would be available for the project if the County acquires the portion of the West Coast Church of the Cross property where the proposed sediment sump is located. The parcel houses a County stormwater pond and the portion East of the pond has slopes as steep as 1:3 (vertical to horizontal), according to Lidar data. The pond and steep slopes greatly diminish the amount of available space for sediment drying, causing this option to be considered infeasible. See Figure 16 for an illustration of this option.


Figure 16: County Parcel 0059-04-0046

## Funding Opportunities

## District Cooperative Funding Initiative (C FI)

The District CFI program funds projects that have resource benefits related to natural systems, flood protection, and water quality. Based upon the feasibility of the structure removal, the following benefits may be provided by the proposed project:

- Submerged Land Restoration
o Removing accumulated sediment and the barrier will restore the channel profile to its natural state
o Unusual bottom hardness caused by the presence of the barrier should return to natural levels with its removal
- Hydrologic Restoration
o Removing accumulated sediment and the barrier should allow the creek flow rates to return to natural levels
o No negative impact on the downstream oyster habitats is expected, as shown through ICPR modeling and existing downstream location of the oyster beds
- Shoreline Restoration
o Restoring the creek banks to their natural, shallower sloped profile should prevent future erosion and create a stable ecosystem for native vegetation
o Removal of invasive plant species and proposed planting of bank stabilizing vegetation will assist in the overall bank stabilization of the creek, preventing future erosion
- Water Quality Benefits
o Restoring the creek banks to their natural, shallower sloped profile should prevent future erosion, creating a decrease into total suspended solids (TSS) in the creek
o The proposed sediment sump should collect suspended solids from upstream in a controlled location for removal
- Floodplain Benefits
o Decrease in maximum stage within the watershed during the 100 year- 24 hour storm event shown through ICPR modeling
Applying for CFI program funding requires the following: a detailed description of how the project will create the specified benefits, a cost benefit analysis of the project, an outline of any complementary efforts completed to date, and plans with details of the proposed construction and thorough timeline.


## Fish a nd Wild life Commission

The Florida Fish and Wildlife Conservation Commission offers grants through the "Florida State Wildlife Grants Program," federally funded by the State and Tribal Wildlife Grants Program. Funds are appropriated annually, with the 2018 deadline having passed on July 13. The program supports projects that target needs identified in the "State Wildlife Action Plan." Items listed as conservation threats to coastal tidal rivers or streams in the "State Wildlife Action Plan" are addressed by this project, mainly channel modification/shipping lanes, and invasive plants.

To be considered for funding, the "Florida State Wildlife Grants Program Application Form" must be submitted. As part of the application, the target habitat and the objective must be identified, and the potential benefit and project approach/methodology must be expressed. Projects with a duration of greater than three years may not be considered for funding.

## Sarasota Bay Estuary Program

The Sarasota Bay Estuary Program (SBEP) Bay Partners Grant Program offers funding for local projects that focus on habitat or water quality improvement, or environmental education. This project qualifies as a habitat improvement project and could also qualify as a water quality improvement project, specifically Design Alternatives 2 and 3. These projects also coincide with SBEP's "Phillippi Creek Shoreline" restoration plan, part of the SBEP "Five-Year Habitat Restoration Plan FY 2016 - FY 2020."

Funds are appropriated annually and the window for application submission for 2018-2019 closed on March 1, 2018. Applications are scored based on four categories: Project Description, Environmental Benefits, Community Benefits, and Budget Proposal.

## Federal Clean Water Act Grants

The FDEP administers grant money from the EPA through the Federal Clean Water Act (319 Grants) for projects that will help reduce nonpoint source pollution within watersheds. Funds are appropriated annually, with project proposals due in the spring and fund allocation by September of that year. This funding source should be pursued only if Design Alternative 2 is selected, as 319 Grants focus solely on water quality and pollution reduction is only shown through construction of the sediment sump.

## Measurable Benefits

A measurable benefits analysis is needed to determine which CFI funding source Design Alternative 1, 2, or 3 would qualify for. This involves utilizing the CFI ranking tables for each of the proposed funding alternatives to determine if the project provides high, medium, or low impacts as defined in the tables. Table 7 provides a detail for each of the funding alternatives what ranking it qualifies under and how the ranking was determined. The " $\$ / A c$ Restored" and " $\$ /$ foot of shoreline restoration" values reflect only the portion of the design that contributes to restoration. Certain elements of Design 2 and Design 3 contribute to the overall project cost, but not toward restoration. Figure 17 identifies the areas of proposed restoration used in each scoring. The "Shoreline Restoration Area" shown on Figure 17 is the post-construction area above the Annual Low Tide of -0.8 ft (NAVD 88) within the Top of Bank line.


Table 7: Measurable Benefit Ranking


Figure 17: Delineation of Natural Systems Restoration Areas

## Na tural Systems

The natural systems restoration rankings were determined using the estimated project cost for each design option, the amount of area restored, and the length of shoreline restored. The area restored is the total area within the top of bank line from station $6+00$ through station $18+00$ of the survey, as this is the extent of the area where sediment removal is proposed. The quantities shown in Table 7 for Natural Systems "Acres Restored" is the Creek Restoration and Shoreline Restoration Areas shown in Figure 17 added together. The linear length of shoreline is the length of the shoreline on each side of the creek from station $6+00$ through station $18+00$ of the survey added together. This area represents the submerged land restoration and shoreline restoration portions of the project. The shoreline will be restored through the removal of invasive plant species and bank stabilization to prevent erosion and the submerged land restoration will be accomplished through sediment removal and the restructuring of the creek banks to a $1: 10$ slope. Due to the stabilization of the banks, a relatively small decrease in TSS is expected. The expected TSS decrease caused by the prevention of erosion within the project area is considered small relative to the amount of sediment entering the project area from upstream, as approximately 31,000 acres of the watershed contributes runoff to the project area. Native emergent plants are proposed as part of Design 2 and Design 3 for environmental enhancement and to promote nutrient uptake. Removing the barrier should also restore the bottom hardness of this portion of the creek to a level similar to the surrounding areas. The characteristics of this project result in low natural systems restoration rankings.

## Flood Protection

The analysis for the flood protection ranking was completed using the FEMA BCA Toolkit 5.3.0 which provides a Benefit Cost Ratio (BCR) for each structure analyzed. Utilizing Lidar data and the maximum stages from ICPR, it was determined that many residential houses may have an opportunity where they
could be removed from the RECM 100-year floodplain. These structures are on Bougainvillea St, Cronley Pl, Alta Vista St, Irving St, Webber St, and Tanglewood Dr. The total sum of all the BCR from the BCA Toolkit was 1.88 , indicating a high ranking. The total mitigation cost of acquisition of all structures is approximately $\$ 2,865,824$; over double the cost of the proposed project with the sump construction of \$1,246,821.

## Wa ter Quality

The biggest component in improving water quality for the system is with the construction of the sediment sump. Calculations for the TSS portion of the nutrient reduction section are based on the amount of TSS collected in the existing upstream sediment sump RB3. Total Nitrogen (TN) and Total Phosphorus (TP) reductions were also calculated based on the amount of TSS collected. These nutrients are known to attach to suspended solids, thus a reduction in TSS leads to an expected reduction in TN and TP. The County supplied $\mathrm{lb} / \mathrm{lb}$ ratios of each nutrient to TSS. See Appendix I for the nutrient reduction calculations.

The restructuring and stabilization of the creek banks as part of each design alternative should also benefit water quality. This action should reduce erosion, leading to lower TSS downstream. Designs 2 and 3 have proposed emergent plantings, which should lead to nutrient uptake in addition to reducing erosion. The removal of the barrier should also eliminate the opportunity for water to stagnate in certain areas through restoring normal flow conditions.

## Recommendations

It is recommended that the County pursue design alternative 3: removal of the historic agricultural barrier, removal of accumulated sediment upstream and downstream of the barrier location, and restoration of the existing wetland marsh to natural conditions. Table 8 summarizes each alternatives' benefit and objectives in improving the creek ecosystem.

| Parameter | Design Alternative 1 | Design Alternative 2 | Design Alternative 3 |
| :--- | :---: | :---: | :---: |
| Project Cost | $\$ 882,297.67$ | $\$ 1,246,820.99$ | $\$ 1,156,779.05$ |
| Submerged Land Restoration | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Shoreline Restoration | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Velocity Reduction | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Sediment Deposition | x | $\checkmark$ | x |
| Nutrient Reduction | x | Potentially | Potentially |
| Floodplain Reduction | Potentially | Potentially | Potentially |

Table 8: Alternative Benefit Summary
Removing the barrier will have a minimal effect on the environmental conditions, as free flowing conditions already exist in the location of the barrier. The increase in nutrient levels and suspended solids observed in the Task 3 water quality analysis could be due to the presence of the barrier. Therefore, removing the barrier should improve the water quality characteristics closer to what is observed farther upstream.

Removing the accumulated sediment and restructuring the creek banks will restore the creek to its natural state and reverse the effects in the channel morphology downstream of the barrier. Constructing the instream sediment sump offers a potential benefit in the water quality of the creek, allowing a location for unwanted suspended sediment to accumulate and be removed. This may lower turbidity levels and may also prevent future undesirable changes in the channel morphology. However, it is uncertain that flow velocities will be low enough for consistent sediment deposition due to the lack of a downstream weir, but

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report
the channel cross section will increase dramatically in the sump location, allowing for sediment deposition. Restoration of the natural wetland conditions with the littoral zone construction does not require additional investigation into the flow velocities and provides a habitat for diverse aquatic life as well as reducing bank erosion.

Each design alternative has various benefits and funding opportunities with minimal impact on the hydrologic conditions within the Phillippi Creek Watershed.

## Reference

Cao, Zhixian \& Pender, G \& Meng, Jian. (2006). Explicit Formulation of the Shields Diagram for Incipient Motion of Sediment. Journal of Hydraulic Engineering-asce - J HYDRAUL ENG-ASCE. 132. 10.1061/(ASCE)0733-9429(2006)132:10(1097).

Eilers, David T. (2013). West-Central Florida Tidal Stream Assessment Summary. Final Report to the Sarasota Bay Estuary Program, December 2013.

Hjulstrøm, F., 1939, Transportation of debris by moving water, in Trask, P.D., ed., Recent Marine Sediments; A Symposium: Tulsa, Oklahoma, American Association of Petroleum Geologists, p. 531.

Yell, Dennis, and Riddell, John. (1995). ICE Design and Practice Guide: Dredging. London, UK: Thomas Telford Publications.

Florida Administrative Codes pertaining to water quality:
Dissolved Oxygen Saturation: 62-302.533
Total Nitrogen: 62-302.531
Total Phosphorus: 62-302.531
Chlorophyll a: 62-303.351 Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report
Appendix A: Bathymetric Survey
 Project 1: Phillippi Creek Barrier Removal Feasibility Study Task 4 - Analysis Report

Sediment Management, Sarasota County WA666, Contract No. 2016-168 Project 1: Phillippi Creek Barrier Removal Feasibility Study Task 4 - Analysis Report

Sediment Management, Sarasota County WA666, Contract No. 2016-168 Project 1: Phillippi Creek Barrier Removal Feasibility Study Task 4 - Analysis Report


Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## Appendix B: Survey with Revised ICPR Overlay



Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report


Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## Appendix C: Sediment Removal

All cross sections oriented facing upstream unless otherwise noted.


Removal $=152.34 \mathrm{sf}$
Fill $=83.32 \mathrm{sf}$
Post CS Area $=520.38$ sf Pre CS Area $=449.55 \mathrm{sf}$


Removal $=147.51 \mathrm{sf}$
Fill $=120.72 \mathrm{sf}$
Post CS Area $=491.13 \mathrm{sf}$ Pre CS Area $=462.76 \mathrm{sf}$

Removal $=164.10$ sf
Fill $=134.77 \mathrm{sf}$
Post CS Area $=463.55$ sf Pre CS Area $=431.98 \mathrm{sf}$

Removal $=157.57 \mathrm{sf}$
Fill $=82.12 \mathrm{sf}$
Post CS Area $=557.24$ sf Pre CS Area $=480.21$ sf

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Removal $=156.12 \mathrm{sf}$
Fill $=81.94 \mathrm{sf}$
Post CS Area $=588.60 \mathrm{sf}$ Pre CS Area $=513.84$ sf


Removal $=216.52 \mathrm{sf}$
Fill $=87.84 \mathrm{sf}$
Post CS Area $=612.21 \mathrm{sf}$ Pre CS Area $=482.09 \mathrm{sf}$


Removal $=295.04 \mathrm{sf}$
Fill $=186.36 \mathrm{sf}$
Post CS Area $=633.15 \mathrm{sf}$ Pre CS Area $=523.68 \mathrm{sf}$


Removal $=385.16$ sf $\quad$ Post CS Area $=754.02$ sf Fill $=72.88 \mathrm{sf} \quad$ Pre CS Area $=441.28 \mathrm{sf}$

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Removal $=242.24$ sf $\quad$ Post CS Area $=714.51 \mathrm{sf}$
Fill $=119.97 \mathrm{sf}$
Pre CS Area $=590.63 \mathrm{sf}$


Removal $=13.91 \mathrm{sf}$
Fill $=126.45 \mathrm{sf}$
Post CS Area $=937.72$ sf Pre CS Area $=1049.42$ sf


Removal $=465 \mathrm{sf}$
*Buildup behind wall estimated*
Fill $=0$ sf
Post CS Area $=947.84 \mathrm{sf}$ Pre CS Area $=310.40$ sf

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report




Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Figure 18: Sediment Drying Zone

## Appendix D: Proposed Sediment Sump

| Shields Method for Sediment Transport - Variables |  |  |  |
| :--- | :---: | :--- | :---: |
| s | $=$ | specific gravity of sediment |  |
| g | $=$ | acceleration due to gravity |  |
| d | $=$ | sediment particle diameter |  |
| v | $=$ | kinematic viscosity of fluid |  |
| R | $=$ | particle Reynolds number |  |
| $\theta_{\mathrm{c}}$ | $=$ | critical shields parameter for incipient motion |  |
| u | $=$ | bed shear velocity |  |

$s=2.65$
$g=32.2 \frac{f t}{\sec ^{2}}$
$d=0.2 \mathrm{~mm}=0.000656 \mathrm{ft}$
$v_{70 \text { o }}=1.052 \times 10^{-5} \frac{f t^{2}}{\sec }$
$R=\frac{d \sqrt{s g d}}{v}$
$R=\frac{0.000656 f t \sqrt{2.65 * 32.2 \frac{f t}{s e c^{2}} * 0.000656 f t}}{1.052 \times 10^{-5} \frac{f t^{2}}{s e c}}$
$R=\frac{0.000656 \mathrm{ft} \sqrt{0.056 \frac{\mathrm{ft}^{2}}{\sec ^{2}}}}{1.052 \times 10^{-5} \frac{f t^{2}}{\sec }}$
$R=\frac{0.000656 \mathrm{ft} * 0.237 \frac{\mathrm{ft}}{\mathrm{sec}}}{1.052 \times 10^{-5} \frac{\mathrm{ft}^{2}}{\mathrm{sec}}}$
$R=\frac{1.55 \times 10^{-4} \frac{\mathrm{ft}^{2}}{\mathrm{sec}}}{1.052 \times 10^{-5} \frac{\mathrm{ft}}{}{ }^{2}}$
$R=14.73$
$\ln \theta_{C}=-0.6769 \ln R+0.3542 \ln \left[1+(0.0223 R)^{2.8358}\right]-1.1296$
$\ln \theta_{C}=-0.6769 \ln (14.73)+0.3542 \ln \left[1+(0.0223 * 14.73)^{2.8358}\right]-1.1296$
$\ln \theta_{C}=-2.94$
$\theta_{C}=e^{-2.94}$
$\theta_{C}=0.053$
$\theta_{C}=\frac{u^{2}}{s g d}$
$u=\sqrt{\theta_{C} s g d}$
$u=\sqrt{0.053 * 2.65 * 32.2 \frac{\mathrm{ft}}{\mathrm{sec}^{2}} * 0.000656 \mathrm{ft}}$
$u=0.054 \frac{\mathrm{ft}}{\mathrm{sec}}$

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## Appendix E: Watershed Maximum Sta ge Comparison (NAVD)

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 097860 | 34.96 | 34.96 | 34.96 | 34.96 | 34.96 |
| 099340 | 41.77 | 41.77 | 41.77 | 41.77 | 41.77 |
| 30000 | 1.42 | 1.42 | 1.42 | 1.42 | 1.42 |
| 30001 | 2.76 | 2.69 | 2.73 | 2.70 | 2.74 |
| 30002 | 3.13 | 3.05 | 3.10 | 3.06 | 3.11 |
| 30003 | 3.50 | 3.41 | 3.46 | 3.42 | 3.47 |
| 30004 | 3.69 | 3.59 | 3.65 | 3.61 | 3.66 |
| 30005 | 3.75 | 3.65 | 3.71 | 3.66 | 3.72 |
| 30008 | 4.35 | 4.22 | 4.30 | 4.24 | 4.32 |
| 30010 | 5.01 | 4.87 | 4.96 | 4.89 | 4.97 |
| 30012 | 5.46 | 5.30 | 5.40 | 5.33 | 5.42 |
| 30014 | 5.92 | 5.75 | 5.85 | 5.79 | 5.87 |
| 30016 | 6.24 | 6.06 | 6.16 | 6.10 | 6.18 |
| 30018 | 6.49 | 6.31 | 6.41 | 6.35 | 6.43 |
| 30020 | 3.70 | 3.61 | 3.67 | 3.62 | 3.68 |
| 30021 | 3.72 | 3.62 | 3.68 | 3.64 | 3.69 |
| 30022 | 6.76 | 6.76 | 6.76 | 6.76 | 6.76 |
| 30023 | 11.22 | 11.22 | 11.22 | 11.22 | 11.22 |
| 30030 | 4.66 | 4.54 | 4.62 | 4.55 | 4.63 |
| 30031 | 4.70 | 4.58 | 4.66 | 4.59 | 4.67 |
| 30032 | 4.75 | 4.62 | 4.71 | 4.64 | 4.72 |
| 30034 | 7.63 | 7.58 | 7.63 | 7.57 | 7.63 |
| 30035 | 7.63 | 7.58 | 7.63 | 7.58 | 7.63 |
| 30036 | 10.27 | 10.27 | 10.27 | 10.27 | 10.27 |
| 30037 | 10.78 | 10.78 | 10.78 | 10.78 | 10.78 |
| 30038 | 10.91 | 10.91 | 10.91 | 10.91 | 10.91 |
| 30039 | 10.94 | 10.94 | 10.94 | 10.94 | 10.94 |
| 30041A | 12.53 | 12.53 | 12.53 | 12.53 | 12.53 |
| 30042 | 13.47 | 13.47 | 13.47 | 13.47 | 13.47 |
| 30044 | 13.58 | 13.58 | 13.58 | 13.58 | 13.58 |
| 30046 | 13.58 | 13.58 | 13.58 | 13.58 | 13.58 |
| 30050 | 13.97 | 13.97 | 13.97 | 13.97 | 13.97 |
| 30052 | 14.72 | 14.72 | 14.72 | 14.72 | 14.72 |
| 30054 | 15.49 | 15.49 | 15.49 | 15.49 | 15.49 |
| 30055 | 13.98 | 13.98 | 13.98 | 13.98 | 13.98 |
| 30056 | 15.69 | 15.69 | 15.69 | 15.69 | 15.69 |
| 30058 | 17.30 | 17.30 | 17.30 | 17.30 | 17.30 |
| 30060 | 7.82 | 7.74 | 7.81 | 7.73 | 7.81 |
| 30061 | 12.01 | 11.94 | 12.00 | 11.93 | 12.00 |
| 30062 | 14.92 | 14.91 | 14.92 | 14.91 | 14.92 |
| 30063 | 15.25 | 15.25 | 15.25 | 15.25 | 15.25 |
| 30064 | 15.54 | 15.54 | 15.54 | 15.54 | 15.54 |
| 30065 | 15.82 | 15.82 | 15.82 | 15.82 | 15.82 |
| 30066 | 15.99 | 15.99 | 15.99 | 15.99 | 15.99 |
| 30067 | 16.08 | 16.08 | 16.08 | 16.08 | 16.08 |
| 30068 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30068A | 15.99 | 15.99 | 15.99 | 15.99 | 15.99 |
| 30070 | 7.30 | 7.30 | 7.30 | 7.30 | 7.30 |
| 30071 | 12.72 | 12.72 | 12.72 | 12.72 | 12.72 |
| 30072 | 14.96 | 14.96 | 14.96 | 14.96 | 14.96 |
| 30073 | 7.76 | 7.76 | 7.76 | 7.76 | 7.76 |
| 30074 | 16.50 | 16.50 | 16.50 | 16.50 | 16.50 |
| 30076 | 5.98 | 5.82 | 5.91 | 5.85 | 5.93 |
| 30077 | 7.30 | 7.14 | 7.13 | 7.18 | 7.13 |
| 30078 | 8.71 | 8.55 | 8.54 | 8.59 | 8.54 |
| 30079 | 11.00 | 11.00 | 11.00 | 11.00 | 11.00 |
| 30080 | 12.55 | 12.55 | 12.55 | 12.55 | 12.55 |
| 30081 | 12.81 | 12.81 | 12.81 | 12.81 | 12.81 |
| 30082 | 13.15 | 13.15 | 13.15 | 13.15 | 13.15 |
| 30083 | 13.52 | 13.52 | 13.52 | 13.52 | 13.52 |
| 30084 | 13.93 | 13.93 | 13.93 | 13.93 | 13.93 |
| 30085 | 14.37 | 14.37 | 14.37 | 14.37 | 14.37 |
| 30086 | 14.75 | 14.75 | 14.75 | 14.75 | 14.75 |
| 30087 | 13.68 | 13.68 | 13.68 | 13.68 | 13.68 |
| 30090 | 17.19 | 17.19 | 17.19 | 17.19 | 17.19 |
| 30091 | 10.39 | 10.40 | 10.40 | 10.40 | 10.40 |
| 30092 | 12.12 | 12.12 | 12.12 | 12.12 | 12.12 |
| 30093 | 15.18 | 15.18 | 15.18 | 15.18 | 15.18 |
| 30094 | 15.20 | 15.20 | 15.20 | 15.20 | 15.20 |
| 30094A | 15.23 | 15.23 | 15.23 | 15.23 | 15.23 |
| 30096 | 19.90 | 19.90 | 19.90 | 19.90 | 19.90 |
| 30097 | 20.86 | 20.86 | 20.86 | 20.86 | 20.86 |
| 30098 | 22.33 | 22.33 | 22.33 | 22.33 | 22.33 |
| 30099 | 23.39 | 23.39 | 23.39 | 23.39 | 23.39 |
| 30100 | 23.46 | 23.46 | 23.46 | 23.46 | 23.46 |
| 30100 A | 23.49 | 23.49 | 23.49 | 23.49 | 23.49 |
| 30105 | 7.04 | 6.85 | 6.95 | 6.89 | 6.98 |
| 30106 | 7.82 | 7.62 | 7.72 | 7.66 | 7.75 |
| 30107 | 8.05 | 7.84 | 7.94 | 7.88 | 7.97 |
| 30110 | 8.61 | 8.40 | 8.50 | 8.45 | 8.53 |
| 30111 | 8.78 | 8.58 | 8.67 | 8.62 | 8.70 |
| 30112 | 9.12 | 8.91 | 9.00 | 8.95 | 9.03 |
| 30113 | 9.42 | 9.20 | 9.29 | 9.25 | 9.32 |
| 30114 | 9.51 | 9.29 | 9.37 | 9.34 | 9.41 |
| 30116 | 15.57 | 15.57 | 15.57 | 15.57 | 15.57 |
| 30117 | 17.03 | 17.03 | 17.03 | 17.03 | 17.03 |
| 30119 | 20.24 | 20.24 | 20.24 | 20.24 | 20.24 |
| 30121 | 20.94 | 20.94 | 20.94 | 20.94 | 20.94 |
| 30124 | 13.90 | 13.90 | 13.90 | 13.90 | 13.90 |
| 30125 | 15.07 | 15.07 | 15.07 | 15.07 | 15.07 |
| 30126 | 18.71 | 18.71 | 18.71 | 18.71 | 18.71 |
| 30128 | 20.21 | 20.21 | 20.21 | 20.21 | 20.21 |
| 30129 | 21.30 | 21.30 | 21.30 | 21.30 | 21.30 |
| 30130 | 21.30 | 21.30 | 21.30 | 21.30 | 21.30 |
| 30130A | 21.30 | 21.30 | 21.30 | 21.30 | 21.30 |
| 30131 | 21.30 | 21.30 | 21.30 | 21.30 | 21.30 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30134 | 10.80 | 10.69 | 10.79 | 10.68 | 10.79 |
| 30135 | 19.76 | 19.74 | 19.76 | 19.73 | 19.76 |
| 30136 | 19.89 | 19.88 | 19.89 | 19.87 | 19.89 |
| 30137 | 20.06 | 20.04 | 20.06 | 20.04 | 20.06 |
| 30138 | 20.72 | 20.71 | 20.72 | 20.70 | 20.72 |
| 30139 | 20.91 | 20.90 | 20.91 | 20.90 | 20.91 |
| 30140 | 22.03 | 22.02 | 22.03 | 22.02 | 22.03 |
| 30144 | 21.10 | 21.09 | 21.10 | 21.08 | 21.10 |
| 30145 | 22.49 | 22.49 | 22.49 | 22.49 | 22.49 |
| 30147 | 21.69 | 21.68 | 21.69 | 21.68 | 21.69 |
| 30148 | 22.37 | 22.37 | 22.37 | 22.37 | 22.37 |
| 30149 | 11.68 | 11.60 | 11.67 | 11.59 | 11.67 |
| 30150 | 5.09 | 4.97 | 5.07 | 4.98 | 5.08 |
| 30151 | 9.43 | 9.43 | 9.43 | 9.43 | 9.43 |
| 30152 | 10.22 | 10.22 | 10.22 | 10.22 | 10.22 |
| 30153 | 10.64 | 10.64 | 10.64 | 10.64 | 10.64 |
| 30154 | 11.38 | 11.38 | 11.38 | 11.38 | 11.38 |
| 30155 | 12.12 | 12.12 | 12.12 | 12.12 | 12.12 |
| 30156 | 13.44 | 13.44 | 13.44 | 13.44 | 13.44 |
| 30157 | 14.14 | 14.14 | 14.14 | 14.14 | 14.14 |
| 30158 | 14.14 | 14.14 | 14.14 | 14.14 | 14.14 |
| 30160 | 24.24 | 24.24 | 24.24 | 24.24 | 24.24 |
| 30161 | 24.11 | 24.11 | 24.11 | 24.11 | 24.11 |
| 30162 | 23.69 | 23.69 | 23.69 | 23.69 | 23.69 |
| 30201 | 19.07 | 19.07 | 19.07 | 19.07 | 19.07 |
| 30202 | 19.07 | 19.07 | 19.07 | 19.07 | 19.07 |
| 30204 | 22.01 | 22.01 | 22.01 | 22.01 | 22.01 |
| 30206 | 19.08 | 19.08 | 19.08 | 19.08 | 19.08 |
| 30209 | 19.08 | 19.08 | 19.08 | 19.08 | 19.08 |
| 30220 | 19.08 | 19.08 | 19.08 | 19.08 | 19.08 |
| 30221 | 19.14 | 19.14 | 19.14 | 19.14 | 19.14 |
| 30230 | 19.08 | 19.08 | 19.08 | 19.08 | 19.08 |
| 30231 | 19.08 | 19.08 | 19.08 | 19.08 | 19.08 |
| 30232 | 19.09 | 19.09 | 19.09 | 19.09 | 19.09 |
| 30235 | 19.08 | 19.08 | 19.08 | 19.08 | 19.08 |
| 30236 | 19.10 | 19.10 | 19.10 | 19.10 | 19.10 |
| 30238 | 26.62 | 26.62 | 26.62 | 26.62 | 26.62 |
| 30239 | 27.30 | 27.30 | 27.30 | 27.30 | 27.30 |
| 30241A | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 |
| 30242 | 19.71 | 19.71 | 19.71 | 19.71 | 19.71 |
| 30243 | 21.34 | 21.34 | 21.34 | 21.34 | 21.34 |
| 30244 | 21.35 | 21.35 | 21.35 | 21.35 | 21.35 |
| 30245 | 22.89 | 22.89 | 22.89 | 22.89 | 22.89 |
| 30246 | 22.30 | 22.30 | 22.30 | 22.30 | 22.30 |
| 30246A | 22.30 | 22.30 | 22.30 | 22.30 | 22.30 |
| 30247 | 22.88 | 22.88 | 22.88 | 22.88 | 22.88 |
| 30248 | 19.08 | 19.08 | 19.08 | 19.08 | 19.08 |
| 30249 | 19.70 | 19.70 | 19.70 | 19.70 | 19.70 |
| 30251 | 19.69 | 19.69 | 19.69 | 19.69 | 19.69 |
| 30251A | 19.69 | 19.69 | 19.69 | 19.69 | 19.69 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30252 | 19.70 | 19.70 | 19.70 | 19.70 | 19.70 |
| 30253 | 19.68 | 19.68 | 19.68 | 19.68 | 19.68 |
| 30253A | 19.69 | 19.69 | 19.69 | 19.69 | 19.69 |
| 30254 | 19.68 | 19.68 | 19.68 | 19.68 | 19.68 |
| 30254A | 19.68 | 19.68 | 19.68 | 19.68 | 19.68 |
| 30255 | 19.75 | 19.75 | 19.75 | 19.75 | 19.75 |
| 30255A | 19.69 | 19.69 | 19.69 | 19.69 | 19.69 |
| 30255B | 19.68 | 19.68 | 19.68 | 19.68 | 19.68 |
| 30256 | 19.67 | 19.67 | 19.67 | 19.67 | 19.67 |
| 30257 | 19.67 | 19.67 | 19.67 | 19.67 | 19.67 |
| 30258 | 19.67 | 19.67 | 19.67 | 19.67 | 19.67 |
| 30258A | 19.67 | 19.67 | 19.67 | 19.67 | 19.67 |
| 30258B | 19.67 | 19.67 | 19.67 | 19.67 | 19.67 |
| 30259 | 19.67 | 19.67 | 19.67 | 19.67 | 19.67 |
| 30260 | 22.65 | 22.65 | 22.65 | 22.65 | 22.65 |
| 30261 | 22.80 | 22.80 | 22.80 | 22.80 | 22.80 |
| 30262 | 22.81 | 22.81 | 22.81 | 22.81 | 22.81 |
| 30263 | 19.68 | 19.68 | 19.68 | 19.68 | 19.68 |
| 30264 | 20.10 | 20.10 | 20.10 | 20.10 | 20.10 |
| 30265 | 22.82 | 22.82 | 22.82 | 22.82 | 22.82 |
| 30267 | 21.19 | 21.19 | 21.19 | 21.19 | 21.19 |
| 30270 | 31.40 | 31.40 | 31.40 | 31.40 | 31.40 |
| 30271 | 28.09 | 28.09 | 28.09 | 28.09 | 28.09 |
| 30272 | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 |
| 30273 | 31.26 | 31.26 | 31.26 | 31.26 | 31.26 |
| 30275 | 31.23 | 31.23 | 31.23 | 31.23 | 31.23 |
| 30276 | 31.27 | 31.27 | 31.27 | 31.27 | 31.27 |
| 30277 | 31.85 | 31.85 | 31.85 | 31.85 | 31.85 |
| 30281 | 19.70 | 19.70 | 19.70 | 19.70 | 19.70 |
| 30282 | 24.00 | 24.00 | 24.00 | 24.00 | 24.00 |
| 30283 | 24.10 | 24.10 | 24.10 | 24.10 | 24.10 |
| 30284 | 27.06 | 27.06 | 27.06 | 27.06 | 27.06 |
| 30285 | 27.93 | 27.93 | 27.93 | 27.93 | 27.93 |
| 30286 | 28.69 | 28.69 | 28.69 | 28.69 | 28.69 |
| 30288 | 28.57 | 28.57 | 28.57 | 28.57 | 28.57 |
| 30289 | 30.31 | 30.31 | 30.31 | 30.31 | 30.31 |
| 30290 | 29.01 | 29.01 | 29.01 | 29.01 | 29.01 |
| 30291 | 30.99 | 30.99 | 30.99 | 30.99 | 30.99 |
| 30292 | 27.80 | 27.80 | 27.80 | 27.80 | 27.80 |
| 30293 | 31.29 | 31.29 | 31.29 | 31.29 | 31.29 |
| 30294 | 30.42 | 30.42 | 30.42 | 30.42 | 30.42 |
| 30295 | 28.52 | 28.52 | 28.52 | 28.52 | 28.52 |
| 30296 | 29.51 | 29.51 | 29.51 | 29.51 | 29.51 |
| 30297 | 30.34 | 30.34 | 30.34 | 30.34 | 30.34 |
| 30299 | 28.54 | 28.54 | 28.54 | 28.54 | 28.54 |
| 30301 | 8.96 | 8.77 | 8.87 | 8.81 | 8.89 |
| 30302 | 9.11 | 8.97 | 9.05 | 9.00 | 9.06 |
| 30303 | 9.13 | 8.98 | 9.07 | 9.02 | 9.08 |
| 30304 | 13.83 | 13.83 | 13.83 | 13.83 | 13.83 |
| 30305 | 9.97 | 9.91 | 9.96 | 9.92 | 9.96 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30306 | 11.26 | 11.25 | 11.26 | 11.25 | 11.26 |
| 30307 | 13.44 | 13.44 | 13.44 | 13.44 | 13.44 |
| 30308 | 13.59 | 13.59 | 13.59 | 13.59 | 13.59 |
| 30309 | 17.61 | 17.61 | 17.61 | 17.61 | 17.61 |
| 30310 | 18.93 | 18.93 | 18.93 | 18.93 | 18.93 |
| 30312 | 17.88 | 17.87 | 17.87 | 17.87 | 17.87 |
| 30313 | 17.91 | 17.91 | 17.91 | 17.91 | 17.91 |
| 30315 | 18.18 | 18.18 | 18.18 | 18.18 | 18.18 |
| 30318 | 18.33 | 18.33 | 18.33 | 18.33 | 18.33 |
| 30322 | 18.40 | 18.39 | 18.39 | 18.39 | 18.39 |
| 30323 | 18.37 | 18.37 | 18.37 | 18.37 | 18.37 |
| 30324 | 20.79 | 20.79 | 20.79 | 20.79 | 20.79 |
| 30325 | 21.41 | 21.41 | 21.41 | 21.41 | 21.41 |
| 30326 | 22.83 | 22.83 | 22.83 | 22.83 | 22.83 |
| 30327 | 18.21 | 18.21 | 18.21 | 18.21 | 18.21 |
| 30331 | 25.23 | 25.23 | 25.23 | 25.23 | 25.23 |
| 30332 | 23.09 | 23.09 | 23.09 | 23.09 | 23.09 |
| 30333 | 23.10 | 23.10 | 23.10 | 23.10 | 23.10 |
| 30335 | 23.08 | 23.08 | 23.08 | 23.08 | 23.08 |
| 30337 | 28.64 | 28.64 | 28.64 | 28.64 | 28.64 |
| 30338 | 20.88 | 20.88 | 20.88 | 20.88 | 20.88 |
| 30339 | 25.49 | 25.49 | 25.49 | 25.49 | 25.49 |
| 30340 | 24.79 | 24.79 | 24.79 | 24.79 | 24.79 |
| 30342 | 29.51 | 29.51 | 29.51 | 29.51 | 29.51 |
| 30343 | 22.52 | 22.52 | 22.52 | 22.52 | 22.52 |
| 30344 | 21.14 | 21.14 | 21.14 | 21.14 | 21.14 |
| 30347 | 27.85 | 27.85 | 27.85 | 27.85 | 27.85 |
| 30348 | 29.65 | 29.65 | 29.65 | 29.65 | 29.65 |
| 30349 | 29.55 | 29.55 | 29.55 | 29.55 | 29.55 |
| 30350 | 30.31 | 30.31 | 30.31 | 30.31 | 30.31 |
| 30356 | 29.58 | 29.58 | 29.58 | 29.58 | 29.58 |
| 30357 | 31.33 | 31.33 | 31.33 | 31.33 | 31.33 |
| 30362 | 31.45 | 31.45 | 31.45 | 31.45 | 31.45 |
| 30363 | 30.49 | 30.49 | 30.49 | 30.49 | 30.49 |
| 30366 | 32.41 | 32.41 | 32.41 | 32.41 | 32.41 |
| 30367 | 32.80 | 32.80 | 32.80 | 32.80 | 32.80 |
| 30368 | 31.13 | 31.13 | 31.13 | 31.13 | 31.13 |
| 30369 | 33.24 | 33.24 | 33.24 | 33.24 | 33.24 |
| 30371 | 32.48 | 32.48 | 32.48 | 32.48 | 32.48 |
| 30372 | 32.95 | 32.95 | 32.95 | 32.95 | 32.95 |
| 30374 | 33.03 | 33.03 | 33.03 | 33.03 | 33.03 |
| 30380 | 9.75 | 9.59 | 9.67 | 9.64 | 9.71 |
| 30381 | 9.90 | 9.73 | 9.81 | 9.78 | 9.85 |
| 30382 | 10.07 | 9.90 | 9.97 | 9.94 | 10.01 |
| 30383 | 10.63 | 10.39 | 10.48 | 10.44 | 10.53 |
| 30384 | 10.82 | - | - | - | - |
| 30384_STA14 | - | 10.62 | - | - | - |
| 30384_STA16 | - | 11.23 | 10.75 | 10.71 | 10.79 |
| 30384_STA20 | - | 11.53 | 11.27 | 11.34 | 11.26 |
| 30384_STA5 | - | 10.41 | 10.50 | 10.46 | 10.54 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30384 STA8 | - | 10.51 | 10.61 | 10.57 | 10.65 |
| 30385 | 10.87 | 11.61 | 11.37 | 11.43 | 11.36 |
| 30386 | 10.88 | 11.65 | 11.42 | 11.48 | 11.41 |
| 30387 | 11.06 | 11.79 | 11.57 | 11.63 | 11.56 |
| 30388 | 11.24 | 11.94 | 11.72 | 11.78 | 11.71 |
| 30391 | 11.52 | 12.16 | 11.96 | 12.02 | 11.95 |
| 30393 | 11.84 | 12.43 | 12.25 | 12.30 | 12.24 |
| 30395 | 12.02 | 12.59 | 12.42 | 12.46 | 12.41 |
| 30396 | 12.03 | 12.60 | 12.49 | 12.52 | 12.50 |
| 30397 | 12.17 | 12.60 | 12.58 | 12.59 | 12.58 |
| 30399 | 12.64 | 13.01 | 12.99 | 13.00 | 12.99 |
| 30400 | 13.16 | 13.40 | 13.39 | 13.40 | 13.39 |
| 30401 | 13.50 | 13.69 | 13.68 | 13.69 | 13.68 |
| 30402 | 13.94 | 14.11 | 14.10 | 14.10 | 14.10 |
| 30403 | 14.23 | 14.39 | 14.38 | 14.38 | 14.38 |
| 30404 | 14.86 | 14.98 | 14.97 | 14.98 | 14.97 |
| 30405 | 9.76 | 9.60 | 9.68 | 9.65 | 9.72 |
| 30406 | 9.79 | 9.63 | 9.71 | 9.67 | 9.74 |
| 30407 | 10.03 | 9.86 | 9.94 | 9.91 | 9.98 |
| 30408 | 10.05 | 9.88 | 9.96 | 9.92 | 9.99 |
| 30410 | 10.80 | 11.16 | 10.71 | 10.68 | 10.75 |
| 30411 | 11.02 | 11.35 | 11.00 | 10.93 | 11.03 |
| 30412 | 11.52 | 11.68 | 11.54 | 11.41 | 11.54 |
| 30413 | 12.64 | 12.64 | 12.64 | 12.64 | 12.64 |
| 30414 | 14.56 | 14.56 | 14.56 | 14.56 | 14.56 |
| 30415 | 14.83 | 14.83 | 14.83 | 14.83 | 14.83 |
| 30416 | 15.68 | 15.68 | 15.68 | 15.68 | 15.68 |
| 30417 | 16.61 | 16.61 | 16.61 | 16.61 | 16.61 |
| 30418 | 17.14 | 17.14 | 17.14 | 17.14 | 17.14 |
| 30419 | 18.82 | 18.82 | 18.82 | 18.82 | 18.82 |
| 30421 | 12.25 | 12.27 | 12.25 | 12.24 | 12.25 |
| 30422 | 20.06 | 20.06 | 20.06 | 20.06 | 20.06 |
| 30423 | 20.90 | 20.90 | 20.90 | 20.90 | 20.90 |
| 30424 | 20.91 | 20.91 | 20.91 | 20.91 | 20.91 |
| 30425 | 14.14 | 14.14 | 14.14 | 14.14 | 14.14 |
| 30426 | 14.14 | 14.14 | 14.14 | 14.14 | 14.14 |
| 30427 | 14.14 | 14.14 | 14.14 | 14.14 | 14.14 |
| 30428 | 9.91 | 9.75 | 9.84 | 9.79 | 9.87 |
| 30429 | 9.91 | 9.75 | 9.84 | 9.79 | 9.87 |
| 30431 | 16.67 | 16.67 | 16.67 | 16.67 | 16.67 |
| 30432 | 20.59 | 20.59 | 20.59 | 20.59 | 20.59 |
| 30434 | 21.56 | 21.56 | 21.56 | 21.56 | 21.56 |
| 30436 | 22.84 | 22.84 | 22.84 | 22.84 | 22.84 |
| 30437 | 25.35 | 25.35 | 25.35 | 25.35 | 25.35 |
| 30438 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 |
| 30439 | 25.38 | 25.38 | 25.38 | 25.38 | 25.38 |
| 30440 | 25.39 | 25.39 | 25.39 | 25.39 | 25.39 |
| 30441 | 25.41 | 25.41 | 25.41 | 25.41 | 25.41 |
| 30442 | 25.48 | 25.48 | 25.48 | 25.48 | 25.48 |
| 30443 | 25.71 | 25.71 | 25.71 | 25.71 | 25.71 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30444 | 22.91 | 22.91 | 22.91 | 22.91 | 22.91 |
| 30445 | 22.34 | 22.34 | 22.34 | 22.34 | 22.34 |
| 30446 | 22.29 | 22.29 | 22.29 | 22.29 | 22.29 |
| 30447 | 22.29 | 22.29 | 22.29 | 22.29 | 22.29 |
| 30448 | 23.31 | 23.31 | 23.31 | 23.31 | 23.31 |
| 30449 | 23.64 | 23.64 | 23.64 | 23.64 | 23.64 |
| 30450 | 24.53 | 24.53 | 24.53 | 24.53 | 24.53 |
| 30451 | 24.98 | 24.98 | 24.98 | 24.98 | 24.98 |
| 30452 | 25.36 | 25.36 | 25.36 | 25.36 | 25.36 |
| 30453 | 25.36 | 25.36 | 25.36 | 25.36 | 25.36 |
| 30454 | 25.42 | 25.42 | 25.42 | 25.42 | 25.42 |
| 30455 | 25.40 | 25.40 | 25.40 | 25.40 | 25.40 |
| 30456 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 |
| 30457 | 25.89 | 25.89 | 25.89 | 25.89 | 25.89 |
| 30458 | 26.80 | 26.80 | 26.80 | 26.80 | 26.80 |
| 30459 | 27.47 | 27.47 | 27.47 | 27.47 | 27.47 |
| 30460 | 27.65 | 27.65 | 27.65 | 27.65 | 27.65 |
| 30461 | 27.83 | 27.83 | 27.83 | 27.83 | 27.83 |
| 30462 | 26.70 | 26.70 | 26.70 | 26.70 | 26.70 |
| 30463 | 26.83 | 26.83 | 26.83 | 26.83 | 26.83 |
| 30464 | 27.48 | 27.48 | 27.48 | 27.48 | 27.48 |
| 30465 | 27.39 | 27.39 | 27.39 | 27.39 | 27.39 |
| 30466 | 27.87 | 27.87 | 27.87 | 27.87 | 27.87 |
| 30467 | 25.45 | 25.45 | 25.45 | 25.45 | 25.45 |
| 30468 | 25.54 | 25.54 | 25.54 | 25.54 | 25.54 |
| 30469 | 26.35 | 26.35 | 26.35 | 26.35 | 26.35 |
| 30470 | 26.44 | 26.44 | 26.44 | 26.44 | 26.44 |
| 30473 | 26.57 | 26.57 | 26.57 | 26.57 | 26.57 |
| 30474 | 26.66 | 26.66 | 26.66 | 26.66 | 26.66 |
| 30475 | 26.85 | 26.85 | 26.85 | 26.85 | 26.85 |
| 30476 | 26.84 | 26.84 | 26.84 | 26.84 | 26.84 |
| 30477 | 26.57 | 26.57 | 26.57 | 26.57 | 26.57 |
| 30478 | 26.57 | 26.57 | 26.57 | 26.57 | 26.57 |
| 30479 | 26.88 | 26.88 | 26.88 | 26.88 | 26.88 |
| 30480 | 26.57 | 26.57 | 26.57 | 26.57 | 26.57 |
| 30482 | 27.08 | 27.08 | 27.08 | 27.08 | 27.08 |
| 30483 | 27.02 | 27.02 | 27.02 | 27.02 | 27.02 |
| 30484 | 27.68 | 27.68 | 27.68 | 27.68 | 27.68 |
| 30485 | 27.41 | 27.41 | 27.41 | 27.41 | 27.41 |
| 30486 | 27.68 | 27.68 | 27.68 | 27.68 | 27.68 |
| 30487 | 27.68 | 27.68 | 27.68 | 27.68 | 27.68 |
| 30488 | 27.75 | 27.75 | 27.75 | 27.75 | 27.75 |
| 30489 | 27.73 | 27.73 | 27.73 | 27.73 | 27.73 |
| 30490 | 27.92 | 27.92 | 27.92 | 27.92 | 27.92 |
| 30491 | 27.99 | 27.99 | 27.99 | 27.99 | 27.99 |
| 30492 | 28.60 | 28.60 | 28.60 | 28.60 | 28.60 |
| 30493 | 29.08 | 29.08 | 29.08 | 29.08 | 29.08 |
| 30494 | 29.42 | 29.42 | 29.42 | 29.42 | 29.42 |
| 30495 | 29.09 | 29.09 | 29.09 | 29.09 | 29.09 |
| 30496 | 29.20 | 29.20 | 29.20 | 29.20 | 29.20 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30497 | 29.61 | 29.61 | 29.61 | 29.61 | 29.61 |
| 30498 | 29.67 | 29.67 | 29.67 | 29.67 | 29.67 |
| 30499 | 30.55 | 30.55 | 30.55 | 30.55 | 30.55 |
| 30500 | 29.67 | 29.67 | 29.67 | 29.67 | 29.67 |
| 30501 | 29.54 | 29.54 | 29.54 | 29.54 | 29.54 |
| 30502 | 30.45 | 30.45 | 30.45 | 30.45 | 30.45 |
| 30503 | 28.74 | 28.74 | 28.74 | 28.74 | 28.74 |
| 30508 | 19.22 | 19.22 | 19.22 | 19.22 | 19.22 |
| 30509 | 19.55 | 19.55 | 19.55 | 19.55 | 19.55 |
| 30510 | 20.97 | 20.97 | 20.97 | 20.97 | 20.97 |
| 30511 | 22.11 | 22.11 | 22.11 | 22.11 | 22.11 |
| 30513 | 19.06 | 19.06 | 19.06 | 19.05 | 19.06 |
| 30514 | 19.37 | 19.38 | 19.37 | 19.37 | 19.37 |
| 30515 | 20.79 | 20.79 | 20.79 | 20.79 | 20.79 |
| 30516 | 21.20 | 21.20 | 21.20 | 21.20 | 21.20 |
| 30517 | 23.01 | 23.01 | 23.01 | 23.01 | 23.01 |
| 30518 | 26.10 | 26.10 | 26.10 | 26.10 | 26.10 |
| 30519 | 28.93 | 28.93 | 28.93 | 28.93 | 28.93 |
| 30520 | 29.94 | 29.94 | 29.94 | 29.94 | 29.94 |
| 30521 | 30.19 | 30.19 | 30.19 | 30.19 | 30.19 |
| 30522 | 30.38 | 30.38 | 30.38 | 30.38 | 30.38 |
| 30523 | 30.67 | 30.67 | 30.67 | 30.67 | 30.67 |
| 30524 | 30.75 | 30.75 | 30.75 | 30.75 | 30.75 |
| 30525 | 30.75 | 30.75 | 30.75 | 30.75 | 30.75 |
| 30526 | 29.07 | 29.07 | 29.07 | 29.07 | 29.07 |
| 30527 | 31.02 | 31.02 | 31.02 | 31.02 | 31.02 |
| 30528 | 32.95 | 32.95 | 32.95 | 32.95 | 32.95 |
| 30529 | 33.03 | 33.03 | 33.03 | 33.03 | 33.03 |
| 30530 | 19.73 | 19.73 | 19.73 | 19.73 | 19.73 |
| 30531 | 20.06 | 20.07 | 20.06 | 20.06 | 20.06 |
| 30532 | 19.42 | 19.42 | 19.42 | 19.42 | 19.42 |
| 30533 | 19.40 | 19.41 | 19.40 | 19.40 | 19.40 |
| 30535 | 22.47 | 22.47 | 22.47 | 22.47 | 22.47 |
| 30536 | 23.11 | 23.11 | 23.11 | 23.11 | 23.11 |
| 30537 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 |
| 30538 | 26.76 | 26.76 | 26.76 | 26.76 | 26.76 |
| 30539 | 28.17 | 28.17 | 28.17 | 28.17 | 28.17 |
| 30540 | 28.69 | 28.69 | 28.69 | 28.69 | 28.69 |
| 30541 | 28.81 | 28.81 | 28.81 | 28.81 | 28.81 |
| 30542 | 28.90 | 28.90 | 28.90 | 28.90 | 28.90 |
| 30543 | 29.63 | 29.63 | 29.63 | 29.63 | 29.63 |
| 30550 | 25.93 | 25.93 | 25.93 | 25.93 | 25.93 |
| 30552 | 28.67 | 28.67 | 28.67 | 28.67 | 28.67 |
| 30553 | 30.87 | 30.87 | 30.87 | 30.87 | 30.87 |
| 30554 | 31.08 | 31.08 | 31.08 | 31.08 | 31.08 |
| 30555 | 33.66 | 33.66 | 33.66 | 33.66 | 33.66 |
| 30556 | 33.25 | 33.25 | 33.25 | 33.25 | 33.25 |
| 30557 | 33.50 | 33.50 | 33.50 | 33.50 | 33.50 |
| 30558 | 25.94 | 25.94 | 25.94 | 25.94 | 25.94 |
| 30559 | 26.36 | 26.36 | 26.36 | 26.36 | 26.36 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30560 | 29.90 | 29.90 | 29.90 | 29.90 | 29.90 |
| 30561 | 30.66 | 30.66 | 30.66 | 30.66 | 30.66 |
| 30562 | 31.87 | 31.87 | 31.87 | 31.87 | 31.87 |
| 30563 | 33.11 | 33.11 | 33.11 | 33.11 | 33.11 |
| 30564 | 34.05 | 34.05 | 34.05 | 34.05 | 34.05 |
| 30565 | 33.27 | 33.27 | 33.27 | 33.27 | 33.27 |
| 30566 | 33.85 | 33.85 | 33.85 | 33.85 | 33.85 |
| 30567 | 33.70 | 33.70 | 33.70 | 33.70 | 33.70 |
| 30568 | 10.92 | 11.66 | 11.44 | 11.50 | 11.43 |
| 30569 | 10.95 | 11.68 | 11.46 | 11.52 | 11.45 |
| 30570 | 11.16 | 11.88 | 11.66 | 11.72 | 11.65 |
| 30571 | 11.21 | 11.92 | 11.70 | 11.76 | 11.69 |
| 30572 | 26.86 | 26.86 | 26.86 | 26.86 | 26.86 |
| 30573 | 11.15 | 11.79 | 11.57 | 11.65 | 11.56 |
| 30574 | 11.19 | 11.81 | 11.59 | 11.67 | 11.57 |
| 30575 | 11.89 | 12.20 | 12.05 | 12.18 | 12.00 |
| 30576 | 12.19 | 12.44 | 12.26 | 12.43 | 12.26 |
| 30577 | 13.31 | 13.36 | 13.33 | 13.36 | 13.33 |
| 30578 | 13.67 | 13.71 | 13.68 | 13.72 | 13.68 |
| 30579 | 13.90 | 13.94 | 13.91 | 13.94 | 13.91 |
| 30580 | 14.07 | 14.10 | 14.08 | 14.10 | 14.08 |
| 30581 | 14.18 | 14.21 | 14.19 | 14.21 | 14.19 |
| 30582 | 15.08 | 15.09 | 15.08 | 15.09 | 15.08 |
| 30583 | 16.08 | 16.08 | 16.08 | 16.08 | 16.08 |
| 30584 | 16.33 | 16.33 | 16.33 | 16.33 | 16.33 |
| 30585 | 17.33 | 17.33 | 17.33 | 17.33 | 17.33 |
| 30586 | 17.59 | 17.59 | 17.59 | 17.59 | 17.59 |
| 30588 | 14.28 | 14.30 | 14.29 | 14.31 | 14.29 |
| 30590 | 19.82 | 19.82 | 19.82 | 19.82 | 19.82 |
| 30591 | 18.31 | 18.32 | 18.32 | 18.32 | 18.32 |
| 30592 | 18.13 | 18.14 | 18.13 | 18.14 | 18.13 |
| 30593 | 16.28 | 16.29 | 16.29 | 16.29 | 16.29 |
| 30595 | 16.58 | 16.59 | 16.59 | 16.59 | 16.59 |
| 30597 | 16.77 | 16.78 | 16.78 | 16.78 | 16.78 |
| 30599 | 17.02 | 17.02 | 17.02 | 17.02 | 17.02 |
| 30601 | 17.02 | 17.02 | 17.02 | 17.02 | 17.02 |
| 30603 | 16.22 | 16.23 | 16.23 | 16.23 | 16.23 |
| 30604 | 16.80 | 16.80 | 16.80 | 16.80 | 16.80 |
| 30605 | 18.43 | 18.43 | 18.43 | 18.43 | 18.43 |
| 30606 | 19.24 | 19.24 | 19.24 | 19.24 | 19.24 |
| 30607 | 20.46 | 20.46 | 20.46 | 20.46 | 20.46 |
| 30608 | 20.89 | 20.89 | 20.89 | 20.89 | 20.89 |
| 30609 | 21.39 | 21.39 | 21.39 | 21.39 | 21.39 |
| 30610 | 22.54 | 22.54 | 22.54 | 22.54 | 22.54 |
| 30611 | 22.59 | 22.59 | 22.59 | 22.59 | 22.59 |
| 30612 | 21.41 | 21.41 | 21.41 | 21.41 | 21.41 |
| 30613 | 22.79 | 22.79 | 22.79 | 22.79 | 22.79 |
| 30614 | 11.06 | 11.80 | 11.57 | 11.63 | 11.56 |
| 30615 | 11.70 | 11.80 | 11.70 | 11.70 | 11.70 |
| 30616 | 13.73 | 13.73 | 13.73 | 13.73 | 13.73 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30617 | 17.65 | 17.65 | 17.65 | 17.65 | 17.65 |
| 30618 | 18.72 | 18.72 | 18.72 | 18.72 | 18.72 |
| 30619 | 11.43 | 12.00 | 11.79 | 11.87 | 11.78 |
| 30620 | 11.52 | 12.03 | 11.82 | 11.91 | 11.80 |
| 30621 | 11.52 | 12.03 | 11.82 | 11.91 | 11.80 |
| 30622 | 12.60 | 12.77 | 12.65 | 12.78 | 12.66 |
| 30623 | 13.08 | 13.14 | 13.10 | 13.15 | 13.10 |
| 30624 | 13.40 | 13.43 | 13.41 | 13.43 | 13.41 |
| 30626 | 15.15 | 15.15 | 15.15 | 15.15 | 15.15 |
| 30627 | 12.18 | 12.49 | 12.29 | 12.50 | 12.29 |
| 30628 | 18.71 | 18.71 | 18.71 | 18.71 | 18.71 |
| 30629 | 12.15 | 12.31 | 12.20 | 12.29 | 12.20 |
| 30630 | 12.39 | 12.44 | 12.41 | 12.44 | 12.41 |
| 30631 | 12.91 | 12.92 | 12.91 | 12.92 | 12.91 |
| 30632 | 13.07 | 13.08 | 13.08 | 13.08 | 13.08 |
| 30633 | 13.42 | 13.42 | 13.42 | 13.42 | 13.42 |
| 30634 | 14.02 | 14.02 | 14.02 | 14.02 | 14.02 |
| 30635 | 14.06 | 14.06 | 14.06 | 14.07 | 14.06 |
| 30636 | 14.11 | 14.12 | 14.11 | 14.12 | 14.11 |
| 30637 | 16.65 | 16.65 | 16.65 | 16.65 | 16.65 |
| 30638 | 16.66 | 16.66 | 16.66 | 16.66 | 16.66 |
| 30639 | 16.69 | 16.69 | 16.69 | 16.69 | 16.69 |
| 30640 | 16.75 | 16.75 | 16.75 | 16.75 | 16.75 |
| 30641 | 16.81 | 16.81 | 16.81 | 16.81 | 16.81 |
| 30642 | 16.84 | 16.84 | 16.84 | 16.84 | 16.84 |
| 30643 | 17.01 | 17.01 | 17.01 | 17.01 | 17.01 |
| 30644 | 14.31 | 14.31 | 14.31 | 14.31 | 14.31 |
| 30645 | 17.71 | 17.71 | 17.71 | 17.71 | 17.71 |
| 30646 | 17.74 | 17.74 | 17.74 | 17.74 | 17.74 |
| 30647 | 17.89 | 17.89 | 17.89 | 17.89 | 17.89 |
| 30648 | 17.85 | 17.85 | 17.85 | 17.85 | 17.85 |
| 30649 | 16.96 | 16.96 | 16.96 | 16.96 | 16.96 |
| 30650 | 17.03 | 17.03 | 17.03 | 17.03 | 17.03 |
| 30651 | 11.84 | 12.43 | 12.25 | 12.30 | 12.25 |
| 30652 | 12.29 | 12.49 | 12.36 | 12.40 | 12.35 |
| 30653 | 11.95 | 12.58 | 12.41 | 12.45 | 12.40 |
| 30654 | 15.71 | 15.74 | 15.72 | 15.74 | 15.72 |
| 30655 | 11.96 | 12.58 | 12.41 | 12.46 | 12.40 |
| 30656 | 14.07 | 14.07 | 14.07 | 14.07 | 14.07 |
| 30657 | 12.82 | 12.81 | 12.81 | 12.81 | 12.81 |
| 30658 | 14.94 | 14.93 | 14.93 | 14.93 | 14.93 |
| 30659 | 19.07 | 19.07 | 19.07 | 19.07 | 19.07 |
| 30660 | 12.02 | 12.59 | 12.42 | 12.46 | 12.41 |
| 30661 | 12.03 | 12.60 | 12.49 | 12.52 | 12.50 |
| 30662 | 12.09 | 12.60 | 12.43 | 12.47 | 12.42 |
| 30663 | 12.03 | 12.60 | 12.50 | 12.52 | 12.50 |
| 30664 | 25.16 | 25.16 | 25.16 | 25.16 | 25.16 |
| 30665 | 22.12 | 22.12 | 22.12 | 22.12 | 22.12 |
| 30666 | 20.06 | 20.06 | 20.06 | 20.06 | 20.06 |
| 30667 | 14.86 | 14.98 | 14.97 | 14.98 | 14.97 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30668 | 14.56 | 14.64 | 14.63 | 14.64 | 14.63 |
| 30669 | 14.83 | 14.96 | 14.95 | 14.96 | 14.95 |
| 30670A | 15.45 | 15.45 | 15.45 | 15.45 | 15.45 |
| 30670C | 13.14 | 13.14 | 13.14 | 13.14 | 13.14 |
| 30670F | 12.57 | 12.60 | 12.58 | 12.60 | 12.58 |
| 30670G | 12.32 | 12.53 | 12.53 | 12.53 | 12.53 |
| 30671A | 13.99 | 14.03 | 14.01 | 14.03 | 14.01 |
| 30671B | 12.32 | 12.54 | 12.53 | 12.53 | 12.53 |
| 30672 | 12.02 | 12.76 | 12.73 | 12.75 | 12.73 |
| 30673A | 13.61 | 13.74 | 13.73 | 13.73 | 13.73 |
| 30673B | 13.56 | 13.74 | 13.73 | 13.73 | 13.73 |
| 30673C | 11.77 | 12.77 | 12.74 | 12.75 | 12.73 |
| 30674A | 13.56 | 13.73 | 13.73 | 13.73 | 13.73 |
| 30674B | 13.56 | 13.73 | 13.73 | 13.73 | 13.72 |
| 30674C | 13.55 | 13.73 | 13.72 | 13.73 | 13.72 |
| 30674D | 13.56 | 13.73 | 13.73 | 13.73 | 13.73 |
| 30674E | 11.10 | 12.77 | 12.74 | 12.76 | 12.74 |
| 30675 | 11.10 | 12.77 | 12.74 | 12.76 | 12.74 |
| 30676 | 11.10 | 12.77 | 12.74 | 12.76 | 12.74 |
| 30677 | 11.14 | 12.77 | 12.74 | 12.76 | 12.74 |
| 30677A | 11.09 | 12.77 | 12.74 | 12.76 | 12.74 |
| 30678 | 11.02 | 12.77 | 12.74 | 12.76 | 12.74 |
| 30678A | 11.02 | 12.77 | 12.74 | 12.76 | 12.74 |
| 30679A | 13.55 | 13.73 | 13.72 | 13.73 | 13.72 |
| 30679B | 13.55 | 13.73 | 13.72 | 13.73 | 13.72 |
| 30679C | 11.78 | 12.77 | 12.74 | 12.76 | 12.74 |
| 30679D | 11.03 | 12.77 | 12.74 | 12.76 | 12.74 |
| 30680 | 8.90 | 9.18 | 9.13 | 9.15 | 9.13 |
| 30684 | 8.78 | 9.13 | 8.79 | 8.80 | 8.79 |
| 30690 | 8.77 | 9.13 | 8.78 | 8.79 | 8.78 |
| 30691 AU | 8.76 | 9.14 | 8.77 | 8.78 | 8.77 |
| 30691B | 9.42 | 10.12 | 9.98 | 10.06 | 9.97 |
| 30691C | 10.01 | 11.84 | 11.78 | 11.81 | 11.77 |
| 30691D | 10.98 | 12.77 | 12.74 | 12.76 | 12.74 |
| 30691 ED | 10.98 | 12.77 | 12.74 | 12.76 | 12.74 |
| 30691EU | 11.61 | 12.89 | 12.84 | 12.87 | 12.84 |
| 30691F | 13.74 | 13.74 | 13.74 | 13.74 | 13.74 |
| 30691G | 13.55 | 13.73 | 13.72 | 13.73 | 13.72 |
| 30692A | 16.69 | 16.69 | 16.69 | 16.69 | 16.69 |
| 30692B | 14.75 | 14.75 | 14.75 | 14.75 | 14.75 |
| 30692C | 12.59 | 12.61 | 12.59 | 12.61 | 12.59 |
| 30693A | 13.23 | 13.23 | 13.23 | 13.23 | 13.23 |
| 30693B | 9.14 | 9.14 | 9.14 | 9.14 | 9.14 |
| 30694A | 13.46 | 13.46 | 13.46 | 13.46 | 13.46 |
| 30694B | 12.58 | 12.60 | 12.58 | 12.60 | 12.58 |
| 30694C | 9.09 | 9.13 | 9.09 | 9.09 | 9.09 |
| 30695 | 8.85 | 9.13 | 8.85 | 8.85 | 8.85 |
| 30696A | 12.64 | 12.64 | 12.64 | 12.64 | 12.64 |
| 30696B | 13.66 | 13.66 | 13.66 | 13.66 | 13.66 |
| 30696C | 8.77 | 9.13 | 8.78 | 8.79 | 8.78 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30697A | 14.06 | 14.06 | 14.06 | 14.06 | 14.06 |
| 30697C | 8.77 | 9.13 | 8.78 | 8.79 | 8.78 |
| 30698 | 8.77 | 9.13 | 8.78 | 8.79 | 8.78 |
| 30699 | 8.77 | 9.13 | 8.78 | 8.79 | 8.78 |
| 30700 | 13.55 | 13.73 | 13.72 | 13.73 | 13.72 |
| 30702 | 13.68 | 13.85 | 13.84 | 13.84 | 13.84 |
| 30704 | 13.99 | 14.13 | 14.12 | 14.12 | 14.12 |
| 30706 | 14.87 | 14.87 | 14.87 | 14.87 | 14.87 |
| 30708 | 15.45 | 15.46 | 15.45 | 15.46 | 15.45 |
| 30709 | 16.91 | 16.96 | 16.96 | 16.96 | 16.96 |
| 30710 | 16.94 | 16.99 | 16.99 | 16.99 | 16.99 |
| 30712 | 17.27 | 17.32 | 17.31 | 17.32 | 17.31 |
| 30713 | 17.33 | 17.37 | 17.36 | 17.37 | 17.36 |
| 30714 | 17.49 | 17.53 | 17.52 | 17.53 | 17.52 |
| 30715 | 17.73 | 17.76 | 17.75 | 17.76 | 17.75 |
| 30716 | 17.97 | 18.00 | 17.99 | 18.00 | 17.99 |
| 30717 | 18.23 | 18.25 | 18.24 | 18.25 | 18.24 |
| 30720 | 19.52 | 19.52 | 19.52 | 19.52 | 19.52 |
| 30721 | 19.66 | 19.66 | 19.66 | 19.66 | 19.66 |
| 30722 | 20.34 | 20.34 | 20.34 | 20.34 | 20.34 |
| 30723 | 20.94 | 20.94 | 20.94 | 20.94 | 20.94 |
| 30724 | 18.73 | 18.73 | 18.73 | 18.73 | 18.73 |
| 30725 | 13.97 | 13.97 | 13.97 | 13.97 | 13.97 |
| 30726 | 13.69 | 13.85 | 13.84 | 13.85 | 13.84 |
| 30727 | 15.45 | 15.45 | 15.45 | 15.45 | 15.45 |
| 30728 | 15.59 | 15.60 | 15.59 | 15.60 | 15.59 |
| 30729 | 15.94 | 15.94 | 15.94 | 15.94 | 15.94 |
| 30730 | 17.08 | 17.08 | 17.08 | 17.08 | 17.08 |
| 30732 | 18.22 | 18.22 | 18.22 | 18.22 | 18.22 |
| 30733 | 19.63 | 19.63 | 19.63 | 19.63 | 19.63 |
| 30734 | 22.12 | 22.12 | 22.12 | 22.12 | 22.12 |
| 30735 | 23.81 | 23.81 | 23.81 | 23.81 | 23.81 |
| 30736 | 19.87 | 19.87 | 19.87 | 19.87 | 19.87 |
| 30737 | 17.55 | 17.55 | 17.55 | 17.55 | 17.55 |
| 30738 | 19.13 | 19.13 | 19.13 | 19.13 | 19.13 |
| 30739 | 18.26 | 18.26 | 18.26 | 18.26 | 18.26 |
| 30740 | 17.55 | 17.55 | 17.55 | 17.55 | 17.55 |
| 30741 | 16.48 | 16.48 | 16.48 | 16.48 | 16.48 |
| 30742 | 15.31 | 15.32 | 15.31 | 15.32 | 15.31 |
| 30743 | 15.67 | 15.68 | 15.67 | 15.68 | 15.67 |
| 30744 | 16.09 | 16.09 | 16.09 | 16.09 | 16.09 |
| 30745 | 16.76 | 16.76 | 16.76 | 16.76 | 16.76 |
| 30746 | 18.69 | 18.69 | 18.69 | 18.69 | 18.69 |
| 30747 | 19.17 | 19.17 | 19.17 | 19.17 | 19.17 |
| 30748 | 19.59 | 19.59 | 19.59 | 19.59 | 19.59 |
| 30749 | 20.04 | 20.04 | 20.04 | 20.04 | 20.04 |
| 30750 | 20.63 | 20.63 | 20.63 | 20.63 | 20.63 |
| 30751 | 21.21 | 21.21 | 21.21 | 21.21 | 21.21 |
| 30752 | 21.78 | 21.78 | 21.78 | 21.78 | 21.78 |
| 30753 | 22.47 | 22.47 | 22.47 | 22.47 | 22.47 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30754 | 23.10 | 23.10 | 23.10 | 23.10 | 23.10 |
| 30755 | 23.28 | 23.28 | 23.28 | 23.28 | 23.28 |
| 30756 | 23.60 | 23.60 | 23.60 | 23.60 | 23.60 |
| 30757 | 25.19 | 25.19 | 25.19 | 25.19 | 25.19 |
| 30759 | 26.43 | 26.43 | 26.43 | 26.43 | 26.43 |
| 30761 | 27.35 | 27.35 | 27.35 | 27.35 | 27.35 |
| 30762 | 27.62 | 27.62 | 27.62 | 27.62 | 27.62 |
| 30763 | 27.66 | 27.66 | 27.66 | 27.66 | 27.66 |
| 30765 | 29.63 | 29.63 | 29.63 | 29.63 | 29.63 |
| 30767 | 23.09 | 23.09 | 23.09 | 23.09 | 23.09 |
| 30768 | 25.45 | 25.45 | 25.45 | 25.45 | 25.45 |
| 30769 | 23.94 | 23.94 | 23.94 | 23.94 | 23.94 |
| 30770 | 29.02 | 29.02 | 29.02 | 29.02 | 29.02 |
| 30775 | 19.13 | 19.13 | 19.13 | 19.13 | 19.13 |
| 30777 | 25.31 | 25.31 | 25.31 | 25.31 | 25.31 |
| 30779 | 23.09 | 23.09 | 23.09 | 23.09 | 23.09 |
| 30780 | 22.96 | 22.96 | 22.96 | 22.96 | 22.96 |
| 30781 | 24.84 | 24.84 | 24.84 | 24.84 | 24.84 |
| 30782 | 21.82 | 21.82 | 21.82 | 21.82 | 21.82 |
| 30783 | 18.80 | 18.80 | 18.80 | 18.80 | 18.80 |
| 30784 | 19.97 | 19.97 | 19.97 | 19.97 | 19.97 |
| 30785 | 17.86 | 17.89 | 17.88 | 17.89 | 17.88 |
| 30786 | 18.94 | 18.94 | 18.94 | 18.94 | 18.94 |
| 30787 | 22.79 | 22.79 | 22.79 | 22.79 | 22.79 |
| 30788 | 22.88 | 22.88 | 22.88 | 22.88 | 22.88 |
| 30790 | 20.65 | 20.65 | 20.65 | 20.65 | 20.65 |
| 30792 | 26.31 | 26.31 | 26.31 | 26.31 | 26.31 |
| 30793 | 28.87 | 28.87 | 28.87 | 28.87 | 28.87 |
| 30795 | 30.03 | 30.03 | 30.03 | 30.03 | 30.03 |
| 30800 | 20.93 | 20.93 | 20.93 | 20.93 | 20.93 |
| 30801 | 20.94 | 20.94 | 20.94 | 20.94 | 20.94 |
| 30802 | 20.95 | 20.95 | 20.95 | 20.95 | 20.95 |
| 30803 | 21.08 | 21.08 | 21.08 | 21.08 | 21.08 |
| 30804 | 21.47 | 21.47 | 21.47 | 21.47 | 21.47 |
| 30805 | 22.42 | 22.42 | 22.42 | 22.42 | 22.42 |
| 30806 | 23.06 | 23.06 | 23.06 | 23.06 | 23.06 |
| 30807 | 23.08 | 23.08 | 23.08 | 23.08 | 23.08 |
| 30808 | 23.89 | 23.89 | 23.89 | 23.89 | 23.89 |
| 30811 | 24.34 | 24.34 | 24.34 | 24.34 | 24.34 |
| 30814 | 24.45 | 24.45 | 24.45 | 24.45 | 24.45 |
| 30815 | 24.51 | 24.51 | 24.51 | 24.51 | 24.51 |
| 30816 | 24.52 | 24.52 | 24.52 | 24.52 | 24.52 |
| 30817 | 21.54 | 21.54 | 21.54 | 21.54 | 21.54 |
| 30818 | 21.55 | 21.55 | 21.55 | 21.55 | 21.55 |
| 30820 | 24.83 | 24.83 | 24.83 | 24.83 | 24.83 |
| 30821 | 20.88 | 20.88 | 20.88 | 20.88 | 20.88 |
| 30822 | 20.87 | 20.87 | 20.87 | 20.87 | 20.87 |
| 30823 | 20.69 | 20.69 | 20.69 | 20.69 | 20.69 |
| 30824 | 20.69 | 20.69 | 20.69 | 20.69 | 20.69 |
| 30825 | 24.17 | 24.17 | 24.17 | 24.17 | 24.17 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30826 | 20.87 | 20.87 | 20.87 | 20.87 | 20.87 |
| 30827 | 20.87 | 20.87 | 20.87 | 20.87 | 20.87 |
| 30828 | 20.88 | 20.88 | 20.88 | 20.88 | 20.88 |
| 30830 | 23.43 | 23.43 | 23.43 | 23.43 | 23.43 |
| 30831 | 24.09 | 24.09 | 24.09 | 24.09 | 24.09 |
| 30832 | 24.34 | 24.34 | 24.34 | 24.34 | 24.34 |
| 30833 | 26.13 | 26.13 | 26.13 | 26.13 | 26.13 |
| 30834 | 26.15 | 26.15 | 26.15 | 26.15 | 26.15 |
| 30835 | 24.34 | 24.34 | 24.34 | 24.34 | 24.34 |
| 30836 | 24.44 | 24.44 | 24.44 | 24.44 | 24.44 |
| 30837 | 24.53 | 24.53 | 24.53 | 24.53 | 24.53 |
| 30838 | 24.43 | 24.43 | 24.43 | 24.43 | 24.43 |
| 30840 | 23.09 | 23.09 | 23.09 | 23.09 | 23.09 |
| 30841 | 24.71 | 24.71 | 24.71 | 24.71 | 24.71 |
| 30842 | 24.82 | 24.82 | 24.82 | 24.82 | 24.82 |
| 30843 | 24.82 | 24.82 | 24.82 | 24.82 | 24.82 |
| 30844 | 24.84 | 24.84 | 24.84 | 24.84 | 24.84 |
| 30845 | 25.45 | 25.45 | 25.45 | 25.45 | 25.45 |
| 30846 | 25.72 | 25.72 | 25.72 | 25.72 | 25.72 |
| 30847 | 27.15 | 27.15 | 27.15 | 27.15 | 27.15 |
| 30848 | 27.15 | 27.15 | 27.15 | 27.15 | 27.15 |
| 30849 | 27.16 | 27.16 | 27.16 | 27.16 | 27.16 |
| 30850 | 24.71 | 24.71 | 24.71 | 24.71 | 24.71 |
| 30852 | 25.11 | 25.11 | 25.11 | 25.11 | 25.11 |
| 30853 | 25.57 | 25.57 | 25.57 | 25.57 | 25.57 |
| 30854 | 24.93 | 24.93 | 24.93 | 24.93 | 24.93 |
| 30855 | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 |
| 30856 | 27.07 | 27.07 | 27.07 | 27.07 | 27.07 |
| 30857 | 27.42 | 27.42 | 27.42 | 27.42 | 27.42 |
| 30858 | 26.32 | 26.32 | 26.32 | 26.32 | 26.32 |
| 30859 | 25.78 | 25.78 | 25.78 | 25.78 | 25.78 |
| 30860 | 26.65 | 26.65 | 26.65 | 26.65 | 26.65 |
| 30861 | 26.96 | 26.96 | 26.96 | 26.96 | 26.96 |
| 30862 | 26.97 | 26.97 | 26.97 | 26.97 | 26.97 |
| 30863 | 27.69 | 27.69 | 27.69 | 27.69 | 27.69 |
| 30864 | 27.69 | 27.69 | 27.69 | 27.69 | 27.69 |
| 30865 | 27.71 | 27.71 | 27.71 | 27.71 | 27.71 |
| 30867 | 26.33 | 26.33 | 26.33 | 26.33 | 26.33 |
| 30868 | 25.01 | 25.01 | 25.01 | 25.01 | 25.01 |
| 30870 | 21.54 | 21.54 | 21.54 | 21.54 | 21.54 |
| 30871 | 21.67 | 21.67 | 21.67 | 21.67 | 21.67 |
| 30872 | 21.80 | 21.80 | 21.80 | 21.80 | 21.80 |
| 30873 | 21.93 | 21.93 | 21.93 | 21.93 | 21.93 |
| 30874 | 23.02 | 23.02 | 23.02 | 23.02 | 23.02 |
| 30875 | 23.45 | 23.45 | 23.45 | 23.45 | 23.45 |
| 30876 | 24.38 | 24.38 | 24.38 | 24.38 | 24.38 |
| 30877 | 23.19 | 23.19 | 23.19 | 23.19 | 23.19 |
| 30878 | 25.56 | 25.56 | 25.56 | 25.56 | 25.56 |
| 30879 | 26.32 | 26.32 | 26.32 | 26.32 | 26.32 |
| 30880 | 26.33 | 26.33 | 26.33 | 26.33 | 26.33 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30881 | 26.34 | 26.34 | 26.34 | 26.34 | 26.34 |
| 30882 | 26.55 | 26.55 | 26.55 | 26.55 | 26.55 |
| 30883 | 26.59 | 26.59 | 26.59 | 26.59 | 26.59 |
| 30886 | 24.55 | 24.55 | 24.55 | 24.55 | 24.55 |
| 30887 | 24.57 | 24.57 | 24.57 | 24.57 | 24.57 |
| 30890 | 24.66 | 24.66 | 24.66 | 24.66 | 24.66 |
| 30891 | 24.67 | 24.67 | 24.67 | 24.67 | 24.67 |
| 30892 | 24.66 | 24.66 | 24.66 | 24.66 | 24.66 |
| 30893 | 24.67 | 24.67 | 24.67 | 24.67 | 24.67 |
| 30894 | 25.13 | 25.13 | 25.13 | 25.13 | 25.13 |
| 30895 | 25.24 | 25.24 | 25.24 | 25.24 | 25.24 |
| 30896 | 26.40 | 26.40 | 26.40 | 26.40 | 26.40 |
| 30897 | 26.47 | 26.47 | 26.47 | 26.47 | 26.47 |
| 30898 | 28.62 | 28.62 | 28.62 | 28.62 | 28.62 |
| 30900 | 24.55 | 24.55 | 24.55 | 24.55 | 24.55 |
| 30901 | 24.57 | 24.57 | 24.57 | 24.57 | 24.57 |
| 30902 | 26.70 | 26.70 | 26.70 | 26.70 | 26.70 |
| 30903 | 24.57 | 24.57 | 24.57 | 24.57 | 24.57 |
| 30904 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58 |
| 30905 | 24.66 | 24.66 | 24.66 | 24.66 | 24.66 |
| 30906 | 29.25 | 29.25 | 29.25 | 29.25 | 29.25 |
| 30907 | 24.66 | 24.66 | 24.66 | 24.66 | 24.66 |
| 30908 | 26.75 | 26.75 | 26.75 | 26.75 | 26.75 |
| 30909 | 26.86 | 26.86 | 26.86 | 26.86 | 26.86 |
| 30910 | 27.17 | 27.17 | 27.17 | 27.17 | 27.17 |
| 30911 | 27.39 | 27.39 | 27.39 | 27.39 | 27.39 |
| 30912 | 28.24 | 28.24 | 28.24 | 28.24 | 28.24 |
| 30913 | 26.24 | 26.24 | 26.24 | 26.24 | 26.24 |
| 30915 | 28.54 | 28.54 | 28.54 | 28.54 | 28.54 |
| 30916 | 28.58 | 28.58 | 28.58 | 28.58 | 28.58 |
| 30917 | 29.36 | 29.36 | 29.36 | 29.36 | 29.36 |
| 30918 | 29.97 | 29.97 | 29.97 | 29.97 | 29.97 |
| 30919 | 29.97 | 29.97 | 29.97 | 29.97 | 29.97 |
| 30943 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58 |
| 30944 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58 |
| 30945 | 25.43 | 25.43 | 25.43 | 25.43 | 25.43 |
| 30946 | 25.55 | 25.55 | 25.55 | 25.55 | 25.55 |
| 30947 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58 |
| 30948 | 26.99 | 26.99 | 26.99 | 26.99 | 26.99 |
| 30949 | 25.58 | 25.58 | 25.58 | 25.58 | 25.58 |
| 30950 | 24.53 | 24.53 | 24.53 | 24.53 | 24.53 |
| 30951 | 24.53 | 24.53 | 24.53 | 24.53 | 24.53 |
| 30952 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58 |
| 30953 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58 |
| 30954 | 24.61 | 24.61 | 24.61 | 24.61 | 24.61 |
| 30955 | 24.75 | 24.75 | 24.75 | 24.75 | 24.75 |
| 30956 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 30957 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 30958 | 24.80 | 24.80 | 24.80 | 24.80 | 24.80 |
| 30959 | 24.80 | 24.80 | 24.80 | 24.80 | 24.80 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30960 | 24.80 | 24.80 | 24.80 | 24.80 | 24.80 |
| 30961 | 24.81 | 24.81 | 24.81 | 24.81 | 24.81 |
| 30962 | 24.82 | 24.82 | 24.82 | 24.82 | 24.82 |
| 30963 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 30964 | 24.78 | 24.78 | 24.78 | 24.78 | 24.78 |
| 30965 | 24.79 | 24.79 | 24.79 | 24.79 | 24.79 |
| 30966 | 24.91 | 24.91 | 24.91 | 24.91 | 24.91 |
| 30967 | 24.79 | 24.79 | 24.79 | 24.79 | 24.79 |
| 30969 | 25.56 | 25.56 | 25.56 | 25.56 | 25.56 |
| 30971 | 25.39 | 25.39 | 25.39 | 25.39 | 25.39 |
| 30972 | 26.06 | 26.06 | 26.06 | 26.06 | 26.06 |
| 30973 | 26.44 | 26.44 | 26.44 | 26.44 | 26.44 |
| 30974 | 26.25 | 26.25 | 26.25 | 26.25 | 26.25 |
| 30975 | 24.80 | 24.80 | 24.80 | 24.80 | 24.80 |
| 30976 | 24.80 | 24.80 | 24.80 | 24.80 | 24.80 |
| 30977 | 24.87 | 24.87 | 24.87 | 24.87 | 24.87 |
| 30978 | 27.68 | 27.68 | 27.68 | 27.68 | 27.68 |
| 30979 | 26.69 | 26.69 | 26.69 | 26.69 | 26.69 |
| 30980 | 27.69 | 27.69 | 27.69 | 27.69 | 27.69 |
| 30981 | 26.25 | 26.25 | 26.25 | 26.25 | 26.25 |
| 30982 | 26.23 | 26.23 | 26.23 | 26.23 | 26.23 |
| 30983 | 26.18 | 26.18 | 26.18 | 26.18 | 26.18 |
| 30984 | 24.90 | 24.90 | 24.90 | 24.90 | 24.90 |
| 30985 | 26.01 | 26.01 | 26.01 | 26.01 | 26.01 |
| 30986 | 25.78 | 25.78 | 25.78 | 25.78 | 25.78 |
| 30989 | 25.18 | 25.18 | 25.18 | 25.18 | 25.18 |
| 30990 | 24.86 | 24.86 | 24.86 | 24.86 | 24.86 |
| 30991 | 24.91 | 24.91 | 24.91 | 24.91 | 24.91 |
| 30993 | 24.85 | 24.85 | 24.85 | 24.85 | 24.85 |
| 30995 | 25.01 | 25.01 | 25.01 | 25.01 | 25.01 |
| 30996 | 26.86 | 26.86 | 26.86 | 26.86 | 26.86 |
| 30997 | 25.15 | 25.15 | 25.15 | 25.15 | 25.15 |
| 30998 | 27.42 | 27.42 | 27.42 | 27.42 | 27.42 |
| 30999 | 25.36 | 25.36 | 25.36 | 25.36 | 25.36 |
| 31000 | 24.34 | 24.34 | 24.34 | 24.34 | 24.34 |
| 31001 | 24.41 | 24.41 | 24.41 | 24.41 | 24.41 |
| 31002 | 24.43 | 24.44 | 24.44 | 24.44 | 24.44 |
| 31003 | 25.08 | 25.08 | 25.08 | 25.08 | 25.08 |
| 31004 | 25.71 | 25.71 | 25.71 | 25.71 | 25.71 |
| 31007 | 25.77 | 25.77 | 25.77 | 25.77 | 25.77 |
| 31008 | 26.15 | 26.15 | 26.15 | 26.15 | 26.15 |
| 31009 | 26.19 | 26.19 | 26.19 | 26.19 | 26.19 |
| 31010 | 26.26 | 26.26 | 26.26 | 26.26 | 26.26 |
| 31011 | 26.35 | 26.35 | 26.35 | 26.35 | 26.35 |
| 31012 | 26.43 | 26.43 | 26.43 | 26.43 | 26.43 |
| 31013 | 26.53 | 26.53 | 26.53 | 26.53 | 26.53 |
| 31014 | 26.23 | 26.23 | 26.23 | 26.23 | 26.23 |
| 31015 | 25.72 | 25.72 | 25.72 | 25.72 | 25.72 |
| 31016 | 25.79 | 25.79 | 25.79 | 25.79 | 25.79 |
| 31018 | 25.78 | 25.78 | 25.78 | 25.78 | 25.78 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31019 | 25.76 | 25.76 | 25.76 | 25.76 | 25.76 |
| 31020 | 25.80 | 25.80 | 25.80 | 25.80 | 25.80 |
| 31022 | 25.85 | 25.85 | 25.85 | 25.85 | 25.85 |
| 31023 | 25.89 | 25.89 | 25.89 | 25.89 | 25.89 |
| 31024 | 25.88 | 25.88 | 25.88 | 25.88 | 25.88 |
| 31025 | 27.23 | 27.23 | 27.23 | 27.23 | 27.23 |
| 31026 | 26.21 | 26.21 | 26.21 | 26.21 | 26.21 |
| 31027 | 26.91 | 26.91 | 26.91 | 26.91 | 26.91 |
| 31028 | 26.23 | 26.23 | 26.23 | 26.23 | 26.23 |
| 31029 | 27.21 | 27.21 | 27.21 | 27.21 | 27.21 |
| 31030 | 26.20 | 26.20 | 26.20 | 26.20 | 26.20 |
| 31040 | 24.55 | 24.55 | 24.55 | 24.55 | 24.55 |
| 31041 | 24.62 | 24.62 | 24.62 | 24.62 | 24.62 |
| 31042 | 24.66 | 24.66 | 24.66 | 24.66 | 24.66 |
| 31044 | 24.82 | 24.82 | 24.82 | 24.82 | 24.82 |
| 31045 | 24.84 | 24.84 | 24.84 | 24.84 | 24.84 |
| 31046 | 24.88 | 24.88 | 24.88 | 24.88 | 24.88 |
| 31047 | 26.26 | 26.26 | 26.26 | 26.26 | 26.26 |
| 31048 | 26.35 | 26.35 | 26.35 | 26.35 | 26.35 |
| 31049 | 26.56 | 26.56 | 26.56 | 26.56 | 26.56 |
| 31051 | 24.53 | 24.53 | 24.53 | 24.53 | 24.53 |
| 31052 | 26.99 | 26.99 | 26.99 | 26.99 | 26.99 |
| 31053 | 26.18 | 26.18 | 26.18 | 26.18 | 26.18 |
| 31054 | 29.35 | 29.35 | 29.35 | 29.35 | 29.35 |
| 31055 | 27.04 | 27.04 | 27.04 | 27.04 | 27.04 |
| 31056 | 27.86 | 27.86 | 27.86 | 27.86 | 27.86 |
| 31057 | 28.67 | 28.67 | 28.67 | 28.67 | 28.67 |
| 31059 | 31.13 | 31.13 | 31.13 | 31.13 | 31.13 |
| 31060 | 30.92 | 30.92 | 30.92 | 30.92 | 30.92 |
| 31061 | 26.20 | 26.20 | 26.20 | 26.20 | 26.20 |
| 31062 | 28.98 | 28.98 | 28.98 | 28.98 | 28.98 |
| 31063 | 30.35 | 30.35 | 30.35 | 30.35 | 30.35 |
| 31070 | 29.34 | 29.34 | 29.34 | 29.34 | 29.34 |
| 31072 | 29.36 | 29.36 | 29.36 | 29.36 | 29.36 |
| 31073 | 29.39 | 29.39 | 29.39 | 29.39 | 29.39 |
| 31074 | 29.43 | 29.43 | 29.43 | 29.43 | 29.43 |
| 31076 | 29.71 | 29.71 | 29.71 | 29.71 | 29.71 |
| 31077 | 30.78 | 30.78 | 30.78 | 30.78 | 30.78 |
| 31100 | 15.15 | 15.27 | 15.26 | 15.27 | 15.26 |
| 31101 | 15.21 | 15.32 | 15.31 | 15.32 | 15.31 |
| 31102 | 15.36 | 15.48 | 15.46 | 15.47 | 15.46 |
| 31103 | 15.43 | 15.54 | 15.53 | 15.54 | 15.53 |
| 31104 | 15.85 | 15.93 | 15.92 | 15.93 | 15.92 |
| 31105 | 16.06 | 16.14 | 16.13 | 16.14 | 16.13 |
| 31106 | 16.70 | 16.76 | 16.75 | 16.76 | 16.75 |
| 31107 | 17.06 | 17.11 | 17.10 | 17.11 | 17.10 |
| 31108 | 17.73 | 17.76 | 17.75 | 17.76 | 17.75 |
| 31110 | 17.75 | 17.77 | 17.77 | 17.77 | 17.77 |
| 31113 | 17.80 | 17.83 | 17.82 | 17.83 | 17.82 |
| 31114 | 17.82 | 17.84 | 17.84 | 17.84 | 17.84 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31116 | 17.99 | 17.99 | 17.99 | 17.99 | 17.99 |
| 31117 | 18.11 | 18.11 | 18.11 | 18.11 | 18.11 |
| 31118 | 20.61 | 20.61 | 20.61 | 20.61 | 20.61 |
| 31119 | 20.96 | 20.96 | 20.96 | 20.96 | 20.96 |
| 31120 | 21.28 | 21.28 | 21.28 | 21.28 | 21.28 |
| 31122 | 23.47 | 23.47 | 23.47 | 23.47 | 23.47 |
| 31123 | 27.98 | 27.98 | 27.98 | 27.98 | 27.98 |
| 31125 | 15.41 | 15.52 | 15.51 | 15.51 | 15.51 |
| 31126 | 15.67 | 15.71 | 15.71 | 15.71 | 15.71 |
| 31127 | 16.06 | 16.14 | 16.13 | 16.14 | 16.13 |
| 31128 | 15.54 | 15.54 | 15.54 | 15.54 | 15.54 |
| 31129 | 16.47 | 16.47 | 16.47 | 16.47 | 16.47 |
| 31130 | 18.33 | 18.33 | 18.33 | 18.33 | 18.33 |
| 31131 | 15.65 | 15.65 | 15.65 | 15.65 | 15.65 |
| 31132 | 19.42 | 19.42 | 19.42 | 19.42 | 19.42 |
| 31133 | 19.50 | 19.50 | 19.50 | 19.50 | 19.50 |
| 31134 | 15.47 | 15.55 | 15.54 | 15.55 | 15.54 |
| 31135 | 19.00 | 19.00 | 19.00 | 19.00 | 19.00 |
| 31137 | 17.75 | 17.78 | 17.77 | 17.78 | 17.77 |
| 31138 | 17.75 | 17.78 | 17.78 | 17.78 | 17.78 |
| 31139 | 17.76 | 17.79 | 17.78 | 17.79 | 17.78 |
| 31140 | 18.53 | 18.53 | 18.53 | 18.53 | 18.53 |
| 31142 | 17.75 | 17.78 | 17.77 | 17.78 | 17.77 |
| 31144 | 18.70 | 18.70 | 18.70 | 18.70 | 18.70 |
| 31145 | 21.94 | 21.94 | 21.94 | 21.94 | 21.94 |
| 31146 | 22.98 | 22.98 | 22.98 | 22.98 | 22.98 |
| 31148 | 22.70 | 22.70 | 22.70 | 22.70 | 22.70 |
| 31150 | 19.68 | 19.68 | 19.68 | 19.68 | 19.68 |
| 31151 | 19.67 | 19.67 | 19.67 | 19.67 | 19.67 |
| 31152 | 19.87 | 19.87 | 19.87 | 19.87 | 19.87 |
| 31155 | 17.84 | 17.87 | 17.86 | 17.87 | 17.86 |
| 31156 | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 |
| 31158 | 17.84 | 17.87 | 17.86 | 17.87 | 17.86 |
| 31160 | 20.65 | 20.65 | 20.65 | 20.65 | 20.65 |
| 31161 | 21.23 | 21.23 | 21.23 | 21.23 | 21.23 |
| 31163 | 20.51 | 20.51 | 20.51 | 20.51 | 20.51 |
| 31164 | 23.85 | 23.85 | 23.85 | 23.85 | 23.85 |
| 31166 | 19.54 | 19.54 | 19.54 | 19.54 | 19.54 |
| 31167 | 19.92 | 19.92 | 19.92 | 19.92 | 19.92 |
| 31169 | 17.77 | 17.80 | 17.79 | 17.80 | 17.79 |
| 31170 | 17.80 | 17.83 | 17.82 | 17.83 | 17.82 |
| 31172 | 20.96 | 20.96 | 20.96 | 20.96 | 20.96 |
| 31173 | 25.69 | 25.69 | 25.69 | 25.69 | 25.69 |
| 31175 | 27.38 | 27.38 | 27.38 | 27.38 | 27.38 |
| 31177 | 27.51 | 27.51 | 27.51 | 27.51 | 27.51 |
| 31178 | 28.06 | 28.06 | 28.06 | 28.06 | 28.06 |
| 31179 | 28.26 | 28.26 | 28.26 | 28.26 | 28.26 |
| 31180 | 28.45 | 28.45 | 28.45 | 28.45 | 28.45 |
| 31182 | 27.94 | 27.94 | 27.94 | 27.94 | 27.94 |
| 31185 | 23.17 | 23.17 | 23.17 | 23.17 | 23.17 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31186 | 23.72 | 23.72 | 23.72 | 23.72 | 23.72 |
| 31202 | 16.54 | 16.59 | 16.58 | 16.59 | 16.58 |
| 31204 | 16.54 | 16.59 | 16.58 | 16.59 | 16.58 |
| 31206 | 16.55 | 16.60 | 16.59 | 16.60 | 16.59 |
| 31208 | 16.54 | 16.59 | 16.58 | 16.59 | 16.58 |
| 31210 | 16.54 | 16.59 | 16.58 | 16.59 | 16.58 |
| 31215 | 16.71 | 16.75 | 16.74 | 16.75 | 16.74 |
| 31216 | 16.70 | 16.74 | 16.73 | 16.74 | 16.73 |
| 31218 | 16.65 | 16.69 | 16.69 | 16.69 | 16.69 |
| 31222 | 16.63 | 16.67 | 16.66 | 16.67 | 16.66 |
| 31224 | 16.55 | 16.60 | 16.59 | 16.60 | 16.59 |
| 31226 | 16.55 | 16.60 | 16.59 | 16.60 | 16.59 |
| 31228 | 17.71 | 17.71 | 17.71 | 17.71 | 17.71 |
| 31228A | 17.93 | 17.93 | 17.93 | 17.93 | 17.93 |
| 31228B | 18.01 | 18.01 | 18.01 | 18.01 | 18.01 |
| 31228 C | 18.12 | 18.12 | 18.12 | 18.12 | 18.12 |
| 31230 | 18.38 | 18.38 | 18.38 | 18.38 | 18.38 |
| 31230A | 18.48 | 18.48 | 18.48 | 18.48 | 18.48 |
| 31230B | 18.54 | 18.54 | 18.54 | 18.54 | 18.54 |
| 31230 C | 18.58 | 18.58 | 18.58 | 18.58 | 18.58 |
| 31232 | 18.70 | 18.70 | 18.70 | 18.70 | 18.70 |
| 31232A | 18.74 | 18.74 | 18.74 | 18.74 | 18.74 |
| 31232B | 19.25 | 19.25 | 19.25 | 19.25 | 19.25 |
| 31238 | 20.48 | 20.48 | 20.48 | 20.48 | 20.48 |
| 31240 | 19.69 | 19.69 | 19.69 | 19.69 | 19.69 |
| 31242 | 20.88 | 20.88 | 20.88 | 20.88 | 20.88 |
| 31244 | 23.63 | 23.63 | 23.63 | 23.63 | 23.63 |
| 31245 | 24.05 | 24.05 | 24.05 | 24.05 | 24.05 |
| 31246 | 23.98 | 23.98 | 23.98 | 23.98 | 23.98 |
| 31247 | 25.79 | 25.79 | 25.79 | 25.79 | 25.79 |
| 31248 | 23.68 | 23.68 | 23.68 | 23.68 | 23.68 |
| 31249 | 24.33 | 24.33 | 24.33 | 24.33 | 24.33 |
| 31250 | 16.70 | 16.74 | 16.73 | 16.74 | 16.73 |
| 31252 | 16.70 | 16.74 | 16.74 | 16.74 | 16.74 |
| 31254 | 16.70 | 16.74 | 16.74 | 16.74 | 16.74 |
| 31256 | 18.24 | 18.24 | 18.24 | 18.24 | 18.24 |
| 31258 | 19.87 | 19.87 | 19.87 | 19.87 | 19.87 |
| 31260 | 20.55 | 20.55 | 20.55 | 20.55 | 20.55 |
| 31262 | 20.79 | 20.79 | 20.79 | 20.79 | 20.79 |
| 31264 | 21.58 | 21.58 | 21.58 | 21.58 | 21.58 |
| 31270 | 16.84 | 16.84 | 16.84 | 16.84 | 16.84 |
| 31272 | 17.45 | 17.45 | 17.45 | 17.45 | 17.45 |
| 31274 | 18.27 | 18.27 | 18.27 | 18.27 | 18.27 |
| 31276 | 18.32 | 18.32 | 18.32 | 18.32 | 18.32 |
| 31278 | 18.76 | 18.76 | 18.76 | 18.76 | 18.76 |
| 31280 | 19.52 | 19.52 | 19.52 | 19.52 | 19.52 |
| 31281 | 21.78 | 21.78 | 21.78 | 21.78 | 21.78 |
| 31282 | 23.68 | 23.68 | 23.68 | 23.68 | 23.68 |
| 31283 | 25.50 | 25.50 | 25.50 | 25.50 | 25.50 |
| 31284 | 25.50 | 25.50 | 25.50 | 25.50 | 25.50 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31285 | 25.50 | 25.50 | 25.50 | 25.50 | 25.50 |
| 31289 | 23.53 | 23.53 | 23.53 | 23.53 | 23.53 |
| 31290 | 18.34 | 18.34 | 18.34 | 18.34 | 18.34 |
| 31292 | 18.85 | 18.85 | 18.85 | 18.85 | 18.85 |
| 31294 | 19.11 | 19.11 | 19.11 | 19.11 | 19.11 |
| 31296 | 19.37 | 19.37 | 19.37 | 19.37 | 19.37 |
| 31300 | 21.98 | 21.98 | 21.98 | 21.98 | 21.98 |
| 31301 | 22.55 | 22.55 | 22.55 | 22.55 | 22.55 |
| 31302 | 22.75 | 22.75 | 22.75 | 22.75 | 22.75 |
| 31303 | 22.94 | 22.94 | 22.94 | 22.94 | 22.94 |
| 31304 | 23.43 | 23.43 | 23.43 | 23.43 | 23.43 |
| 31305 | 23.48 | 23.48 | 23.48 | 23.48 | 23.48 |
| 31306 | 23.88 | 23.88 | 23.88 | 23.88 | 23.88 |
| 31307 | 24.26 | 24.26 | 24.26 | 24.26 | 24.26 |
| 31308 | 24.57 | 24.57 | 24.57 | 24.57 | 24.57 |
| 31309 | 24.90 | 24.90 | 24.90 | 24.90 | 24.90 |
| 31310 | 24.99 | 24.99 | 24.99 | 24.99 | 24.99 |
| 31311 | 25.11 | 25.11 | 25.11 | 25.11 | 25.11 |
| 31312 | 25.41 | 25.41 | 25.41 | 25.41 | 25.41 |
| 31314 | 25.92 | 25.92 | 25.92 | 25.92 | 25.92 |
| 31315 | 26.08 | 26.08 | 26.08 | 26.08 | 26.08 |
| 31316 | 26.23 | 26.23 | 26.23 | 26.23 | 26.23 |
| 31317 | 28.39 | 28.39 | 28.39 | 28.39 | 28.39 |
| 31318 | 28.45 | 28.45 | 28.45 | 28.45 | 28.45 |
| 31319 | 28.72 | 28.72 | 28.72 | 28.72 | 28.72 |
| 31320 | 28.84 | 28.84 | 28.84 | 28.84 | 28.84 |
| 31321 | 28.91 | 28.91 | 28.91 | 28.91 | 28.91 |
| 31322 | 29.40 | 29.40 | 29.40 | 29.40 | 29.40 |
| 31325 | 29.73 | 29.73 | 29.73 | 29.73 | 29.73 |
| 31326 | 29.90 | 29.90 | 29.90 | 29.90 | 29.90 |
| 31327 | 30.11 | 30.11 | 30.11 | 30.11 | 30.11 |
| 31328 | 30.11 | 30.11 | 30.11 | 30.11 | 30.11 |
| 31329 | 30.11 | 30.11 | 30.11 | 30.11 | 30.11 |
| 31330 | 30.12 | 30.12 | 30.12 | 30.12 | 30.12 |
| 31332 | 30.14 | 30.14 | 30.14 | 30.14 | 30.14 |
| 31334 | 30.15 | 30.15 | 30.15 | 30.15 | 30.15 |
| 31336 | 30.19 | 30.19 | 30.19 | 30.19 | 30.19 |
| 31337 | 30.35 | 30.35 | 30.35 | 30.35 | 30.35 |
| 31338 | 30.37 | 30.37 | 30.37 | 30.37 | 30.37 |
| 31339 | 30.75 | 30.75 | 30.75 | 30.75 | 30.75 |
| 31340 | 31.20 | 31.20 | 31.20 | 31.20 | 31.20 |
| 31343 | 32.04 | 32.04 | 32.04 | 32.04 | 32.04 |
| 31344 | 32.91 | 32.91 | 32.91 | 32.91 | 32.91 |
| 31346 | 32.96 | 32.96 | 32.96 | 32.96 | 32.96 |
| 31347 | 33.00 | 33.00 | 33.00 | 33.00 | 33.00 |
| 31348 | 33.00 | 33.00 | 33.00 | 33.00 | 33.00 |
| 31349 | 21.98 | 21.98 | 21.98 | 21.98 | 21.98 |
| 31350 | 22.85 | 22.85 | 22.85 | 22.85 | 22.85 |
| 31351 | 23.54 | 23.54 | 23.54 | 23.54 | 23.54 |
| 31352 | 25.05 | 25.05 | 25.05 | 25.05 | 25.05 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31353 | 25.06 | 25.06 | 25.06 | 25.06 | 25.06 |
| 31354 | 25.29 | 25.29 | 25.29 | 25.29 | 25.29 |
| 31355 | 27.31 | 27.31 | 27.31 | 27.31 | 27.31 |
| 31358 | 24.69 | 24.69 | 24.69 | 24.69 | 24.69 |
| 31359 | 24.75 | 24.75 | 24.75 | 24.75 | 24.75 |
| 31360 | 24.90 | 24.90 | 24.90 | 24.90 | 24.90 |
| 31361 | 25.36 | 25.36 | 25.36 | 25.36 | 25.36 |
| 31362 | 25.39 | 25.39 | 25.39 | 25.39 | 25.39 |
| 31363 | 25.83 | 25.83 | 25.83 | 25.83 | 25.83 |
| 31364 | 25.84 | 25.84 | 25.84 | 25.84 | 25.84 |
| 31365 | 25.88 | 25.88 | 25.88 | 25.88 | 25.88 |
| 31366 | 26.74 | 26.74 | 26.74 | 26.74 | 26.74 |
| 31367 | 26.74 | 26.74 | 26.74 | 26.74 | 26.74 |
| 31368 | 27.48 | 27.48 | 27.48 | 27.48 | 27.48 |
| 31369 | 27.57 | 27.57 | 27.57 | 27.57 | 27.57 |
| 31370 | 27.58 | 27.58 | 27.58 | 27.58 | 27.58 |
| 31371 | 28.28 | 28.28 | 28.28 | 28.28 | 28.28 |
| 31372 | 28.29 | 28.29 | 28.29 | 28.29 | 28.29 |
| 31373 | 28.43 | 28.43 | 28.43 | 28.43 | 28.43 |
| 31374 | 28.45 | 28.45 | 28.45 | 28.45 | 28.45 |
| 31378 | 25.84 | 25.84 | 25.84 | 25.84 | 25.84 |
| 31379 | 25.85 | 25.85 | 25.85 | 25.85 | 25.85 |
| 31381 | 25.85 | 25.85 | 25.85 | 25.85 | 25.85 |
| 31382 | 26.11 | 26.11 | 26.11 | 26.11 | 26.11 |
| 31383 | 27.21 | 27.21 | 27.21 | 27.21 | 27.21 |
| 31385 | 28.21 | 28.21 | 28.21 | 28.21 | 28.21 |
| 31387 | 27.57 | 27.57 | 27.57 | 27.57 | 27.57 |
| 31390 | 25.27 | 25.27 | 25.27 | 25.27 | 25.27 |
| 31391 | 25.30 | 25.30 | 25.30 | 25.30 | 25.30 |
| 31392 | 27.29 | 27.29 | 27.29 | 27.29 | 27.29 |
| 31393 | 27.66 | 27.66 | 27.66 | 27.66 | 27.66 |
| 31394 | 28.29 | 28.29 | 28.29 | 28.29 | 28.29 |
| 31396 | 28.59 | 28.59 | 28.59 | 28.59 | 28.59 |
| 31398 | 25.90 | 25.90 | 25.90 | 25.90 | 25.90 |
| 31400 | 25.88 | 25.88 | 25.88 | 25.88 | 25.88 |
| 31402 | 25.91 | 25.91 | 25.91 | 25.91 | 25.91 |
| 31404 | 27.40 | 27.40 | 27.40 | 27.40 | 27.40 |
| 31405 | 28.03 | 28.03 | 28.03 | 28.03 | 28.03 |
| 31406 | 29.95 | 29.95 | 29.95 | 29.95 | 29.95 |
| 31407 | 30.18 | 30.18 | 30.18 | 30.18 | 30.18 |
| 31408 | 30.51 | 30.51 | 30.51 | 30.51 | 30.51 |
| 31410 | 27.96 | 27.96 | 27.96 | 27.96 | 27.96 |
| 31411 | 28.55 | 28.55 | 28.55 | 28.55 | 28.55 |
| 31413 | 25.96 | 25.96 | 25.96 | 25.96 | 25.96 |
| 31415 | 28.68 | 28.68 | 28.68 | 28.68 | 28.68 |
| 31416 | 28.79 | 28.79 | 28.79 | 28.79 | 28.79 |
| 31417 | 28.88 | 28.88 | 28.88 | 28.88 | 28.88 |
| 31418 | 28.96 | 28.96 | 28.96 | 28.96 | 28.96 |
| 31419 | 28.99 | 28.99 | 28.99 | 28.99 | 28.99 |
| 31420 | 29.27 | 29.27 | 29.27 | 29.27 | 29.27 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31421 | 29.51 | 29.51 | 29.51 | 29.51 | 29.51 |
| 31422 | 29.84 | 29.84 | 29.84 | 29.84 | 29.84 |
| 31423 | 28.45 | 28.45 | 28.45 | 28.45 | 28.45 |
| 31424 | 28.91 | 28.91 | 28.91 | 28.91 | 28.91 |
| 31430 | 28.44 | 28.44 | 28.44 | 28.44 | 28.44 |
| 31432 | 30.27 | 30.27 | 30.27 | 30.27 | 30.27 |
| 31433 | 30.30 | 30.30 | 30.30 | 30.30 | 30.30 |
| 31434 | 31.35 | 31.35 | 31.35 | 31.35 | 31.35 |
| 31435 | 34.43 | 34.43 | 34.43 | 34.43 | 34.43 |
| 31436 | 34.43 | 34.43 | 34.43 | 34.43 | 34.43 |
| 31438 | 34.44 | 34.44 | 34.44 | 34.44 | 34.44 |
| 31440 | 28.47 | 28.47 | 28.47 | 28.47 | 28.47 |
| 31442 | 32.00 | 32.00 | 32.00 | 32.00 | 32.00 |
| 31444 | 29.49 | 29.49 | 29.49 | 29.49 | 29.49 |
| 31445 | 32.08 | 32.08 | 32.08 | 32.08 | 32.08 |
| 31446 | 30.88 | 30.88 | 30.88 | 30.88 | 30.88 |
| 31450 | 31.17 | 31.17 | 31.17 | 31.17 | 31.17 |
| 31451 | 34.25 | 34.25 | 34.25 | 34.25 | 34.25 |
| 31455 | 28.84 | 28.84 | 28.84 | 28.84 | 28.84 |
| 31456 | 29.25 | 29.25 | 29.25 | 29.25 | 29.25 |
| 31458 | 29.27 | 29.27 | 29.27 | 29.27 | 29.27 |
| 31460 | 31.20 | 31.20 | 31.20 | 31.20 | 31.20 |
| 31462 | 30.73 | 30.73 | 30.73 | 30.73 | 30.73 |
| 31463 | 31.47 | 31.47 | 31.47 | 31.47 | 31.47 |
| 31464 | 30.95 | 30.95 | 30.95 | 30.95 | 30.95 |
| 31468 | 31.90 | 31.90 | 31.90 | 31.90 | 31.90 |
| 31469 | 32.34 | 32.34 | 32.34 | 32.34 | 32.34 |
| 31470 | 29.73 | 29.73 | 29.73 | 29.73 | 29.73 |
| 31473 | 32.65 | 32.65 | 32.65 | 32.65 | 32.65 |
| 31500 | 30.13 | 30.13 | 30.13 | 30.13 | 30.13 |
| 31501 | 30.20 | 30.20 | 30.20 | 30.20 | 30.20 |
| 31502 | 30.62 | 30.62 | 30.62 | 30.62 | 30.62 |
| 31503 | 31.57 | 31.57 | 31.57 | 31.57 | 31.57 |
| 31504 | 31.62 | 31.62 | 31.62 | 31.62 | 31.62 |
| 31506 | 31.74 | 31.74 | 31.74 | 31.74 | 31.74 |
| 31508 | 31.68 | 31.68 | 31.68 | 31.68 | 31.68 |
| 31509 | 31.73 | 31.73 | 31.73 | 31.73 | 31.73 |
| 31510 | 31.97 | 31.97 | 31.97 | 31.97 | 31.97 |
| 31511 | 31.70 | 31.70 | 31.70 | 31.70 | 31.70 |
| 31512 | 31.71 | 31.71 | 31.71 | 31.71 | 31.71 |
| 31513 | 31.96 | 31.96 | 31.96 | 31.96 | 31.96 |
| 31514 | 31.79 | 31.79 | 31.79 | 31.79 | 31.79 |
| 31515 | 31.77 | 31.77 | 31.77 | 31.77 | 31.77 |
| 31516 | 31.98 | 31.98 | 31.98 | 31.98 | 31.98 |
| 31518 | 30.11 | 30.11 | 30.11 | 30.11 | 30.11 |
| 31519 | 30.11 | 30.11 | 30.11 | 30.11 | 30.11 |
| 31520 | 30.11 | 30.11 | 30.11 | 30.11 | 30.11 |
| 31521 | 30.11 | 30.11 | 30.11 | 30.11 | 30.11 |
| 31522 | 30.11 | 30.11 | 30.11 | 30.11 | 30.11 |
| 31524 | 31.25 | 31.25 | 31.25 | 31.25 | 31.25 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31525 | 31.25 | 31.25 | 31.25 | 31.25 | 31.25 |
| 31526 | 31.07 | 31.07 | 31.07 | 31.07 | 31.07 |
| 31527 | 31.26 | 31.26 | 31.26 | 31.26 | 31.26 |
| 31528 | 31.29 | 31.29 | 31.29 | 31.29 | 31.29 |
| 31532 | 31.04 | 31.04 | 31.04 | 31.04 | 31.04 |
| 31533 | 31.25 | 31.25 | 31.25 | 31.25 | 31.25 |
| 31537 | 30.16 | 30.16 | 30.16 | 30.16 | 30.16 |
| 31538 | 30.71 | 30.71 | 30.71 | 30.71 | 30.71 |
| 31539 | 30.92 | 30.92 | 30.92 | 30.92 | 30.92 |
| 31540 | 30.99 | 30.99 | 30.99 | 30.99 | 30.99 |
| 31541 | 33.19 | 33.19 | 33.19 | 33.19 | 33.19 |
| 31542 | 31.84 | 31.84 | 31.84 | 31.84 | 31.84 |
| 31543 | 33.20 | 33.20 | 33.20 | 33.20 | 33.20 |
| 31544 | 33.19 | 33.19 | 33.19 | 33.19 | 33.19 |
| 31545 | 31.06 | 31.06 | 31.06 | 31.06 | 31.06 |
| 31546 | 32.10 | 32.10 | 32.10 | 32.10 | 32.10 |
| 31547 | 30.77 | 30.77 | 30.77 | 30.77 | 30.77 |
| 31548 | 31.53 | 31.53 | 31.53 | 31.53 | 31.53 |
| 31550 | 32.04 | 32.04 | 32.04 | 32.04 | 32.04 |
| 31552 | 31.95 | 31.95 | 31.95 | 31.95 | 31.95 |
| 31553 | 32.40 | 32.40 | 32.40 | 32.40 | 32.40 |
| 31554 | 32.61 | 32.61 | 32.61 | 32.61 | 32.61 |
| 31555 | 33.02 | 33.02 | 33.02 | 33.02 | 33.02 |
| 31602 | 15.80 | 15.89 | 15.88 | 15.88 | 15.87 |
| 31603 | 16.08 | 16.16 | 16.15 | 16.16 | 16.15 |
| 31605 | 16.08 | 16.16 | 16.15 | 16.16 | 16.15 |
| 31607 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31608 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31609 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31610 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31612 | 16.10 | 16.18 | 16.17 | 16.18 | 16.17 |
| 31613 | 16.44 | 16.49 | 16.49 | 16.49 | 16.49 |
| 31614 | 16.43 | 16.48 | 16.47 | 16.48 | 16.47 |
| 31615 | 16.44 | 16.49 | 16.48 | 16.49 | 16.48 |
| 31616 | 16.45 | 16.50 | 16.49 | 16.50 | 16.49 |
| 31617 | 16.47 | 16.51 | 16.51 | 16.51 | 16.51 |
| 31618 | 16.52 | 16.56 | 16.56 | 16.56 | 16.56 |
| 31619 | 16.55 | 16.60 | 16.59 | 16.60 | 16.59 |
| 31620 | 17.52 | 17.55 | 17.55 | 17.55 | 17.55 |
| 31622 | 17.58 | 17.60 | 17.60 | 17.60 | 17.60 |
| 31623 | 17.58 | 17.60 | 17.60 | 17.60 | 17.60 |
| 31624 | 21.61 | 21.61 | 21.61 | 21.61 | 21.61 |
| 31625 | 17.58 | 17.60 | 17.60 | 17.60 | 17.60 |
| 31627A | 27.12 | 27.12 | 27.12 | 27.12 | 27.12 |
| 31627B | 27.11 | 27.11 | 27.11 | 27.11 | 27.11 |
| 31630 | 16.08 | 16.16 | 16.15 | 16.16 | 16.15 |
| 31640 | 16.08 | 16.16 | 16.15 | 16.16 | 16.15 |
| 31641 | 16.08 | 16.16 | 16.15 | 16.16 | 16.15 |
| 31642 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31643 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31644 | 16.17 | 16.25 | 16.24 | 16.25 | 16.24 |
| 31645 | 18.44 | 18.44 | 18.44 | 18.44 | 18.44 |
| 31646 | 18.49 | 18.49 | 18.49 | 18.49 | 18.49 |
| 31647 | 19.02 | 19.02 | 19.02 | 19.02 | 19.02 |
| 31648 | 20.41 | 20.41 | 20.41 | 20.41 | 20.41 |
| 31649 | 20.62 | 20.62 | 20.62 | 20.62 | 20.62 |
| 31650 | 21.80 | 21.80 | 21.80 | 21.80 | 21.80 |
| 31651 | 22.11 | 22.11 | 22.11 | 22.11 | 22.11 |
| 31652 | 22.45 | 22.45 | 22.45 | 22.45 | 22.45 |
| 31653 | 22.47 | 22.47 | 22.47 | 22.47 | 22.47 |
| 31654 | 22.48 | 22.48 | 22.48 | 22.48 | 22.48 |
| 31655 | 22.50 | 22.50 | 22.50 | 22.50 | 22.50 |
| 31656 | 22.48 | 22.48 | 22.48 | 22.48 | 22.48 |
| 31661 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31663 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31665 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31666 | 16.29 | 16.29 | 16.29 | 16.29 | 16.29 |
| 31668 | 16.31 | 16.31 | 16.31 | 16.31 | 16.31 |
| 31671 | 16.53 | 16.53 | 16.53 | 16.53 | 16.53 |
| 31672 | 18.10 | 18.10 | 18.10 | 18.10 | 18.10 |
| 31673 | 22.91 | 22.91 | 22.91 | 22.91 | 22.91 |
| 31674 | 24.45 | 24.45 | 24.45 | 24.45 | 24.45 |
| 31682 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31684 | 16.85 | 16.85 | 16.85 | 16.85 | 16.85 |
| 31690 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31692 | 16.10 | 16.18 | 16.17 | 16.18 | 16.17 |
| 31701 | 16.09 | 16.18 | 16.17 | 16.17 | 16.16 |
| 31702 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31704 | 16.10 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31707 | 23.33 | 23.33 | 23.33 | 23.33 | 23.33 |
| 31708 | 29.60 | 29.60 | 29.60 | 29.60 | 29.60 |
| 31709 | 28.42 | 28.42 | 28.42 | 28.42 | 28.42 |
| 31710 | 29.61 | 29.61 | 29.61 | 29.61 | 29.61 |
| 31711 | 29.61 | 29.61 | 29.61 | 29.61 | 29.61 |
| 31712 | 30.13 | 30.13 | 30.13 | 30.13 | 30.13 |
| 31720 | 24.28 | 24.28 | 24.28 | 24.28 | 24.28 |
| 31720A | 24.04 | 24.04 | 24.04 | 24.04 | 24.04 |
| 31721 | 22.37 | 22.37 | 22.37 | 22.37 | 22.37 |
| 31722 | 25.42 | 25.42 | 25.42 | 25.42 | 25.42 |
| 31724 | 31.29 | 31.29 | 31.29 | 31.29 | 31.29 |
| 31725 | 31.62 | 31.62 | 31.62 | 31.62 | 31.62 |
| 31727 | 16.10 | 16.18 | 16.17 | 16.18 | 16.17 |
| 31728 | 16.10 | 16.18 | 16.17 | 16.18 | 16.17 |
| 31730 | 16.10 | 16.18 | 16.17 | 16.18 | 16.17 |
| 31731 | 16.12 | 16.20 | 16.19 | 16.20 | 16.19 |
| 31732 | 16.10 | 16.18 | 16.17 | 16.18 | 16.17 |
| 31733 | 16.13 | 16.22 | 16.21 | 16.21 | 16.20 |
| 31734 | 17.70 | 17.70 | 17.70 | 17.70 | 17.70 |
| 31736 | 16.45 | 16.50 | 16.49 | 16.50 | 16.49 |
| 31737 | 16.43 | 16.48 | 16.47 | 16.48 | 16.47 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31738 | 16.46 | 16.51 | 16.51 | 16.51 | 16.50 |
| 31742 | 16.52 | 16.57 | 16.56 | 16.57 | 16.56 |
| 31743 | 16.52 | 16.57 | 16.56 | 16.57 | 16.56 |
| 31744 | 17.56 | 17.56 | 17.56 | 17.56 | 17.56 |
| 31745 | 18.38 | 18.38 | 18.38 | 18.38 | 18.38 |
| 31745A | 18.38 | 18.38 | 18.38 | 18.38 | 18.38 |
| 31746 | 18.55 | 18.55 | 18.55 | 18.55 | 18.55 |
| 31748 | 18.57 | 18.57 | 18.57 | 18.57 | 18.57 |
| 31749 | 17.77 | 17.77 | 17.77 | 17.77 | 17.77 |
| 31749A | 18.57 | 18.57 | 18.57 | 18.57 | 18.57 |
| 31750 | 21.14 | 21.14 | 21.14 | 21.14 | 21.14 |
| 31750 A | 20.48 | 20.48 | 20.48 | 20.48 | 20.48 |
| 31751 | 22.04 | 22.04 | 22.04 | 22.04 | 22.04 |
| 31751 A | 22.04 | 22.04 | 22.04 | 22.04 | 22.04 |
| 31752 | 23.62 | 23.62 | 23.62 | 23.62 | 23.62 |
| 31753 | 34.12 | 34.12 | 34.12 | 34.12 | 34.12 |
| 31754 | 18.19 | 18.19 | 18.19 | 18.19 | 18.19 |
| 31755 | 18.38 | 18.38 | 18.38 | 18.38 | 18.38 |
| 31756 | 19.13 | 19.13 | 19.13 | 19.13 | 19.13 |
| 31762 | 17.52 | 17.55 | 17.54 | 17.55 | 17.54 |
| 31763 | 17.51 | 17.54 | 17.54 | 17.54 | 17.54 |
| 31764 | 16.52 | 16.57 | 16.56 | 16.57 | 16.56 |
| 31765 | 18.34 | 18.34 | 18.34 | 18.34 | 18.34 |
| 31766 | 19.09 | 19.09 | 19.09 | 19.09 | 19.09 |
| 31767 | 18.38 | 18.38 | 18.38 | 18.38 | 18.38 |
| 31770 | 17.52 | 17.55 | 17.55 | 17.55 | 17.55 |
| 31772 | 17.52 | 17.55 | 17.55 | 17.55 | 17.55 |
| 31774 | 18.76 | 18.76 | 18.76 | 18.76 | 18.76 |
| 31775 | 21.99 | 21.99 | 21.99 | 21.99 | 21.99 |
| 31777 | 23.22 | 23.22 | 23.22 | 23.22 | 23.22 |
| 31780 | 15.04 | 15.16 | 15.15 | 15.16 | 15.15 |
| 31781 | 15.13 | 15.25 | 15.24 | 15.25 | 15.24 |
| 31784 | 15.38 | 15.50 | 15.48 | 15.49 | 15.48 |
| 31786 | 15.55 | 15.66 | 15.64 | 15.65 | 15.64 |
| 31787 | 15.80 | 15.89 | 15.88 | 15.88 | 15.87 |
| 31788 | 15.91 | 15.99 | 15.98 | 15.99 | 15.98 |
| 31789 | 15.94 | 16.02 | 16.01 | 16.02 | 16.01 |
| 31790 | 16.03 | 16.11 | 16.10 | 16.10 | 16.10 |
| 31791 | 16.31 | 16.38 | 16.37 | 16.38 | 16.37 |
| 31792 | 16.42 | 16.48 | 16.47 | 16.48 | 16.47 |
| 31793 | 16.54 | 16.59 | 16.58 | 16.59 | 16.58 |
| 31794 | 16.68 | 16.72 | 16.72 | 16.72 | 16.72 |
| 31795 | 16.84 | 16.88 | 16.88 | 16.88 | 16.88 |
| 31798 | 17.22 | 17.25 | 17.24 | 17.25 | 17.24 |
| 31799 | 17.38 | 17.40 | 17.40 | 17.40 | 17.40 |
| 31799 AP | 17.45 | 17.47 | 17.47 | 17.47 | 17.47 |
| 31801 | 17.61 | 17.64 | 17.63 | 17.64 | 17.63 |
| 31802 | 17.76 | 17.78 | 17.77 | 17.78 | 17.77 |
| 31803 | 17.85 | 17.87 | 17.87 | 17.87 | 17.87 |
| 31804 | 18.27 | 18.29 | 18.29 | 18.29 | 18.29 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31805 | 18.41 | 18.42 | 18.42 | 18.42 | 18.42 |
| 31806 | 18.52 | 18.53 | 18.53 | 18.53 | 18.53 |
| 31807 | 18.27 | 18.29 | 18.29 | 18.29 | 18.29 |
| 31808 | 17.71 | 17.73 | 17.72 | 17.73 | 17.72 |
| 31810 | 15.04 | 15.17 | 15.16 | 15.16 | 15.16 |
| 31811 | 15.41 | 15.41 | 15.41 | 15.41 | 15.41 |
| 31812 | 15.40 | 15.52 | 15.50 | 15.51 | 15.50 |
| 31813 | 15.38 | 15.50 | 15.48 | 15.49 | 15.48 |
| 31814 | 15.49 | 15.60 | 15.59 | 15.60 | 15.59 |
| 31815 | 16.07 | 16.15 | 16.14 | 16.15 | 16.14 |
| 31816 | 16.07 | 16.15 | 16.14 | 16.15 | 16.14 |
| 31817 | 16.04 | 16.12 | 16.11 | 16.12 | 16.11 |
| 31818 | 16.07 | 16.15 | 16.14 | 16.15 | 16.14 |
| 31819 | 16.43 | 16.48 | 16.47 | 16.48 | 16.47 |
| 31821 | 17.06 | 17.07 | 17.07 | 17.07 | 17.07 |
| 31822 | 17.92 | 17.92 | 17.92 | 17.92 | 17.92 |
| 31823 | 17.92 | 17.92 | 17.92 | 17.92 | 17.92 |
| 31824 | 17.93 | 17.93 | 17.93 | 17.93 | 17.93 |
| 31825 | 17.93 | 17.93 | 17.93 | 17.93 | 17.93 |
| 31826 | 17.11 | 17.11 | 17.11 | 17.11 | 17.11 |
| 31830 | 16.43 | 16.49 | 16.48 | 16.48 | 16.48 |
| 31832 | 16.52 | 16.56 | 16.56 | 16.56 | 16.56 |
| 31833 | 16.52 | 16.56 | 16.56 | 16.56 | 16.56 |
| 31834 | 16.56 | 16.60 | 16.60 | 16.60 | 16.60 |
| 31836 | 16.09 | 16.17 | 16.16 | 16.17 | 16.16 |
| 31837 | 16.08 | 16.16 | 16.15 | 16.16 | 16.15 |
| 31838 | 16.44 | 16.49 | 16.48 | 16.49 | 16.48 |
| 31839 | 16.53 | 16.58 | 16.57 | 16.57 | 16.57 |
| 31840 | 16.55 | 16.60 | 16.60 | 16.60 | 16.60 |
| 31844 | 16.63 | 16.67 | 16.66 | 16.67 | 16.66 |
| 31845 | 16.58 | 16.62 | 16.61 | 16.62 | 16.61 |
| 31846 | 16.61 | 16.66 | 16.65 | 16.66 | 16.65 |
| 31847 | 16.88 | 16.91 | 16.91 | 16.91 | 16.91 |
| 31849 | 16.71 | 16.74 | 16.74 | 16.74 | 16.74 |
| 31850 | 16.71 | 16.75 | 16.74 | 16.75 | 16.74 |
| 31852 | 17.08 | 17.11 | 17.10 | 17.11 | 17.10 |
| 31853 | 16.99 | 17.02 | 17.01 | 17.02 | 17.01 |
| 31855 | 17.38 | 17.40 | 17.40 | 17.40 | 17.40 |
| 31857 | 17.61 | 17.63 | 17.63 | 17.63 | 17.63 |
| 31860 | 17.32 | 17.34 | 17.34 | 17.34 | 17.34 |
| 31861 | 17.33 | 17.36 | 17.36 | 17.36 | 17.35 |
| 31862 | 17.37 | 17.40 | 17.39 | 17.40 | 17.39 |
| 31863 | 18.59 | 18.59 | 18.59 | 18.59 | 18.59 |
| 31864 | 19.39 | 19.39 | 19.39 | 19.39 | 19.39 |
| 31865 | 21.31 | 21.31 | 21.31 | 21.31 | 21.31 |
| 31866 | 21.60 | 21.60 | 21.60 | 21.60 | 21.60 |
| 31868 | 22.51 | 22.51 | 22.51 | 22.51 | 22.51 |
| 31869 | 22.53 | 22.53 | 22.53 | 22.53 | 22.53 |
| 31870 | 22.67 | 22.67 | 22.67 | 22.67 | 22.67 |
| 31871 | 22.82 | 22.82 | 22.82 | 22.82 | 22.82 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31872 | 25.90 | 25.90 | 25.90 | 25.90 | 25.90 |
| 31873 | 26.41 | 26.41 | 26.41 | 26.41 | 26.41 |
| 31874 | 26.57 | 26.57 | 26.57 | 26.57 | 26.57 |
| 31875 | 28.24 | 28.24 | 28.24 | 28.24 | 28.24 |
| 31876 | 28.71 | 28.71 | 28.71 | 28.71 | 28.71 |
| 31877 | 29.21 | 29.21 | 29.21 | 29.21 | 29.21 |
| 31878 | 30.01 | 30.01 | 30.01 | 30.01 | 30.01 |
| 31896 | 31.80 | 31.80 | 31.80 | 31.80 | 31.80 |
| 31897 | 32.51 | 32.51 | 32.51 | 32.51 | 32.51 |
| 31898 | 32.82 | 32.82 | 32.82 | 32.82 | 32.82 |
| 31899 | 33.15 | 33.15 | 33.15 | 33.15 | 33.15 |
| 31915 | 34.65 | 34.65 | 34.65 | 34.65 | 34.65 |
| 31920 | 23.34 | 23.34 | 23.34 | 23.34 | 23.34 |
| 31921 | 25.03 | 25.03 | 25.03 | 25.03 | 25.03 |
| 31922 | 25.87 | 25.87 | 25.87 | 25.87 | 25.87 |
| 31923 | 26.57 | 26.57 | 26.57 | 26.57 | 26.57 |
| 31924 | 26.68 | 26.68 | 26.68 | 26.68 | 26.68 |
| 31925 | 26.85 | 26.85 | 26.85 | 26.85 | 26.85 |
| 31926 | 26.87 | 26.87 | 26.87 | 26.87 | 26.87 |
| 31928 | 28.19 | 28.19 | 28.19 | 28.19 | 28.19 |
| 31930 | 28.98 | 28.98 | 28.98 | 28.98 | 28.98 |
| 31931 | 31.02 | 31.02 | 31.02 | 31.02 | 31.02 |
| 31932 | 31.04 | 31.04 | 31.04 | 31.04 | 31.04 |
| 31933 | 31.04 | 31.04 | 31.04 | 31.04 | 31.04 |
| 31933A | 31.48 | 31.48 | 31.48 | 31.48 | 31.48 |
| 31934 | 31.49 | 31.49 | 31.49 | 31.49 | 31.49 |
| 31935 | 31.98 | 31.98 | 31.98 | 31.98 | 31.98 |
| 31936 | 31.99 | 31.99 | 31.99 | 31.99 | 31.99 |
| 31937 | 32.12 | 32.12 | 32.12 | 32.12 | 32.12 |
| 31938 | 32.26 | 32.26 | 32.26 | 32.26 | 32.26 |
| 31939 | 32.40 | 32.40 | 32.40 | 32.40 | 32.40 |
| 31940 | 32.41 | 32.41 | 32.41 | 32.41 | 32.41 |
| 31941 | 32.56 | 32.56 | 32.56 | 32.56 | 32.56 |
| 31942 | 32.84 | 32.84 | 32.84 | 32.84 | 32.84 |
| 31943 | 33.41 | 33.41 | 33.41 | 33.41 | 33.41 |
| 31944 | 33.46 | 33.46 | 33.46 | 33.46 | 33.46 |
| 31945 | 33.66 | 33.66 | 33.66 | 33.66 | 33.66 |
| 31947 | 33.69 | 33.69 | 33.69 | 33.69 | 33.69 |
| 31948 | 33.70 | 33.70 | 33.70 | 33.70 | 33.70 |
| 31949 | 33.70 | 33.70 | 33.70 | 33.70 | 33.70 |
| 31950 | 33.70 | 33.70 | 33.70 | 33.70 | 33.70 |
| 31951 | 33.69 | 33.69 | 33.69 | 33.69 | 33.69 |
| 31952 | 33.70 | 33.70 | 33.70 | 33.70 | 33.70 |
| 31953 | 33.74 | 33.74 | 33.74 | 33.74 | 33.74 |
| 31954 | 34.11 | 34.11 | 34.11 | 34.11 | 34.11 |
| 31955 | 34.11 | 34.11 | 34.11 | 34.11 | 34.11 |
| 31956 | 34.50 | 34.50 | 34.50 | 34.50 | 34.50 |
| 31957 | 34.45 | 34.45 | 34.45 | 34.45 | 34.45 |
| 31958 | 34.47 | 34.47 | 34.47 | 34.47 | 34.47 |
| 31958A | 34.45 | 34.45 | 34.45 | 34.45 | 34.45 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31959A | 34.51 | 34.51 | 34.51 | 34.51 | 34.51 |
| 31960 | 19.62 | 19.62 | 19.62 | 19.62 | 19.62 |
| 31961 | 19.79 | 19.79 | 19.79 | 19.79 | 19.79 |
| 31964 | 20.57 | 20.57 | 20.57 | 20.57 | 20.57 |
| 31969 | 21.20 | 21.20 | 21.20 | 21.20 | 21.20 |
| 31970 | 26.72 | 26.72 | 26.72 | 26.72 | 26.72 |
| 31971 | 27.62 | 27.62 | 27.62 | 27.62 | 27.62 |
| 31972 | 29.75 | 29.75 | 29.75 | 29.75 | 29.75 |
| 31973 | 31.02 | 31.02 | 31.02 | 31.02 | 31.02 |
| 31974 | 31.21 | 31.21 | 31.21 | 31.21 | 31.21 |
| 31975 | 34.05 | 34.05 | 34.05 | 34.05 | 34.05 |
| 31976 | 33.76 | 33.76 | 33.76 | 33.76 | 33.76 |
| 31977 | 34.10 | 34.10 | 34.10 | 34.10 | 34.10 |
| 31978 | 34.25 | 34.25 | 34.25 | 34.25 | 34.25 |
| 31979 | 34.55 | 34.55 | 34.55 | 34.55 | 34.55 |
| 31980 | 33.42 | 33.42 | 33.42 | 33.42 | 33.42 |
| 31981 | 33.42 | 33.42 | 33.42 | 33.42 | 33.42 |
| 31982 | 33.43 | 33.43 | 33.43 | 33.43 | 33.43 |
| 31983 | 33.43 | 33.43 | 33.43 | 33.43 | 33.43 |
| 31985 | 33.69 | 33.69 | 33.69 | 33.69 | 33.69 |
| 31986 | 33.86 | 33.86 | 33.86 | 33.86 | 33.86 |
| 31987 | 33.86 | 33.86 | 33.86 | 33.86 | 33.86 |
| 31988 | 34.30 | 34.30 | 34.30 | 34.30 | 34.30 |
| 31989 | 34.50 | 34.50 | 34.50 | 34.50 | 34.50 |
| 31990 | 34.59 | 34.59 | 34.59 | 34.59 | 34.59 |
| 31991 | 34.58 | 34.58 | 34.58 | 34.58 | 34.58 |
| 31992 | 34.52 | 34.52 | 34.52 | 34.52 | 34.52 |
| 31995 | 26.34 | 26.34 | 26.34 | 26.34 | 26.34 |
| 31996 | 26.36 | 26.36 | 26.36 | 26.36 | 26.36 |
| 31997 | 27.57 | 27.57 | 27.57 | 27.57 | 27.57 |
| 31998 | 27.78 | 27.78 | 27.78 | 27.78 | 27.78 |
| 31999 | 26.43 | 26.43 | 26.43 | 26.43 | 26.43 |
| 32000 | 28.71 | 28.71 | 28.71 | 28.71 | 28.71 |
| 32001 | 28.68 | 28.68 | 28.68 | 28.68 | 28.68 |
| 32002 | 28.70 | 28.70 | 28.70 | 28.70 | 28.70 |
| 32003 | 28.97 | 28.97 | 28.97 | 28.97 | 28.97 |
| 32006 | 17.38 | 17.40 | 17.40 | 17.40 | 17.40 |
| 32007 | 17.32 | 17.35 | 17.34 | 17.35 | 17.34 |
| 32008 | 17.81 | 17.81 | 17.81 | 17.81 | 17.81 |
| 32009 | 18.62 | 18.62 | 18.62 | 18.62 | 18.62 |
| 32010 | 26.87 | 26.87 | 26.87 | 26.87 | 26.87 |
| 32011 | 29.15 | 29.15 | 29.15 | 29.15 | 29.15 |
| 32012 | 25.60 | 25.60 | 25.60 | 25.60 | 25.60 |
| 32013 | 28.84 | 28.84 | 28.84 | 28.84 | 28.84 |
| 32014 | 28.82 | 28.82 | 28.82 | 28.82 | 28.82 |
| 32015 | 28.81 | 28.81 | 28.81 | 28.81 | 28.81 |
| 32016 | 28.81 | 28.81 | 28.81 | 28.81 | 28.81 |
| 32017 | 29.19 | 29.19 | 29.19 | 29.19 | 29.19 |
| 32020 | 33.70 | 33.70 | 33.70 | 33.70 | 33.70 |
| 32021 | 34.56 | 34.56 | 34.56 | 34.56 | 34.56 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32022 | 34.58 | 34.58 | 34.58 | 34.58 | 34.58 |
| 32023 | 34.58 | 34.58 | 34.58 | 34.58 | 34.58 |
| 32025 | 34.70 | 34.70 | 34.70 | 34.70 | 34.70 |
| 32026 | 34.72 | 34.72 | 34.72 | 34.72 | 34.72 |
| 32031 | 33.70 | 33.70 | 33.70 | 33.70 | 33.70 |
| 32033 | 34.01 | 34.01 | 34.01 | 34.01 | 34.01 |
| 32034 | 34.21 | 34.21 | 34.21 | 34.21 | 34.21 |
| 32035 | 34.38 | 34.38 | 34.38 | 34.38 | 34.38 |
| 32037 | 34.46 | 34.46 | 34.46 | 34.46 | 34.46 |
| 32039 | 34.94 | 34.94 | 34.94 | 34.94 | 34.94 |
| 32040 | 17.61 | 17.64 | 17.63 | 17.64 | 17.63 |
| 32041 | 17.61 | 17.63 | 17.63 | 17.63 | 17.63 |
| 32042 | 17.60 | 17.63 | 17.62 | 17.63 | 17.62 |
| 32043 | 17.61 | 17.63 | 17.63 | 17.63 | 17.63 |
| 32044 | 17.61 | 17.63 | 17.63 | 17.63 | 17.63 |
| 32045 | 18.20 | 18.20 | 18.20 | 18.20 | 18.20 |
| 32046 | 19.25 | 19.25 | 19.25 | 19.25 | 19.25 |
| 32047 | 17.59 | 17.62 | 17.61 | 17.62 | 17.61 |
| 32048 | 17.59 | 17.62 | 17.61 | 17.62 | 17.61 |
| 32049 | 17.59 | 17.62 | 17.61 | 17.62 | 17.61 |
| 32050 | 26.65 | 26.65 | 26.65 | 26.65 | 26.65 |
| 32051 | 25.62 | 25.62 | 25.62 | 25.62 | 25.62 |
| 32053 | 17.61 | 17.63 | 17.63 | 17.63 | 17.63 |
| 32055 | 17.62 | 17.64 | 17.64 | 17.64 | 17.64 |
| 32056 | 18.80 | 18.80 | 18.80 | 18.80 | 18.80 |
| 32057 | 22.30 | 22.30 | 22.30 | 22.30 | 22.30 |
| 32058 | 17.68 | 17.70 | 17.70 | 17.70 | 17.70 |
| 32059 | 17.68 | 17.70 | 17.70 | 17.70 | 17.70 |
| 32060 | 17.69 | 17.71 | 17.71 | 17.71 | 17.71 |
| 32061 | 19.01 | 19.01 | 19.01 | 19.01 | 19.01 |
| 32063 | 24.32 | 24.32 | 24.32 | 24.32 | 24.32 |
| 32064 | 25.30 | 25.30 | 25.30 | 25.30 | 25.30 |
| 32065 | 25.28 | 25.28 | 25.28 | 25.28 | 25.28 |
| 32066 | 17.68 | 17.70 | 17.70 | 17.70 | 17.70 |
| 32067 | 17.67 | 17.70 | 17.69 | 17.70 | 17.69 |
| 32068 | 19.04 | 19.04 | 19.04 | 19.04 | 19.04 |
| 32069 | 21.49 | 21.49 | 21.49 | 21.49 | 21.49 |
| 32070 | 20.25 | 20.25 | 20.25 | 20.25 | 20.25 |
| 32071 | 21.55 | 21.55 | 21.55 | 21.55 | 21.55 |
| 32072 | 21.63 | 21.63 | 21.63 | 21.63 | 21.63 |
| 32073 | 22.65 | 22.65 | 22.65 | 22.65 | 22.65 |
| 32074 | 23.19 | 23.19 | 23.19 | 23.19 | 23.19 |
| 32075 | 23.18 | 23.18 | 23.18 | 23.18 | 23.18 |
| 32076 | 23.05 | 23.05 | 23.05 | 23.05 | 23.05 |
| 32077 | 23.07 | 23.07 | 23.07 | 23.07 | 23.07 |
| 32078 | 22.32 | 22.32 | 22.32 | 22.32 | 22.32 |
| 32079 | 23.69 | 23.69 | 23.69 | 23.69 | 23.69 |
| 32080 | 25.60 | 25.60 | 25.60 | 25.60 | 25.60 |
| 32081 | 23.07 | 23.07 | 23.07 | 23.07 | 23.07 |
| 32084 | 26.90 | 26.90 | 26.90 | 26.90 | 26.90 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32086 | 27.40 | 27.40 | 27.40 | 27.40 | 27.40 |
| 32087 | 27.25 | 27.25 | 27.25 | 27.25 | 27.25 |
| 32088 | 17.70 | 17.72 | 17.71 | 17.72 | 17.71 |
| 32089 | 17.70 | 17.72 | 17.72 | 17.72 | 17.71 |
| 32090 | 17.70 | 17.72 | 17.72 | 17.72 | 17.72 |
| 32091 | 17.70 | 17.72 | 17.72 | 17.72 | 17.72 |
| 32092 | 17.70 | 17.72 | 17.72 | 17.72 | 17.72 |
| 32093 | 17.72 | 17.74 | 17.73 | 17.74 | 17.73 |
| 32093A | 17.72 | 17.74 | 17.74 | 17.74 | 17.73 |
| 32094 | 19.19 | 19.19 | 19.19 | 19.19 | 19.19 |
| 32095 | 19.19 | 19.19 | 19.19 | 19.19 | 19.19 |
| 32095A | 19.30 | 19.30 | 19.30 | 19.30 | 19.30 |
| 32096 | 19.45 | 19.45 | 19.45 | 19.45 | 19.45 |
| 32096A | 19.15 | 19.15 | 19.15 | 19.15 | 19.15 |
| 32097 | 19.21 | 19.21 | 19.21 | 19.21 | 19.21 |
| 32098 | 18.29 | 18.30 | 18.30 | 18.30 | 18.30 |
| 32101 | 19.15 | 19.16 | 19.16 | 19.16 | 19.15 |
| 32102 | 19.42 | 19.42 | 19.42 | 19.42 | 19.42 |
| 32103 | 19.44 | 19.45 | 19.44 | 19.45 | 19.44 |
| 32104 | 19.46 | 19.47 | 19.46 | 19.47 | 19.46 |
| 32105 | 19.52 | 19.53 | 19.53 | 19.53 | 19.53 |
| 32108 | 19.56 | 19.56 | 19.56 | 19.56 | 19.56 |
| 32109 | 19.57 | 19.57 | 19.57 | 19.57 | 19.57 |
| 32110 | 19.58 | 19.59 | 19.59 | 19.59 | 19.59 |
| 32111 | 19.69 | 19.70 | 19.70 | 19.70 | 19.70 |
| 32112 | 19.73 | 19.74 | 19.74 | 19.74 | 19.74 |
| 32113 | 19.78 | 19.79 | 19.79 | 19.79 | 19.79 |
| 32115 | 19.79 | 19.80 | 19.80 | 19.80 | 19.80 |
| 32117 | 19.79 | 19.80 | 19.80 | 19.80 | 19.80 |
| 32117A | 19.79 | 19.80 | 19.80 | 19.80 | 19.80 |
| 32117B | 19.94 | 19.94 | 19.94 | 19.94 | 19.94 |
| 32117C | 24.45 | 24.45 | 24.45 | 24.45 | 24.45 |
| 32117D | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 |
| 32120 | 21.21 | 21.21 | 21.21 | 21.21 | 21.21 |
| 32121 | 20.71 | 20.71 | 20.71 | 20.71 | 20.71 |
| 32122 | 20.73 | 20.73 | 20.73 | 20.73 | 20.73 |
| 32123 | 20.77 | 20.77 | 20.77 | 20.77 | 20.77 |
| 32123A | 20.77 | 20.77 | 20.77 | 20.77 | 20.77 |
| 32125 | 20.98 | 20.99 | 20.99 | 20.99 | 20.99 |
| 32125A | 20.96 | 20.96 | 20.96 | 20.96 | 20.96 |
| 32125B | 20.96 | 20.96 | 20.96 | 20.96 | 20.96 |
| 32126 | 21.13 | 21.13 | 21.13 | 21.13 | 21.13 |
| 32127 | 21.36 | 21.36 | 21.36 | 21.36 | 21.36 |
| 32128 | 21.39 | 21.39 | 21.39 | 21.39 | 21.39 |
| 32129 | 21.64 | 21.64 | 21.64 | 21.64 | 21.64 |
| 32130 | 26.37 | 26.37 | 26.37 | 26.37 | 26.37 |
| 32130 A | 24.79 | 24.79 | 24.79 | 24.79 | 24.79 |
| 32130C | 24.66 | 24.66 | 24.66 | 24.66 | 24.66 |
| 32130D | 26.29 | 26.29 | 26.29 | 26.29 | 26.29 |
| 32131 | 24.86 | 24.86 | 24.86 | 24.86 | 24.86 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32131A | 24.87 | 24.87 | 24.87 | 24.87 | 24.87 |
| 32131B | 30.34 | 30.34 | 30.34 | 30.34 | 30.34 |
| 32132 | 25.38 | 25.38 | 25.38 | 25.38 | 25.38 |
| 32132A | 27.82 | 27.82 | 27.82 | 27.82 | 27.82 |
| 32133 | 25.88 | 25.88 | 25.88 | 25.88 | 25.88 |
| 32134 | 26.07 | 26.07 | 26.07 | 26.07 | 26.07 |
| 32135 | 26.56 | 26.56 | 26.56 | 26.56 | 26.56 |
| 32136 | 26.71 | 26.71 | 26.71 | 26.71 | 26.71 |
| 32137 | 26.76 | 26.76 | 26.76 | 26.76 | 26.76 |
| 32138 | 27.12 | 27.12 | 27.12 | 27.12 | 27.12 |
| 32140 | 27.36 | 27.36 | 27.36 | 27.36 | 27.36 |
| 32141 | 27.69 | 27.69 | 27.69 | 27.69 | 27.69 |
| 32142 | 27.79 | 27.79 | 27.79 | 27.79 | 27.79 |
| 32143 | 28.57 | 28.57 | 28.57 | 28.57 | 28.57 |
| 32144 | 29.31 | 29.31 | 29.31 | 29.31 | 29.31 |
| 32144A | 29.35 | 29.35 | 29.35 | 29.35 | 29.35 |
| 32145 | 29.71 | 29.71 | 29.71 | 29.71 | 29.71 |
| 32146 | 30.17 | 30.17 | 30.17 | 30.17 | 30.17 |
| 32147 | 30.41 | 30.41 | 30.41 | 30.41 | 30.41 |
| 32148 | 30.42 | 30.42 | 30.42 | 30.42 | 30.42 |
| 32149 | 30.43 | 30.43 | 30.43 | 30.43 | 30.43 |
| 32150 | 30.79 | 30.79 | 30.79 | 30.79 | 30.79 |
| 32151 | 31.49 | 31.49 | 31.49 | 31.49 | 31.49 |
| 32152 | 32.05 | 32.05 | 32.05 | 32.05 | 32.05 |
| 32152A | 33.36 | 33.36 | 33.36 | 33.36 | 33.36 |
| 32153 | 32.18 | 32.18 | 32.18 | 32.18 | 32.18 |
| 32153A | 32.18 | 32.18 | 32.18 | 32.18 | 32.18 |
| 32154 | 32.18 | 32.18 | 32.18 | 32.18 | 32.18 |
| 32155 | 33.76 | 33.76 | 33.76 | 33.76 | 33.76 |
| 32155A | 33.70 | 33.70 | 33.70 | 33.70 | 33.70 |
| 32156 | 33.82 | 33.82 | 33.82 | 33.82 | 33.82 |
| 32157 | 33.88 | 33.88 | 33.88 | 33.88 | 33.88 |
| 32158 | 34.04 | 34.04 | 34.04 | 34.04 | 34.04 |
| 32170 | 24.94 | 24.94 | 24.94 | 24.94 | 24.94 |
| 32171 | 25.09 | 25.09 | 25.09 | 25.09 | 25.09 |
| 32172 | 25.26 | 25.26 | 25.26 | 25.26 | 25.26 |
| 32173 | 19.08 | 19.09 | 19.08 | 19.09 | 19.08 |
| 32174 | 21.15 | 21.15 | 21.15 | 21.15 | 21.15 |
| 32177 | 23.34 | 23.34 | 23.34 | 23.34 | 23.34 |
| 32178 | 24.04 | 24.04 | 24.04 | 24.04 | 24.04 |
| 32179 | 25.02 | 25.02 | 25.02 | 25.02 | 25.02 |
| 32180 | 19.56 | 19.57 | 19.57 | 19.57 | 19.57 |
| 32181 | 20.10 | 20.10 | 20.10 | 20.10 | 20.10 |
| 32183 | 19.57 | 19.57 | 19.57 | 19.57 | 19.57 |
| 32184 | 19.54 | 19.55 | 19.55 | 19.55 | 19.55 |
| 32185 | 19.57 | 19.57 | 19.57 | 19.57 | 19.57 |
| 32188 | 19.57 | 19.58 | 19.57 | 19.58 | 19.57 |
| 32190 | 19.57 | 19.57 | 19.57 | 19.57 | 19.57 |
| 32191 | 19.57 | 19.58 | 19.58 | 19.58 | 19.58 |
| 32192 | 19.57 | 19.58 | 19.58 | 19.58 | 19.58 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32193 | 19.57 | 19.57 | 19.57 | 19.57 | 19.57 |
| 32194 | 19.57 | 19.57 | 19.57 | 19.57 | 19.57 |
| 32195 | 19.57 | 19.58 | 19.58 | 19.58 | 19.58 |
| 32197 | 19.59 | 19.60 | 19.60 | 19.60 | 19.60 |
| 32198 | 19.60 | 19.61 | 19.61 | 19.61 | 19.61 |
| 32199 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
| 32205 | 19.70 | 19.71 | 19.71 | 19.71 | 19.71 |
| 32206 | 19.78 | 19.79 | 19.78 | 19.79 | 19.78 |
| 32207 | 19.78 | 19.79 | 19.78 | 19.79 | 19.78 |
| 32208 | 19.92 | 19.92 | 19.92 | 19.92 | 19.92 |
| 32209 | 22.62 | 22.62 | 22.62 | 22.62 | 22.62 |
| 32210 | 20.55 | 20.55 | 20.55 | 20.55 | 20.55 |
| 32211 | 21.78 | 21.78 | 21.78 | 21.78 | 21.78 |
| 32212 | 20.01 | 20.01 | 20.01 | 20.01 | 20.01 |
| 32214 | 23.95 | 23.95 | 23.95 | 23.95 | 23.95 |
| 32220 | 19.78 | 19.79 | 19.78 | 19.79 | 19.78 |
| 32221 | 19.78 | 19.79 | 19.78 | 19.79 | 19.78 |
| 32222 | 19.78 | 19.79 | 19.78 | 19.79 | 19.78 |
| 32224 | 19.78 | 19.79 | 19.79 | 19.79 | 19.79 |
| 32226 | 19.78 | 19.79 | 19.79 | 19.79 | 19.79 |
| 32227 | 19.78 | 19.79 | 19.79 | 19.79 | 19.79 |
| 32227A | 20.77 | 20.78 | 20.78 | 20.78 | 20.78 |
| 32228 | 21.13 | 21.13 | 21.13 | 21.13 | 21.13 |
| 32228A | 21.36 | 21.37 | 21.36 | 21.37 | 21.36 |
| 32228B | 21.13 | 21.13 | 21.13 | 21.13 | 21.13 |
| 32228 C | 21.13 | 21.13 | 21.13 | 21.13 | 21.13 |
| 32230 | 21.39 | 21.39 | 21.39 | 21.39 | 21.39 |
| 32231 | 21.39 | 21.39 | 21.39 | 21.39 | 21.39 |
| 32235 | 28.22 | 28.22 | 28.22 | 28.22 | 28.22 |
| 32236 | 28.27 | 28.27 | 28.27 | 28.27 | 28.27 |
| 32237 | 28.32 | 28.32 | 28.32 | 28.32 | 28.32 |
| 32238 | 28.32 | 28.32 | 28.32 | 28.32 | 28.32 |
| 32240 | 27.11 | 27.11 | 27.11 | 27.11 | 27.11 |
| 32241 | 27.37 | 27.37 | 27.37 | 27.37 | 27.37 |
| 32242 | 28.16 | 28.16 | 28.16 | 28.16 | 28.16 |
| 32243 | 28.16 | 28.16 | 28.16 | 28.16 | 28.16 |
| 32244 | 28.16 | 28.16 | 28.16 | 28.16 | 28.16 |
| 32245 | 28.16 | 28.16 | 28.16 | 28.16 | 28.16 |
| 32246 | 28.16 | 28.16 | 28.16 | 28.16 | 28.16 |
| 32247 | 28.16 | 28.16 | 28.16 | 28.16 | 28.16 |
| 32248 | 28.17 | 28.17 | 28.17 | 28.17 | 28.17 |
| 32249 | 28.17 | 28.17 | 28.17 | 28.17 | 28.17 |
| 32250 | 28.23 | 28.23 | 28.23 | 28.23 | 28.23 |
| 32251 | 29.00 | 29.00 | 29.00 | 29.00 | 29.00 |
| 32253 | 30.26 | 30.26 | 30.26 | 30.26 | 30.26 |
| 32254 | 30.43 | 30.43 | 30.43 | 30.43 | 30.43 |
| 32257 | 29.98 | 29.98 | 29.98 | 29.98 | 29.98 |
| 32258 | 29.64 | 29.64 | 29.64 | 29.64 | 29.64 |
| 32260 | 32.06 | 32.06 | 32.06 | 32.06 | 32.06 |
| 32261 | 35.88 | 35.88 | 35.88 | 35.88 | 35.88 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32262 | 36.89 | 36.89 | 36.89 | 36.89 | 36.89 |
| 32264 | 30.41 | 30.41 | 30.41 | 30.41 | 30.41 |
| 32265 | 30.45 | 30.45 | 30.45 | 30.45 | 30.45 |
| 32266 | 30.51 | 30.51 | 30.51 | 30.51 | 30.51 |
| 32267 | 30.71 | 30.71 | 30.71 | 30.71 | 30.71 |
| 32268 | 30.77 | 30.77 | 30.77 | 30.77 | 30.77 |
| 32270 | 36.50 | 36.50 | 36.50 | 36.50 | 36.50 |
| 32271 | 32.64 | 32.64 | 32.64 | 32.64 | 32.64 |
| 32272 | 32.78 | 32.78 | 32.78 | 32.78 | 32.78 |
| 32273 | 32.92 | 32.92 | 32.92 | 32.92 | 32.92 |
| 32274 | 30.80 | 30.80 | 30.80 | 30.80 | 30.80 |
| 32276 | 30.79 | 30.79 | 30.79 | 30.79 | 30.79 |
| 32277 | 31.70 | 31.70 | 31.70 | 31.70 | 31.70 |
| 32278 | 32.00 | 32.00 | 32.00 | 32.00 | 32.00 |
| 32280 | 33.33 | 33.33 | 33.33 | 33.33 | 33.33 |
| 32283 | 31.69 | 31.69 | 31.69 | 31.69 | 31.69 |
| 32284 | 31.70 | 31.70 | 31.70 | 31.70 | 31.70 |
| 32285 | 31.74 | 31.74 | 31.74 | 31.74 | 31.74 |
| 32286 | 31.78 | 31.78 | 31.78 | 31.78 | 31.78 |
| 32287 | 31.86 | 31.86 | 31.86 | 31.86 | 31.86 |
| 32288 | 31.89 | 31.89 | 31.89 | 31.89 | 31.89 |
| 32289 | 31.97 | 31.97 | 31.97 | 31.97 | 31.97 |
| 32290 | 32.54 | 32.54 | 32.54 | 32.54 | 32.54 |
| 32291 | 31.76 | 31.76 | 31.76 | 31.76 | 31.76 |
| 32292 | 31.88 | 31.88 | 31.88 | 31.88 | 31.88 |
| 32293 | 32.49 | 32.49 | 32.49 | 32.49 | 32.49 |
| 32295 | 33.33 | 33.33 | 33.33 | 33.33 | 33.33 |
| 32298 | 32.05 | 32.05 | 32.05 | 32.05 | 32.05 |
| 32299 | 32.08 | 32.08 | 32.08 | 32.08 | 32.08 |
| 32301 | 32.13 | 32.13 | 32.13 | 32.13 | 32.13 |
| 32302 | 32.36 | 32.36 | 32.36 | 32.36 | 32.36 |
| 32303 | 32.74 | 32.74 | 32.74 | 32.74 | 32.74 |
| 32306 | 32.96 | 32.96 | 32.96 | 32.96 | 32.96 |
| 32308 | 34.31 | 34.31 | 34.31 | 34.31 | 34.31 |
| 32309 | 34.26 | 34.26 | 34.26 | 34.26 | 34.26 |
| 32312 | 32.40 | 32.40 | 32.40 | 32.40 | 32.40 |
| 32313 | 32.56 | 32.56 | 32.56 | 32.56 | 32.56 |
| 32315 | 34.61 | 34.61 | 34.61 | 34.61 | 34.61 |
| 32317 | 36.69 | 36.69 | 36.69 | 36.69 | 36.69 |
| 32318 | 33.76 | 33.76 | 33.76 | 33.76 | 33.76 |
| 32319 | 34.31 | 34.31 | 34.31 | 34.31 | 34.31 |
| 32320 | 34.01 | 34.01 | 34.01 | 34.01 | 34.01 |
| 32322 | 37.13 | 37.13 | 37.13 | 37.13 | 37.13 |
| 32324 | 34.58 | 34.58 | 34.58 | 34.58 | 34.58 |
| 32327 | 34.83 | 34.83 | 34.83 | 34.83 | 34.83 |
| 32329 | 34.83 | 34.83 | 34.83 | 34.83 | 34.83 |
| 32330 | 34.69 | 34.69 | 34.69 | 34.69 | 34.69 |
| 32331 | 34.89 | 34.89 | 34.89 | 34.89 | 34.89 |
| 32332 | 34.81 | 34.81 | 34.81 | 34.81 | 34.81 |
| 32335 | 34.42 | 34.42 | 34.42 | 34.42 | 34.42 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32400 | 19.77 | 19.78 | 19.78 | 19.78 | 19.78 |
| 32401A | 19.75 | 19.76 | 19.75 | 19.76 | 19.75 |
| 32401B | 19.77 | 19.77 | 19.77 | 19.77 | 19.77 |
| 32402 | 19.79 | 19.80 | 19.80 | 19.80 | 19.80 |
| 32403 | 19.81 | 19.81 | 19.81 | 19.81 | 19.81 |
| 32405 | 19.93 | 19.93 | 19.93 | 19.93 | 19.93 |
| 32406 | 19.95 | 19.96 | 19.96 | 19.96 | 19.96 |
| 32407 | 19.95 | 19.96 | 19.96 | 19.96 | 19.96 |
| 32408 | 20.44 | 20.44 | 20.44 | 20.44 | 20.44 |
| 32409 | 20.46 | 20.46 | 20.46 | 20.46 | 20.46 |
| 32410 | 21.06 | 21.06 | 21.06 | 21.06 | 21.06 |
| 32411 | 21.59 | 21.59 | 21.59 | 21.59 | 21.59 |
| 32412 | 21.61 | 21.61 | 21.61 | 21.61 | 21.61 |
| 32414 | 24.72 | 24.72 | 24.72 | 24.72 | 24.72 |
| 32415 | 25.93 | 25.93 | 25.93 | 25.93 | 25.93 |
| 32418 | 21.31 | 21.31 | 21.31 | 21.31 | 21.31 |
| 32421 | 22.16 | 22.16 | 22.16 | 22.16 | 22.16 |
| 32424 | 19.94 | 19.94 | 19.94 | 19.94 | 19.94 |
| 32425 | 19.94 | 19.94 | 19.94 | 19.94 | 19.94 |
| 32426 | 19.94 | 19.95 | 19.94 | 19.95 | 19.94 |
| 32427 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 |
| 32428 | 20.03 | 20.03 | 20.03 | 20.03 | 20.03 |
| 32429 | 22.07 | 22.07 | 22.07 | 22.07 | 22.07 |
| 32430 | 23.43 | 23.43 | 23.43 | 23.43 | 23.43 |
| 32432 | 27.11 | 27.11 | 27.11 | 27.11 | 27.11 |
| 32433 | 27.19 | 27.19 | 27.19 | 27.19 | 27.19 |
| 32434 | 19.60 | 19.60 | 19.60 | 19.60 | 19.60 |
| 32435 | 20.85 | 20.85 | 20.85 | 20.85 | 20.85 |
| 32436 | 21.39 | 21.39 | 21.39 | 21.39 | 21.39 |
| 32437 | 22.05 | 22.05 | 22.05 | 22.05 | 22.05 |
| 32440 | 22.66 | 22.66 | 22.66 | 22.66 | 22.66 |
| 32441 | 23.60 | 23.60 | 23.60 | 23.60 | 23.60 |
| 32442 | 24.15 | 24.15 | 24.15 | 24.15 | 24.15 |
| 32443 | 27.27 | 27.27 | 27.27 | 27.27 | 27.27 |
| 32444 | 29.19 | 29.19 | 29.19 | 29.19 | 29.19 |
| 32446 | 20.70 | 20.70 | 20.70 | 20.70 | 20.70 |
| 32447 | 20.24 | 20.24 | 20.24 | 20.24 | 20.24 |
| 32450 | 23.92 | 23.92 | 23.92 | 23.92 | 23.92 |
| 32452 | 21.38 | 21.38 | 21.38 | 21.38 | 21.38 |
| 32455 | 20.15 | 20.16 | 20.15 | 20.16 | 20.15 |
| 32456 | 22.11 | 22.11 | 22.11 | 22.11 | 22.11 |
| 32458 | 19.95 | 19.96 | 19.96 | 19.96 | 19.96 |
| 32460 | 21.48 | 21.48 | 21.48 | 21.48 | 21.48 |
| 32464 | 27.17 | 27.17 | 27.17 | 27.17 | 27.17 |
| 32470 | 29.06 | 29.06 | 29.06 | 29.06 | 29.06 |
| 32471 | 28.29 | 28.29 | 28.29 | 28.29 | 28.29 |
| 32472 | 26.22 | 26.22 | 26.22 | 26.22 | 26.22 |
| 32473 | 28.37 | 28.37 | 28.37 | 28.37 | 28.37 |
| 32474 | 24.87 | 24.87 | 24.87 | 24.87 | 24.87 |
| 32474A | 26.22 | 26.22 | 26.22 | 26.22 | 26.22 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32474B | 26.92 | 26.92 | 26.92 | 26.92 | 26.92 |
| 32474C | 26.23 | 26.23 | 26.23 | 26.23 | 26.23 |
| 32474 MH | 24.86 | 24.86 | 24.86 | 24.86 | 24.86 |
| 32475 | 30.05 | 30.05 | 30.05 | 30.05 | 30.05 |
| 32482 | 27.73 | 27.73 | 27.73 | 27.73 | 27.73 |
| 32483 | 27.16 | 27.16 | 27.16 | 27.16 | 27.16 |
| 32500 | 19.79 | 19.80 | 19.79 | 19.80 | 19.79 |
| 32501 | 19.80 | 19.81 | 19.81 | 19.81 | 19.81 |
| 32502 | 20.04 | 20.05 | 20.05 | 20.05 | 20.05 |
| 32503 | 20.05 | 20.06 | 20.05 | 20.06 | 20.05 |
| 32504 | 20.06 | 20.06 | 20.06 | 20.06 | 20.06 |
| 32505 | 20.06 | 20.06 | 20.06 | 20.06 | 20.06 |
| 32506 | 20.06 | 20.07 | 20.07 | 20.07 | 20.07 |
| 32507 | 20.06 | 20.06 | 20.06 | 20.06 | 20.06 |
| 32508 | 20.06 | 20.06 | 20.06 | 20.06 | 20.06 |
| 32509 | 20.07 | 20.07 | 20.07 | 20.07 | 20.07 |
| 32510 | 20.77 | 20.77 | 20.77 | 20.77 | 20.77 |
| 32511 | 20.07 | 20.07 | 20.07 | 20.07 | 20.07 |
| 32512 | 20.07 | 20.07 | 20.07 | 20.07 | 20.07 |
| 32513 | 20.07 | 20.07 | 20.07 | 20.07 | 20.07 |
| 32518 | 26.80 | 26.80 | 26.80 | 26.80 | 26.80 |
| 32530 | 20.06 | 20.07 | 20.06 | 20.07 | 20.06 |
| 32531 | 20.06 | 20.07 | 20.06 | 20.07 | 20.06 |
| 32532 | 20.06 | 20.07 | 20.06 | 20.07 | 20.06 |
| 32533 | 20.06 | 20.07 | 20.06 | 20.07 | 20.06 |
| 32534 | 20.07 | 20.07 | 20.07 | 20.07 | 20.07 |
| 32535 | 20.07 | 20.07 | 20.07 | 20.07 | 20.07 |
| 32537 | 27.60 | 27.60 | 27.60 | 27.60 | 27.60 |
| 32538 | 20.72 | 20.72 | 20.72 | 20.72 | 20.72 |
| 32540 | 20.06 | 20.06 | 20.06 | 20.06 | 20.06 |
| 32549 | 21.54 | 21.54 | 21.54 | 21.54 | 21.54 |
| 32550 | 22.85 | 22.85 | 22.85 | 22.85 | 22.85 |
| 32552 | 27.35 | 27.35 | 27.35 | 27.35 | 27.35 |
| 32553 | 27.42 | 27.42 | 27.42 | 27.42 | 27.42 |
| 32555 | 22.85 | 22.85 | 22.85 | 22.85 | 22.85 |
| 32559 | 25.39 | 25.39 | 25.39 | 25.39 | 25.39 |
| 32560 | 25.41 | 25.41 | 25.41 | 25.41 | 25.41 |
| 32561 | 25.50 | 25.50 | 25.50 | 25.50 | 25.50 |
| 32575 | 30.82 | 30.82 | 30.82 | 30.82 | 30.82 |
| 32576 | 31.83 | 31.83 | 31.83 | 31.83 | 31.83 |
| 32577 | 31.98 | 31.98 | 31.98 | 31.98 | 31.98 |
| 32578 | 32.10 | 32.10 | 32.10 | 32.10 | 32.10 |
| 32579 | 32.06 | 32.06 | 32.06 | 32.06 | 32.06 |
| 32601 | 21.42 | 21.42 | 21.42 | 21.42 | 21.42 |
| 32602 | 21.60 | 21.60 | 21.60 | 21.60 | 21.60 |
| 32604 | 22.55 | 22.55 | 22.55 | 22.55 | 22.55 |
| 32605 | 21.68 | 21.68 | 21.68 | 21.68 | 21.68 |
| 32606 | 21.86 | 21.86 | 21.86 | 21.86 | 21.86 |
| 32606A | 21.90 | 21.90 | 21.90 | 21.90 | 21.90 |
| 32607 | 21.95 | 21.95 | 21.95 | 21.95 | 21.95 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32608 | 21.95 | 21.95 | 21.95 | 21.95 | 21.95 |
| 32609 | 21.96 | 21.96 | 21.96 | 21.96 | 21.96 |
| 32610 | 22.03 | 22.03 | 22.03 | 22.03 | 22.03 |
| 32611 | 22.09 | 22.09 | 22.09 | 22.09 | 22.09 |
| 32612 | 22.10 | 22.10 | 22.10 | 22.10 | 22.10 |
| 32614 | 22.12 | 22.12 | 22.12 | 22.12 | 22.12 |
| 32615 | 22.15 | 22.15 | 22.15 | 22.15 | 22.15 |
| 32616 | 22.28 | 22.28 | 22.28 | 22.28 | 22.28 |
| 32619 | 22.37 | 22.37 | 22.37 | 22.37 | 22.37 |
| 32620 | 23.91 | 23.91 | 23.91 | 23.91 | 23.91 |
| 32621 | 23.98 | 23.98 | 23.98 | 23.98 | 23.98 |
| 32622 | 24.42 | 24.42 | 24.42 | 24.42 | 24.42 |
| 32623 | 24.52 | 24.52 | 24.52 | 24.52 | 24.52 |
| 32624 | 24.53 | 24.53 | 24.53 | 24.53 | 24.53 |
| 32625 | 25.07 | 25.07 | 25.07 | 25.07 | 25.07 |
| 32626 | 25.92 | 25.92 | 25.92 | 25.92 | 25.92 |
| 32627 | 25.92 | 25.92 | 25.92 | 25.92 | 25.92 |
| 32628 | 24.57 | 24.57 | 24.57 | 24.57 | 24.57 |
| 32629 | 23.29 | 23.29 | 23.29 | 23.29 | 23.29 |
| 32630 | 22.05 | 22.05 | 22.05 | 22.05 | 22.05 |
| 32631 | 22.23 | 22.23 | 22.23 | 22.23 | 22.23 |
| 32632 | 22.60 | 22.60 | 22.60 | 22.60 | 22.60 |
| 32633 | 23.59 | 23.59 | 23.59 | 23.59 | 23.59 |
| 32635 | 27.50 | 27.50 | 27.50 | 27.50 | 27.50 |
| 32636 | 27.66 | 27.66 | 27.66 | 27.66 | 27.66 |
| 32637 | 27.54 | 27.54 | 27.54 | 27.54 | 27.54 |
| 32640 | 27.82 | 27.82 | 27.82 | 27.82 | 27.82 |
| 32642 | 29.10 | 29.10 | 29.10 | 29.10 | 29.10 |
| 32643 | 29.36 | 29.36 | 29.36 | 29.36 | 29.36 |
| 32645 | 29.85 | 29.85 | 29.85 | 29.85 | 29.85 |
| 32646 | 29.84 | 29.84 | 29.84 | 29.84 | 29.84 |
| 32647 | 30.05 | 30.05 | 30.05 | 30.05 | 30.05 |
| 32648 | 30.09 | 30.09 | 30.09 | 30.09 | 30.09 |
| 32656 | 30.46 | 30.46 | 30.46 | 30.46 | 30.46 |
| 32660 | 25.42 | 25.42 | 25.42 | 25.42 | 25.42 |
| 32661 | 27.25 | 27.25 | 27.25 | 27.25 | 27.25 |
| 32661A | 23.76 | 23.76 | 23.76 | 23.76 | 23.76 |
| 32662 | 28.60 | 28.60 | 28.60 | 28.60 | 28.60 |
| 32665 | 27.74 | 27.74 | 27.74 | 27.74 | 27.74 |
| 32666 | 28.01 | 28.01 | 28.01 | 28.01 | 28.01 |
| 32667 | 28.49 | 28.49 | 28.49 | 28.49 | 28.49 |
| 32668 | 28.59 | 28.59 | 28.59 | 28.59 | 28.59 |
| 32670 | 29.19 | 29.19 | 29.19 | 29.19 | 29.19 |
| 32672 | 28.10 | 28.10 | 28.10 | 28.10 | 28.10 |
| 32673 | 28.33 | 28.33 | 28.33 | 28.33 | 28.33 |
| 32674 | 28.78 | 28.78 | 28.78 | 28.78 | 28.78 |
| 32675 | 28.89 | 28.89 | 28.89 | 28.89 | 28.89 |
| 32677 | 28.13 | 28.13 | 28.13 | 28.13 | 28.13 |
| 32678 | 28.76 | 28.76 | 28.76 | 28.76 | 28.76 |
| 32680 | 27.80 | 27.80 | 27.80 | 27.80 | 27.80 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32681 | 27.15 | 27.15 | 27.15 | 27.15 | 27.15 |
| 32685 | 22.31 | 22.31 | 22.31 | 22.31 | 22.31 |
| 32685A | 22.33 | 22.33 | 22.33 | 22.33 | 22.33 |
| 32686 | 22.45 | 22.45 | 22.45 | 22.45 | 22.45 |
| 32687 | 22.46 | 22.47 | 22.47 | 22.47 | 22.47 |
| 32688 | 22.48 | 22.48 | 22.48 | 22.48 | 22.48 |
| 32690 | 22.49 | 22.49 | 22.49 | 22.49 | 22.49 |
| 32691 | 22.49 | 22.49 | 22.49 | 22.49 | 22.49 |
| 32692 | 26.93 | 26.93 | 26.93 | 26.93 | 26.93 |
| 32693 | 26.50 | 26.50 | 26.50 | 26.50 | 26.50 |
| 32695 | 22.49 | 22.49 | 22.49 | 22.49 | 22.49 |
| 32696 | 23.50 | 23.50 | 23.50 | 23.50 | 23.50 |
| 32697 | 23.31 | 23.31 | 23.31 | 23.31 | 23.31 |
| 32698 | 24.14 | 24.14 | 24.14 | 24.14 | 24.14 |
| 32699 | 22.94 | 22.94 | 22.94 | 22.94 | 22.94 |
| 32700 | 21.97 | 21.97 | 21.97 | 21.97 | 21.97 |
| 32701 | 21.95 | 21.95 | 21.95 | 21.95 | 21.95 |
| 32702 | 21.97 | 21.97 | 21.97 | 21.97 | 21.97 |
| 32703 | 21.99 | 21.99 | 21.99 | 21.99 | 21.99 |
| 32704 | 26.63 | 26.63 | 26.63 | 26.63 | 26.63 |
| 32705 | 26.71 | 26.71 | 26.71 | 26.71 | 26.71 |
| 32706 | 26.74 | 26.74 | 26.74 | 26.74 | 26.74 |
| 32707 | 26.75 | 26.75 | 26.75 | 26.75 | 26.75 |
| 32708 | 26.76 | 26.76 | 26.76 | 26.76 | 26.76 |
| 32711 | 28.37 | 28.37 | 28.37 | 28.37 | 28.37 |
| 32712 | 28.41 | 28.41 | 28.41 | 28.41 | 28.41 |
| 32713 | 28.41 | 28.41 | 28.41 | 28.41 | 28.41 |
| 32714 | 28.40 | 28.40 | 28.40 | 28.40 | 28.40 |
| 32715 | 27.64 | 27.64 | 27.64 | 27.64 | 27.64 |
| 32716 | 27.64 | 27.64 | 27.64 | 27.64 | 27.64 |
| 32718 | 27.64 | 27.64 | 27.64 | 27.64 | 27.64 |
| 32719 | 27.74 | 27.74 | 27.74 | 27.74 | 27.74 |
| 32720 | 27.74 | 27.74 | 27.74 | 27.74 | 27.74 |
| 32721 | 27.74 | 27.74 | 27.74 | 27.74 | 27.74 |
| 32725 | 22.08 | 22.08 | 22.08 | 22.08 | 22.08 |
| 32726 | 22.04 | 22.04 | 22.04 | 22.04 | 22.04 |
| 32728 | 26.71 | 26.71 | 26.71 | 26.71 | 26.71 |
| 32729 | 26.71 | 26.71 | 26.71 | 26.71 | 26.71 |
| 32732 | 22.30 | 22.30 | 22.30 | 22.30 | 22.30 |
| 32734 | 22.67 | 22.67 | 22.67 | 22.67 | 22.67 |
| 32736 | 23.07 | 23.07 | 23.07 | 23.07 | 23.07 |
| 32737 | 23.08 | 23.08 | 23.08 | 23.08 | 23.08 |
| 32738 | 23.47 | 23.47 | 23.47 | 23.47 | 23.47 |
| 32740 | 22.36 | 22.36 | 22.36 | 22.36 | 22.36 |
| 32741 | 22.44 | 22.44 | 22.44 | 22.44 | 22.44 |
| 32742 | 25.11 | 25.11 | 25.11 | 25.11 | 25.11 |
| 32743 | 24.61 | 24.61 | 24.61 | 24.61 | 24.61 |
| 32744 | 25.38 | 25.38 | 25.38 | 25.38 | 25.38 |
| 32745 | 26.36 | 26.36 | 26.36 | 26.36 | 26.36 |
| 32747 | 22.79 | 22.79 | 22.79 | 22.79 | 22.79 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32748 | 23.47 | 23.47 | 23.47 | 23.47 | 23.47 |
| 32749 | 24.59 | 24.59 | 24.59 | 24.59 | 24.59 |
| 32752 | 21.62 | 21.62 | 21.62 | 21.62 | 21.62 |
| 32754 | 25.18 | 25.18 | 25.18 | 25.18 | 25.18 |
| 32755 | 28.54 | 28.54 | 28.54 | 28.54 | 28.54 |
| 32756 | 24.90 | 24.90 | 24.90 | 24.90 | 24.90 |
| 32758 | 25.70 | 25.70 | 25.70 | 25.70 | 25.70 |
| 32760 | 22.09 | 22.09 | 22.09 | 22.09 | 22.09 |
| 32761 | 23.51 | 23.51 | 23.51 | 23.51 | 23.51 |
| 32765 | 24.34 | 24.34 | 24.34 | 24.34 | 24.34 |
| 32768 | 23.95 | 23.95 | 23.95 | 23.95 | 23.95 |
| 32770 | 23.39 | 23.39 | 23.39 | 23.39 | 23.39 |
| 32773 | 19.61 | 19.62 | 19.62 | 19.62 | 19.62 |
| 32774 | 22.36 | 22.36 | 22.36 | 22.36 | 22.36 |
| 32775 | 19.62 | 19.62 | 19.62 | 19.62 | 19.62 |
| 32776 | 20.65 | 20.65 | 20.65 | 20.65 | 20.65 |
| 32777 | 22.29 | 22.29 | 22.29 | 22.29 | 22.29 |
| 32778 | 22.86 | 22.86 | 22.86 | 22.86 | 22.86 |
| 32779 | 22.88 | 22.88 | 22.88 | 22.88 | 22.88 |
| 32780 | 23.04 | 23.04 | 23.04 | 23.04 | 23.04 |
| 32781 | 23.07 | 23.07 | 23.07 | 23.07 | 23.07 |
| 32782 | 23.56 | 23.56 | 23.56 | 23.56 | 23.56 |
| 32783 | 26.08 | 26.08 | 26.08 | 26.08 | 26.08 |
| 32784 | 26.13 | 26.13 | 26.13 | 26.13 | 26.13 |
| 32785 | 28.93 | 28.93 | 28.93 | 28.93 | 28.93 |
| 32787 | 27.75 | 27.75 | 27.75 | 27.75 | 27.75 |
| 32789 | 27.47 | 27.47 | 27.47 | 27.47 | 27.47 |
| 32794 | 26.31 | 26.31 | 26.31 | 26.31 | 26.31 |
| 32795 | 26.47 | 26.47 | 26.47 | 26.47 | 26.47 |
| 32796 | 26.47 | 26.47 | 26.47 | 26.47 | 26.47 |
| 32797 | 26.49 | 26.49 | 26.49 | 26.49 | 26.49 |
| 32798 | 26.50 | 26.50 | 26.50 | 26.50 | 26.50 |
| 32801 | 18.29 | 18.30 | 18.30 | 18.30 | 18.30 |
| 32802 | 18.18 | 18.20 | 18.19 | 18.20 | 18.19 |
| 32803 | 18.31 | 18.32 | 18.31 | 18.32 | 18.31 |
| 32805 | 20.89 | 20.89 | 20.89 | 20.89 | 20.89 |
| 32806 | 20.97 | 20.97 | 20.97 | 20.97 | 20.97 |
| 32807 | 22.08 | 22.08 | 22.08 | 22.08 | 22.08 |
| 32808 | 22.18 | 22.18 | 22.18 | 22.18 | 22.18 |
| 32809 | 22.52 | 22.53 | 22.53 | 22.53 | 22.53 |
| 32810 | 25.18 | 25.18 | 25.18 | 25.18 | 25.18 |
| 32811 | 26.65 | 26.65 | 26.65 | 26.65 | 26.65 |
| 32812 | 27.14 | 27.14 | 27.14 | 27.14 | 27.14 |
| 32812A | 26.78 | 26.78 | 26.78 | 26.78 | 26.78 |
| 32813 | 30.39 | 30.39 | 30.39 | 30.39 | 30.39 |
| 32814 | 30.39 | 30.39 | 30.39 | 30.39 | 30.39 |
| 32815 | 30.39 | 30.39 | 30.39 | 30.39 | 30.39 |
| 32816 | 30.49 | 30.49 | 30.49 | 30.49 | 30.49 |
| 32817 | 33.18 | 33.18 | 33.18 | 33.18 | 33.18 |
| 32818 | 34.27 | 34.27 | 34.27 | 34.27 | 34.27 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32819 | 33.96 | 33.96 | 33.96 | 33.96 | 33.96 |
| 32820 | 33.78 | 33.78 | 33.78 | 33.78 | 33.78 |
| 32821 | 18.53 | 18.54 | 18.53 | 18.54 | 18.53 |
| 32822 | 18.31 | 18.32 | 18.31 | 18.32 | 18.31 |
| 32823 | 18.46 | 18.46 | 18.46 | 18.46 | 18.46 |
| 32824 | 19.15 | 19.15 | 19.15 | 19.15 | 19.15 |
| 32825 | 19.15 | 19.16 | 19.15 | 19.16 | 19.15 |
| 32826 | 19.19 | 19.19 | 19.19 | 19.19 | 19.19 |
| 32828 | 19.19 | 19.19 | 19.19 | 19.19 | 19.19 |
| 32830 | 18.83 | 18.83 | 18.83 | 18.83 | 18.83 |
| 32831 | 20.42 | 20.42 | 20.42 | 20.42 | 20.42 |
| 32832 | 20.52 | 20.52 | 20.52 | 20.52 | 20.52 |
| 32833 | 20.58 | 20.58 | 20.58 | 20.58 | 20.58 |
| 32834 | 20.70 | 20.70 | 20.70 | 20.70 | 20.70 |
| 32835 | 21.17 | 21.17 | 21.17 | 21.17 | 21.17 |
| 32836 | 22.43 | 22.43 | 22.43 | 22.43 | 22.43 |
| 32837 | 22.97 | 22.97 | 22.97 | 22.97 | 22.97 |
| 32838 | 23.46 | 23.46 | 23.46 | 23.46 | 23.46 |
| 32839 | 23.68 | 23.68 | 23.68 | 23.68 | 23.68 |
| 32840 | 23.86 | 23.86 | 23.86 | 23.86 | 23.86 |
| 32842 | 24.07 | 24.07 | 24.07 | 24.07 | 24.07 |
| 32844 | 24.04 | 24.04 | 24.04 | 24.04 | 24.04 |
| 32845 | 20.62 | 20.62 | 20.62 | 20.62 | 20.62 |
| 32847 | 19.93 | 19.93 | 19.93 | 19.93 | 19.93 |
| 32849 | 21.55 | 21.55 | 21.55 | 21.55 | 21.55 |
| 32850 | 22.01 | 22.01 | 22.01 | 22.01 | 22.01 |
| 32850A | 21.01 | 21.01 | 21.01 | 21.01 | 21.01 |
| 32851 | 23.68 | 23.68 | 23.68 | 23.68 | 23.68 |
| 32851A | 22.96 | 22.96 | 22.96 | 22.96 | 22.96 |
| 32852 | 23.90 | 23.90 | 23.90 | 23.90 | 23.90 |
| 32852A | 23.68 | 23.68 | 23.68 | 23.68 | 23.68 |
| 32853 | 24.56 | 24.56 | 24.56 | 24.56 | 24.56 |
| 32854 | 24.79 | 24.79 | 24.79 | 24.79 | 24.79 |
| 32855 | 24.63 | 24.63 | 24.63 | 24.63 | 24.63 |
| 32856 | 23.88 | 23.88 | 23.88 | 23.88 | 23.88 |
| 32857 | 23.56 | 23.56 | 23.56 | 23.56 | 23.56 |
| 32858 | 23.22 | 23.22 | 23.22 | 23.22 | 23.22 |
| 32859 | 22.75 | 22.75 | 22.75 | 22.75 | 22.75 |
| 32861 | 22.01 | 22.01 | 22.01 | 22.01 | 22.01 |
| 32862 | 22.06 | 22.06 | 22.06 | 22.06 | 22.06 |
| 32863 | 21.56 | 21.56 | 21.56 | 21.56 | 21.56 |
| 32864 | 23.64 | 23.64 | 23.64 | 23.64 | 23.64 |
| 32865 | 24.40 | 24.40 | 24.40 | 24.40 | 24.40 |
| 32866 | 24.43 | 24.43 | 24.43 | 24.43 | 24.43 |
| 32870 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 |
| 32871 | 25.75 | 25.75 | 25.75 | 25.75 | 25.75 |
| 32872 | 25.75 | 25.75 | 25.75 | 25.75 | 25.75 |
| 32873 | 26.47 | 26.47 | 26.47 | 26.47 | 26.47 |
| 32874 | 26.98 | 26.98 | 26.98 | 26.98 | 26.98 |
| 32875 | 25.91 | 25.91 | 25.91 | 25.91 | 25.91 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32876 | 26.26 | 26.26 | 26.26 | 26.26 | 26.26 |
| 32879 | 29.67 | 29.67 | 29.67 | 29.67 | 29.67 |
| 32880 | 33.14 | 33.14 | 33.14 | 33.14 | 33.14 |
| 32881 | 34.95 | 34.95 | 34.95 | 34.95 | 34.95 |
| 32882 | 35.15 | 35.15 | 35.15 | 35.15 | 35.15 |
| 32883 | 35.24 | 35.24 | 35.24 | 35.24 | 35.24 |
| 32884 | 35.37 | 35.37 | 35.37 | 35.37 | 35.37 |
| 32885 | 36.26 | 36.26 | 36.26 | 36.26 | 36.26 |
| 32886 | 36.26 | 36.26 | 36.26 | 36.26 | 36.26 |
| 32887 | 35.80 | 35.80 | 35.80 | 35.80 | 35.80 |
| 32888 | 36.27 | 36.27 | 36.27 | 36.27 | 36.27 |
| 32889 | 37.16 | 37.16 | 37.16 | 37.16 | 37.16 |
| 32890 | 27.63 | 27.63 | 27.63 | 27.63 | 27.63 |
| 32891 | 28.94 | 28.94 | 28.94 | 28.94 | 28.94 |
| 32892 | 31.18 | 31.18 | 31.18 | 31.18 | 31.18 |
| 32894 | 31.20 | 31.20 | 31.20 | 31.20 | 31.20 |
| 32901 | 24.17 | 24.17 | 24.17 | 24.17 | 24.17 |
| 32902 | 24.19 | 24.19 | 24.19 | 24.19 | 24.19 |
| 32903 | 25.06 | 25.06 | 25.06 | 25.06 | 25.06 |
| 32904 | 25.54 | 25.54 | 25.54 | 25.54 | 25.54 |
| 32905 | 29.03 | 29.03 | 29.03 | 29.03 | 29.03 |
| 32910 | 23.00 | 23.00 | 23.00 | 23.00 | 23.00 |
| 32911 | 23.83 | 23.83 | 23.83 | 23.83 | 23.83 |
| 32912 | 22.42 | 22.42 | 22.42 | 22.42 | 22.42 |
| 32913 | 23.37 | 23.37 | 23.37 | 23.37 | 23.37 |
| 32914 | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 |
| 32915 | 20.55 | 20.55 | 20.55 | 20.55 | 20.55 |
| 32916 | 28.70 | 28.70 | 28.70 | 28.70 | 28.70 |
| 32920 | 27.14 | 27.14 | 27.14 | 27.14 | 27.14 |
| 32921 | 27.86 | 27.86 | 27.86 | 27.86 | 27.86 |
| 32922 | 27.88 | 27.88 | 27.88 | 27.88 | 27.88 |
| 32924 | 30.41 | 30.41 | 30.41 | 30.41 | 30.41 |
| 32925 | 30.39 | 30.39 | 30.39 | 30.39 | 30.39 |
| 32930 | 27.14 | 27.14 | 27.14 | 27.14 | 27.14 |
| 32931 | 29.33 | 29.33 | 29.33 | 29.33 | 29.33 |
| 32932 | 30.01 | 30.01 | 30.01 | 30.01 | 30.01 |
| 32933 | 30.28 | 30.28 | 30.28 | 30.28 | 30.28 |
| 32934 | 30.28 | 30.28 | 30.28 | 30.28 | 30.28 |
| 32935 | 30.28 | 30.28 | 30.28 | 30.28 | 30.28 |
| 32936 | 30.28 | 30.28 | 30.28 | 30.28 | 30.28 |
| 32937 | 32.01 | 32.01 | 32.01 | 32.01 | 32.01 |
| 32938 | 32.12 | 32.12 | 32.12 | 32.12 | 32.12 |
| 32939 | 32.85 | 32.85 | 32.85 | 32.85 | 32.85 |
| 32940 | 34.47 | 34.47 | 34.47 | 34.47 | 34.47 |
| 32941 | 34.47 | 34.47 | 34.47 | 34.47 | 34.47 |
| 32942 | 36.17 | 36.17 | 36.17 | 36.17 | 36.17 |
| 32943 | 36.71 | 36.71 | 36.71 | 36.71 | 36.71 |
| 32944 | 37.01 | 37.01 | 37.01 | 37.01 | 37.01 |
| 32945 | 37.07 | 37.07 | 37.07 | 37.07 | 37.07 |
| 32950 | 30.15 | 30.15 | 30.15 | 30.15 | 30.15 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32951 | 30.74 | 30.74 | 30.74 | 30.74 | 30.74 |
| 32952 | 31.46 | 31.46 | 31.46 | 31.46 | 31.46 |
| 32953 | 32.18 | 32.18 | 32.18 | 32.18 | 32.18 |
| 32954 | 33.95 | 33.95 | 33.95 | 33.95 | 33.95 |
| 32955 | 34.34 | 34.34 | 34.34 | 34.34 | 34.34 |
| 32956 | 34.70 | 34.70 | 34.70 | 34.70 | 34.70 |
| 32957 | 34.72 | 34.72 | 34.72 | 34.72 | 34.72 |
| 32959 | 32.84 | 32.84 | 32.84 | 32.84 | 32.84 |
| 33001 | 19.10 | 19.11 | 19.11 | 19.11 | 19.11 |
| 33002 | 19.38 | 19.39 | 19.39 | 19.39 | 19.39 |
| 33003 | 19.85 | 19.85 | 19.85 | 19.85 | 19.85 |
| 33006 | 20.32 | 20.32 | 20.32 | 20.32 | 20.32 |
| 33007 | 20.83 | 20.83 | 20.83 | 20.83 | 20.83 |
| 33008 | 21.29 | 21.29 | 21.29 | 21.29 | 21.29 |
| 33009 | 21.57 | 21.57 | 21.57 | 21.57 | 21.57 |
| 33010 | 21.71 | 21.71 | 21.71 | 21.71 | 21.71 |
| 33011 | 22.02 | 22.02 | 22.02 | 22.02 | 22.02 |
| 33012 | 22.18 | 22.18 | 22.18 | 22.18 | 22.18 |
| 33013 | 22.30 | 22.31 | 22.31 | 22.31 | 22.31 |
| 33014 | 22.64 | 22.64 | 22.64 | 22.64 | 22.64 |
| 33015 | 22.92 | 22.92 | 22.92 | 22.92 | 22.92 |
| 33016 | 23.18 | 23.18 | 23.18 | 23.18 | 23.18 |
| 33017 | 23.55 | 23.55 | 23.55 | 23.55 | 23.55 |
| 33018 | 23.82 | 23.82 | 23.82 | 23.82 | 23.82 |
| 33019 | 24.03 | 24.03 | 24.03 | 24.03 | 24.03 |
| 33020 | 24.05 | 24.05 | 24.05 | 24.05 | 24.05 |
| 33023 | 24.29 | 24.29 | 24.29 | 24.29 | 24.29 |
| 33024 | 24.54 | 24.54 | 24.54 | 24.54 | 24.54 |
| 33025 | 24.61 | 24.61 | 24.61 | 24.61 | 24.61 |
| 33026 | 24.70 | 24.70 | 24.70 | 24.70 | 24.70 |
| 33027 | 24.88 | 24.88 | 24.88 | 24.88 | 24.88 |
| 33028 | 24.89 | 24.89 | 24.89 | 24.89 | 24.89 |
| 33029 | 24.90 | 24.90 | 24.90 | 24.90 | 24.90 |
| 33030 | 24.93 | 24.93 | 24.93 | 24.93 | 24.93 |
| 33031 | 25.12 | 25.12 | 25.12 | 25.12 | 25.12 |
| 33033 | 25.99 | 25.99 | 25.99 | 25.99 | 25.99 |
| 33035 | 25.16 | 25.16 | 25.16 | 25.16 | 25.16 |
| 33040 | 20.37 | 20.37 | 20.37 | 20.37 | 20.37 |
| 33041 | 21.45 | 21.45 | 21.45 | 21.45 | 21.45 |
| 33042 | 20.37 | 20.37 | 20.37 | 20.37 | 20.37 |
| 33043 | 20.39 | 20.39 | 20.39 | 20.39 | 20.39 |
| 33044 | 20.95 | 20.95 | 20.95 | 20.95 | 20.95 |
| 33046 | 20.32 | 20.33 | 20.32 | 20.33 | 20.32 |
| 33047 | 20.35 | 20.36 | 20.36 | 20.36 | 20.36 |
| 33048 | 20.35 | 20.36 | 20.36 | 20.36 | 20.36 |
| 33049 | 22.11 | 22.11 | 22.11 | 22.11 | 22.11 |
| 33049A | 20.45 | 20.46 | 20.45 | 20.46 | 20.45 |
| 33050 | 20.86 | 20.86 | 20.86 | 20.86 | 20.86 |
| 33051 | 22.22 | 22.22 | 22.22 | 22.22 | 22.22 |
| 33052 | 22.22 | 22.22 | 22.22 | 22.22 | 22.22 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33055 | 22.12 | 22.12 | 22.12 | 22.12 | 22.12 |
| 33056 | 22.16 | 22.16 | 22.16 | 22.16 | 22.16 |
| 33057 | 22.16 | 22.16 | 22.16 | 22.16 | 22.16 |
| 33060 | 21.59 | 21.59 | 21.59 | 21.59 | 21.59 |
| 33061 | 23.30 | 23.30 | 23.30 | 23.30 | 23.30 |
| 33064 | 23.38 | 23.38 | 23.38 | 23.38 | 23.38 |
| 33065 | 23.43 | 23.43 | 23.43 | 23.43 | 23.43 |
| 33066 | 23.48 | 23.48 | 23.48 | 23.48 | 23.48 |
| 33067 | 23.49 | 23.49 | 23.49 | 23.49 | 23.49 |
| 33068 | 28.59 | 28.59 | 28.59 | 28.59 | 28.59 |
| 33069 | 30.33 | 30.33 | 30.33 | 30.33 | 30.33 |
| 33070 | 32.43 | 32.43 | 32.43 | 32.43 | 32.43 |
| 33071 | 23.67 | 23.67 | 23.67 | 23.67 | 23.67 |
| 33072 | 24.02 | 24.02 | 24.02 | 24.02 | 24.02 |
| 33073 | 22.15 | 22.15 | 22.15 | 22.15 | 22.15 |
| 33074 | 22.15 | 22.15 | 22.15 | 22.15 | 22.15 |
| 33075 | 24.28 | 24.28 | 24.28 | 24.28 | 24.28 |
| 33076 | 22.98 | 22.98 | 22.98 | 22.98 | 22.98 |
| 33077 | 23.01 | 23.01 | 23.01 | 23.01 | 23.01 |
| 33078 | 24.86 | 24.86 | 24.86 | 24.86 | 24.86 |
| 33079 | 26.36 | 26.36 | 26.36 | 26.36 | 26.36 |
| 33082 | 22.31 | 22.31 | 22.31 | 22.31 | 22.31 |
| 33083 | 22.33 | 22.33 | 22.33 | 22.33 | 22.33 |
| 33084 | 22.45 | 22.45 | 22.45 | 22.45 | 22.45 |
| 33085 | 24.84 | 24.84 | 24.84 | 24.84 | 24.84 |
| 33086 | 24.83 | 24.83 | 24.83 | 24.83 | 24.83 |
| 33087 | 22.67 | 22.67 | 22.67 | 22.67 | 22.67 |
| 33088 | 22.64 | 22.64 | 22.64 | 22.64 | 22.64 |
| 33090 | 23.56 | 23.56 | 23.56 | 23.56 | 23.56 |
| 33091 | 23.62 | 23.62 | 23.62 | 23.62 | 23.62 |
| 33092 | 23.80 | 23.80 | 23.80 | 23.80 | 23.80 |
| 33093 | 24.16 | 24.16 | 24.16 | 24.16 | 24.16 |
| 33095 | 28.03 | 28.03 | 28.03 | 28.03 | 28.03 |
| 33096 | 28.46 | 28.46 | 28.46 | 28.46 | 28.46 |
| 33097 | 31.35 | 31.35 | 31.35 | 31.35 | 31.35 |
| 33098 | 31.48 | 31.48 | 31.48 | 31.48 | 31.48 |
| 33099 | 32.44 | 32.44 | 32.44 | 32.44 | 32.44 |
| 33101 | 22.30 | 22.30 | 22.30 | 22.30 | 22.30 |
| 33102 | 23.59 | 23.59 | 23.59 | 23.59 | 23.59 |
| 33103 | 23.83 | 23.83 | 23.83 | 23.83 | 23.83 |
| 33105 | 24.35 | 24.35 | 24.35 | 24.35 | 24.35 |
| 33106 | 24.43 | 24.43 | 24.43 | 24.43 | 24.43 |
| 33107 | 24.81 | 24.81 | 24.81 | 24.81 | 24.81 |
| 33108 | 25.51 | 25.51 | 25.51 | 25.51 | 25.51 |
| 33109 | 25.97 | 25.97 | 25.97 | 25.97 | 25.97 |
| 33110 | 26.53 | 26.53 | 26.53 | 26.53 | 26.53 |
| 33111 | 27.20 | 27.20 | 27.20 | 27.20 | 27.20 |
| 33112 | 27.36 | 27.36 | 27.36 | 27.36 | 27.36 |
| 33113 | 27.49 | 27.49 | 27.49 | 27.49 | 27.49 |
| 33114 | 27.58 | 27.58 | 27.58 | 27.58 | 27.58 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33116 | 27.86 | 27.86 | 27.86 | 27.86 | 27.86 |
| 33118 | 28.20 | 28.20 | 28.20 | 28.20 | 28.20 |
| 33119 | 31.69 | 31.69 | 31.69 | 31.69 | 31.69 |
| 33120 | 29.60 | 29.60 | 29.60 | 29.60 | 29.60 |
| 33121 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 |
| 33123 | 30.09 | 30.09 | 30.09 | 30.09 | 30.09 |
| 33123 A | 30.02 | 30.02 | 30.02 | 30.02 | 30.02 |
| 33124 | 30.25 | 30.25 | 30.25 | 30.25 | 30.25 |
| 33125 | 30.30 | 30.30 | 30.30 | 30.30 | 30.30 |
| 33128 | 30.45 | 30.45 | 30.45 | 30.45 | 30.45 |
| 33129 | 33.10 | 33.10 | 33.10 | 33.10 | 33.10 |
| 33130 | 34.02 | 34.02 | 34.02 | 34.02 | 34.02 |
| 33131 | 34.17 | 34.17 | 34.17 | 34.17 | 34.17 |
| 33132 | 34.25 | 34.25 | 34.25 | 34.25 | 34.25 |
| 33135 | 22.32 | 22.32 | 22.32 | 22.32 | 22.32 |
| 33136 | 24.30 | 24.30 | 24.30 | 24.30 | 24.30 |
| 33137 | 24.38 | 24.38 | 24.38 | 24.38 | 24.38 |
| 33138 | 27.25 | 27.25 | 27.25 | 27.25 | 27.25 |
| 33139 | 27.51 | 27.51 | 27.51 | 27.51 | 27.51 |
| 33140 | 24.42 | 24.42 | 24.42 | 24.42 | 24.42 |
| 33141 | 24.46 | 24.46 | 24.46 | 24.46 | 24.46 |
| 33142 | 25.28 | 25.28 | 25.28 | 25.28 | 25.28 |
| 33143 | 27.83 | 27.83 | 27.83 | 27.83 | 27.83 |
| 33146 | 25.60 | 25.60 | 25.60 | 25.60 | 25.60 |
| 33147 | 26.04 | 26.04 | 26.04 | 26.04 | 26.04 |
| 33148 | 26.51 | 26.51 | 26.51 | 26.51 | 26.51 |
| 33150 | 27.38 | 27.38 | 27.38 | 27.38 | 27.38 |
| 33151 | 27.40 | 27.40 | 27.40 | 27.40 | 27.40 |
| 33152 | 28.08 | 28.08 | 28.08 | 28.08 | 28.08 |
| 33153 | 29.27 | 29.27 | 29.27 | 29.27 | 29.27 |
| 33154 | 29.96 | 29.96 | 29.96 | 29.96 | 29.96 |
| 33155 | 30.92 | 30.92 | 30.92 | 30.92 | 30.92 |
| 33156 | 28.57 | 28.57 | 28.57 | 28.57 | 28.57 |
| 33157 | 31.61 | 31.61 | 31.61 | 31.61 | 31.61 |
| 33158 | 31.88 | 31.88 | 31.88 | 31.88 | 31.88 |
| 33159 | 31.34 | 31.34 | 31.34 | 31.34 | 31.34 |
| 33160 | 32.61 | 32.61 | 32.61 | 32.61 | 32.61 |
| 33161 | 33.78 | 33.78 | 33.78 | 33.78 | 33.78 |
| 33163 | 29.15 | 29.15 | 29.15 | 29.15 | 29.15 |
| 33164 | 29.03 | 29.03 | 29.03 | 29.03 | 29.03 |
| 33165 | 29.61 | 29.61 | 29.61 | 29.61 | 29.61 |
| 33167 | 32.71 | 32.71 | 32.71 | 32.71 | 32.71 |
| 33168 | 34.54 | 34.54 | 34.54 | 34.54 | 34.54 |
| 33169 | 30.24 | 30.24 | 30.24 | 30.24 | 30.24 |
| 33170 | 32.14 | 32.14 | 32.14 | 32.14 | 32.14 |
| 33171 | 32.56 | 32.56 | 32.56 | 32.56 | 32.56 |
| 33172 | 32.87 | 32.87 | 32.87 | 32.87 | 32.87 |
| 33173 | 32.89 | 32.89 | 32.89 | 32.89 | 32.89 |
| 33174 | 32.94 | 32.94 | 32.94 | 32.94 | 32.94 |
| 33175 | 32.77 | 32.77 | 32.77 | 32.77 | 32.77 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33176 | 32.14 | 32.14 | 32.14 | 32.14 | 32.14 |
| 33177 | 32.20 | 32.20 | 32.20 | 32.20 | 32.20 |
| 33178 | 33.34 | 33.34 | 33.34 | 33.34 | 33.34 |
| 33179 | 33.34 | 33.34 | 33.34 | 33.34 | 33.34 |
| 33180 | 23.02 | 23.02 | 23.02 | 23.02 | 23.02 |
| 33181 | 23.27 | 23.27 | 23.27 | 23.27 | 23.27 |
| 33182 | 23.88 | 23.88 | 23.88 | 23.88 | 23.88 |
| 33183 | 25.72 | 25.72 | 25.72 | 25.72 | 25.72 |
| 33184 | 26.50 | 26.50 | 26.50 | 26.50 | 26.50 |
| 33185 | 27.66 | 27.66 | 27.66 | 27.66 | 27.66 |
| 33186 | 29.63 | 29.63 | 29.63 | 29.63 | 29.63 |
| 33188 | 23.64 | 23.64 | 23.64 | 23.64 | 23.64 |
| 33189 | 23.65 | 23.65 | 23.65 | 23.65 | 23.65 |
| 33190 | 27.62 | 27.62 | 27.62 | 27.62 | 27.62 |
| 33191 | 29.42 | 29.42 | 29.42 | 29.42 | 29.42 |
| 33192 | 32.10 | 32.10 | 32.10 | 32.10 | 32.10 |
| 33193 | 32.44 | 32.44 | 32.44 | 32.44 | 32.44 |
| 33194 | 32.43 | 32.43 | 32.43 | 32.43 | 32.43 |
| 33197 | 23.65 | 23.65 | 23.65 | 23.65 | 23.65 |
| 33198 | 23.65 | 23.65 | 23.65 | 23.65 | 23.65 |
| 33199 | 23.94 | 23.94 | 23.94 | 23.94 | 23.94 |
| 33200 | 24.04 | 24.04 | 24.04 | 24.04 | 24.04 |
| 33201 | 24.81 | 24.81 | 24.81 | 24.81 | 24.81 |
| 33202 | 24.92 | 24.92 | 24.92 | 24.92 | 24.92 |
| 33203 | 25.18 | 25.18 | 25.18 | 25.18 | 25.18 |
| 33204 | 25.79 | 25.79 | 25.79 | 25.79 | 25.79 |
| 33205 | 26.23 | 26.23 | 26.23 | 26.23 | 26.23 |
| 33206 | 26.97 | 26.97 | 26.97 | 26.97 | 26.97 |
| 33207 | 27.03 | 27.03 | 27.03 | 27.03 | 27.03 |
| 33208 | 27.50 | 27.50 | 27.50 | 27.50 | 27.50 |
| 33209 | 27.67 | 27.67 | 27.67 | 27.67 | 27.67 |
| 33210 | 28.40 | 28.40 | 28.40 | 28.40 | 28.40 |
| 33211 | 28.52 | 28.52 | 28.52 | 28.52 | 28.52 |
| 33212 | 29.08 | 29.08 | 29.08 | 29.08 | 29.08 |
| 33213 | 31.10 | 31.10 | 31.10 | 31.10 | 31.10 |
| 33215 | 23.95 | 23.95 | 23.95 | 23.95 | 23.95 |
| 33216 | 24.11 | 24.11 | 24.11 | 24.11 | 24.11 |
| 33217 | 25.56 | 25.56 | 25.56 | 25.56 | 25.56 |
| 33218 | 28.38 | 28.38 | 28.38 | 28.38 | 28.38 |
| 33219 | 29.60 | 29.60 | 29.60 | 29.60 | 29.60 |
| 33221 | 29.46 | 29.46 | 29.46 | 29.46 | 29.46 |
| 33223 | 23.60 | 23.60 | 23.60 | 23.60 | 23.60 |
| 33224 | 23.60 | 23.60 | 23.60 | 23.60 | 23.60 |
| 33225 | 23.60 | 23.60 | 23.60 | 23.60 | 23.60 |
| 33226 | 23.60 | 23.60 | 23.60 | 23.60 | 23.60 |
| 33227 | 24.06 | 24.06 | 24.06 | 24.06 | 24.06 |
| 33228 | 28.33 | 28.33 | 28.33 | 28.33 | 28.33 |
| 33229 | 28.92 | 28.92 | 28.92 | 28.92 | 28.92 |
| 33230 | 29.44 | 29.44 | 29.44 | 29.44 | 29.44 |
| 33231 | 32.21 | 32.21 | 32.21 | 32.21 | 32.21 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33232 | 33.48 | 33.48 | 33.48 | 33.48 | 33.48 |
| 33235 | 23.97 | 23.97 | 23.97 | 23.97 | 23.97 |
| 33236 | 24.70 | 24.70 | 24.70 | 24.70 | 24.70 |
| 33237 | 27.86 | 27.86 | 27.86 | 27.86 | 27.86 |
| 33238 | 28.77 | 28.77 | 28.77 | 28.77 | 28.77 |
| 33239 | 28.83 | 28.83 | 28.83 | 28.83 | 28.83 |
| 33240 | 24.81 | 24.81 | 24.81 | 24.81 | 24.81 |
| 33241 | 28.82 | 28.82 | 28.82 | 28.82 | 28.82 |
| 33242 | 23.91 | 23.91 | 23.91 | 23.91 | 23.91 |
| 33243 | 28.81 | 28.81 | 28.81 | 28.81 | 28.81 |
| 33244 | 29.84 | 29.84 | 29.84 | 29.84 | 29.84 |
| 33245 | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 |
| 33246 | 31.06 | 31.06 | 31.06 | 31.06 | 31.06 |
| 33247 | 25.50 | 25.50 | 25.50 | 25.50 | 25.50 |
| 33248 | 28.88 | 28.88 | 28.88 | 28.88 | 28.88 |
| 33250 | 24.54 | 24.54 | 24.54 | 24.54 | 24.54 |
| 33251 | 24.54 | 24.54 | 24.54 | 24.54 | 24.54 |
| 33252 | 24.55 | 24.55 | 24.55 | 24.55 | 24.55 |
| 33253 | 24.56 | 24.56 | 24.56 | 24.56 | 24.56 |
| 33254 | 24.56 | 24.56 | 24.56 | 24.56 | 24.56 |
| 33257 | 26.04 | 26.04 | 26.04 | 26.04 | 26.04 |
| 33258 | 30.17 | 30.17 | 30.17 | 30.17 | 30.17 |
| 33259 | 31.76 | 31.76 | 31.76 | 31.76 | 31.76 |
| 33259A | 32.45 | 32.45 | 32.45 | 32.45 | 32.45 |
| 33259B | 31.64 | 31.64 | 31.64 | 31.64 | 31.64 |
| 33260 | 24.53 | 24.53 | 24.53 | 24.53 | 24.53 |
| 33261 | 31.09 | 31.09 | 31.09 | 31.09 | 31.09 |
| 33261A | 31.20 | 31.20 | 31.20 | 31.20 | 31.20 |
| 33262 | 24.53 | 24.53 | 24.53 | 24.53 | 24.53 |
| 33265 | 24.50 | 24.50 | 24.50 | 24.50 | 24.50 |
| 33266 | 24.13 | 24.13 | 24.13 | 24.13 | 24.13 |
| 33267 | 24.13 | 24.13 | 24.13 | 24.13 | 24.13 |
| 33268 | 24.13 | 24.13 | 24.13 | 24.13 | 24.13 |
| 33269 | 24.53 | 24.53 | 24.53 | 24.53 | 24.53 |
| 33272 | 28.24 | 28.24 | 28.24 | 28.24 | 28.24 |
| 33273 | 30.38 | 30.38 | 30.38 | 30.38 | 30.38 |
| 33275 | 24.64 | 24.64 | 24.64 | 24.64 | 24.64 |
| 33276 | 25.21 | 25.21 | 25.21 | 25.21 | 25.21 |
| 33277 | 25.21 | 25.21 | 25.21 | 25.21 | 25.21 |
| 33278 | 25.22 | 25.22 | 25.22 | 25.22 | 25.22 |
| 33283 | 24.94 | 24.94 | 24.94 | 24.94 | 24.94 |
| 33284 | 24.88 | 24.88 | 24.88 | 24.88 | 24.88 |
| 33285 | 25.21 | 25.21 | 25.21 | 25.21 | 25.21 |
| 33287 | 24.84 | 24.84 | 24.84 | 24.84 | 24.84 |
| 33301 | 24.88 | 24.88 | 24.88 | 24.88 | 24.88 |
| 33302 | 24.75 | 24.75 | 24.75 | 24.75 | 24.75 |
| 33303 | 24.76 | 24.76 | 24.76 | 24.76 | 24.76 |
| 33304 | 24.76 | 24.76 | 24.76 | 24.76 | 24.76 |
| 33305 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 33307 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33308 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 33309 | 27.66 | 27.66 | 27.66 | 27.66 | 27.66 |
| 33312 | 27.67 | 27.67 | 27.67 | 27.67 | 27.67 |
| 33313 | 28.28 | 28.28 | 28.28 | 28.28 | 28.28 |
| 33314 | 24.75 | 24.75 | 24.75 | 24.75 | 24.75 |
| 33315 | 30.54 | 30.54 | 30.54 | 30.54 | 30.54 |
| 33317 | 26.93 | 26.93 | 26.93 | 26.93 | 26.93 |
| 33318 | 24.62 | 24.62 | 24.62 | 24.62 | 24.62 |
| 33319 | 24.70 | 24.70 | 24.70 | 24.70 | 24.70 |
| 33320 | 27.69 | 27.69 | 27.69 | 27.69 | 27.69 |
| 33323 | 26.06 | 26.06 | 26.06 | 26.06 | 26.06 |
| 33325 | 26.11 | 26.11 | 26.11 | 26.11 | 26.11 |
| 33326 | 26.12 | 26.12 | 26.12 | 26.12 | 26.12 |
| 33328 | 26.82 | 26.82 | 26.82 | 26.82 | 26.82 |
| 33330 | 26.83 | 26.83 | 26.83 | 26.83 | 26.83 |
| 33331 | 27.53 | 27.53 | 27.53 | 27.53 | 27.53 |
| 33332 | 27.12 | 27.12 | 27.12 | 27.12 | 27.12 |
| 33334 | 27.22 | 27.22 | 27.22 | 27.22 | 27.22 |
| 33335 | 27.29 | 27.29 | 27.29 | 27.29 | 27.29 |
| 33346 | 28.36 | 28.36 | 28.36 | 28.36 | 28.36 |
| 33347 | 28.36 | 28.36 | 28.36 | 28.36 | 28.36 |
| 33348 | 28.42 | 28.42 | 28.42 | 28.42 | 28.42 |
| 33352 | 31.38 | 31.38 | 31.38 | 31.38 | 31.38 |
| 33353 | 31.92 | 31.92 | 31.92 | 31.92 | 31.92 |
| 33353A | 32.26 | 32.26 | 32.26 | 32.26 | 32.26 |
| 33353B | 32.84 | 32.84 | 32.84 | 32.84 | 32.84 |
| 33353 C | 32.87 | 32.87 | 32.87 | 32.87 | 32.87 |
| 33354 | 32.18 | 32.18 | 32.18 | 32.18 | 32.18 |
| 33355 | 32.35 | 32.35 | 32.35 | 32.35 | 32.35 |
| 33358 | 28.36 | 28.36 | 28.36 | 28.36 | 28.36 |
| 33362 | 37.17 | 37.17 | 37.17 | 37.17 | 37.17 |
| 33366 | 25.70 | 25.70 | 25.70 | 25.70 | 25.70 |
| 33367 | 26.57 | 26.57 | 26.57 | 26.57 | 26.57 |
| 33368 | 27.84 | 27.84 | 27.84 | 27.84 | 27.84 |
| 33369 | 28.29 | 28.29 | 28.29 | 28.29 | 28.29 |
| 33370 | 29.19 | 29.19 | 29.19 | 29.19 | 29.19 |
| 33371 | 30.23 | 30.23 | 30.23 | 30.23 | 30.23 |
| 33372 | 30.40 | 30.40 | 30.40 | 30.40 | 30.40 |
| 33373 | 30.99 | 30.99 | 30.99 | 30.99 | 30.99 |
| 33374 | 31.25 | 31.25 | 31.25 | 31.25 | 31.25 |
| 33375 | 31.29 | 31.29 | 31.29 | 31.29 | 31.29 |
| 33376 | 32.93 | 32.93 | 32.93 | 32.93 | 32.93 |
| 33377 | 32.93 | 32.93 | 32.93 | 32.93 | 32.93 |
| 33378 | 33.06 | 33.06 | 33.06 | 33.06 | 33.06 |
| 33379 | 33.59 | 33.59 | 33.59 | 33.59 | 33.59 |
| 33380 | 34.36 | 34.36 | 34.36 | 34.36 | 34.36 |
| 33381 | 34.54 | 34.54 | 34.54 | 34.54 | 34.54 |
| 33382 | 34.56 | 34.56 | 34.56 | 34.56 | 34.56 |
| 33383 | 34.90 | 34.90 | 34.90 | 34.90 | 34.90 |
| 33384 | 36.72 | 36.72 | 36.72 | 36.72 | 36.72 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33385 | 36.85 | 36.85 | 36.85 | 36.85 | 36.85 |
| 33386 | 37.09 | 37.09 | 37.09 | 37.09 | 37.09 |
| 33387 | 37.18 | 37.18 | 37.18 | 37.18 | 37.18 |
| 33388 | 37.63 | 37.63 | 37.63 | 37.63 | 37.63 |
| 33389 | 38.94 | 38.94 | 38.94 | 38.94 | 38.94 |
| 33390 | 41.22 | 41.22 | 41.22 | 41.22 | 41.22 |
| 33391 | 41.60 | 41.60 | 41.60 | 41.60 | 41.60 |
| 33392 | 41.63 | 41.63 | 41.63 | 41.63 | 41.63 |
| 33394 | 43.97 | 43.97 | 43.97 | 43.97 | 43.97 |
| 33395 | 42.28 | 42.28 | 42.28 | 42.28 | 42.28 |
| 33403 | 30.39 | 30.39 | 30.39 | 30.39 | 30.39 |
| 33404 | 30.26 | 30.26 | 30.26 | 30.26 | 30.26 |
| 33405 | 30.40 | 30.40 | 30.40 | 30.40 | 30.40 |
| 33406 | 31.77 | 31.77 | 31.77 | 31.77 | 31.77 |
| 33407 | 33.95 | 33.95 | 33.95 | 33.95 | 33.95 |
| 33409 | 33.45 | 33.45 | 33.45 | 33.45 | 33.45 |
| 33410 | 33.73 | 33.73 | 33.73 | 33.73 | 33.73 |
| 33411 | 35.75 | 35.75 | 35.75 | 35.75 | 35.75 |
| 33412 | 35.92 | 35.92 | 35.92 | 35.92 | 35.92 |
| 33413 | 36.61 | 36.61 | 36.61 | 36.61 | 36.61 |
| 33414 | 36.76 | 36.76 | 36.76 | 36.76 | 36.76 |
| 33415 | 37.78 | 37.78 | 37.78 | 37.78 | 37.78 |
| 33416 | 39.40 | 39.40 | 39.40 | 39.40 | 39.40 |
| 33417 | 40.65 | 40.65 | 40.65 | 40.65 | 40.65 |
| 33419 | 36.99 | 36.99 | 36.99 | 36.99 | 36.99 |
| 33421 | 40.52 | 40.52 | 40.52 | 40.52 | 40.52 |
| 33422 | 44.07 | 44.07 | 44.07 | 44.07 | 44.07 |
| 33430 | 25.98 | 25.98 | 25.98 | 25.98 | 25.98 |
| 33431 | 27.55 | 27.55 | 27.55 | 27.55 | 27.55 |
| 33432 | 27.76 | 27.76 | 27.76 | 27.76 | 27.76 |
| 33433 | 27.90 | 27.90 | 27.90 | 27.90 | 27.90 |
| 33437 | 31.45 | 31.45 | 31.45 | 31.45 | 31.45 |
| 33438 | 33.44 | 33.44 | 33.44 | 33.44 | 33.44 |
| 33439 | 34.56 | 34.56 | 34.56 | 34.56 | 34.56 |
| 33440 | 34.58 | 34.58 | 34.58 | 34.58 | 34.58 |
| 33441 | 35.88 | 35.88 | 35.88 | 35.88 | 35.88 |
| 33442 | 35.90 | 35.90 | 35.90 | 35.90 | 35.90 |
| 33443 | 37.60 | 37.60 | 37.60 | 37.60 | 37.60 |
| 33444 | 33.78 | 33.78 | 33.78 | 33.78 | 33.78 |
| 33446 | 38.98 | 38.98 | 38.98 | 38.98 | 38.98 |
| 33448 | 31.19 | 31.19 | 31.19 | 31.19 | 31.19 |
| 33449 | 31.30 | 31.30 | 31.30 | 31.30 | 31.30 |
| 33451 | 31.33 | 31.33 | 31.33 | 31.33 | 31.33 |
| 33458 | 31.47 | 31.47 | 31.47 | 31.47 | 31.47 |
| 33460 | 28.93 | 28.93 | 28.93 | 28.93 | 28.93 |
| 33461 | 31.33 | 31.33 | 31.33 | 31.33 | 31.33 |
| 33475 | 31.59 | 31.59 | 31.59 | 31.59 | 31.59 |
| 33480 | 26.05 | 26.05 | 26.05 | 26.05 | 26.05 |
| 33481 | 29.68 | 29.68 | 29.68 | 29.68 | 29.68 |
| 33482 | 30.26 | 30.26 | 30.26 | 30.26 | 30.26 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33500 | 17.77 | 17.77 | 17.77 | 17.77 | 17.77 |
| 33501 | 17.69 | 17.72 | 17.71 | 17.72 | 17.71 |
| 33501 AP | 17.67 | 17.69 | 17.69 | 17.69 | 17.69 |
| 33501EX | 17.64 | 17.66 | 17.66 | 17.66 | 17.66 |
| 33502 | 17.79 | 17.81 | 17.81 | 17.81 | 17.80 |
| 33503 | 18.18 | 18.19 | 18.19 | 18.19 | 18.19 |
| 33504 | 18.18 | 18.19 | 18.19 | 18.19 | 18.19 |
| 33505 | 18.82 | 18.83 | 18.83 | 18.83 | 18.83 |
| 33506 | 19.14 | 19.14 | 19.14 | 19.14 | 19.14 |
| 33507 | 19.84 | 19.84 | 19.84 | 19.84 | 19.84 |
| 33508 | 20.06 | 20.07 | 20.07 | 20.07 | 20.07 |
| 33509 | 20.08 | 20.08 | 20.08 | 20.08 | 20.08 |
| 33510 | 20.37 | 20.37 | 20.37 | 20.37 | 20.37 |
| 33511 | 20.82 | 20.82 | 20.82 | 20.82 | 20.82 |
| 33513 | 22.42 | 22.42 | 22.42 | 22.42 | 22.42 |
| 33514 | 21.24 | 21.24 | 21.24 | 21.24 | 21.24 |
| 33515 | 21.63 | 21.63 | 21.63 | 21.63 | 21.63 |
| 33516 | 21.71 | 21.72 | 21.72 | 21.72 | 21.71 |
| 33517 | 22.59 | 22.59 | 22.59 | 22.59 | 22.59 |
| 33519 | 21.80 | 21.80 | 21.80 | 21.80 | 21.80 |
| 33522 | 22.66 | 22.67 | 22.67 | 22.67 | 22.67 |
| 33524 | 23.22 | 23.22 | 23.22 | 23.22 | 23.22 |
| 33525 | 23.57 | 23.57 | 23.57 | 23.57 | 23.57 |
| 33526 | 24.85 | 24.85 | 24.85 | 24.85 | 24.85 |
| 33529 | 26.01 | 26.01 | 26.01 | 26.01 | 26.01 |
| 33530 | 26.68 | 26.68 | 26.68 | 26.68 | 26.68 |
| 33531 | 27.02 | 27.02 | 27.02 | 27.02 | 27.02 |
| 33532 | 27.69 | 27.69 | 27.69 | 27.69 | 27.69 |
| 33533 | 28.39 | 28.39 | 28.39 | 28.39 | 28.39 |
| 33534 | 20.84 | 20.84 | 20.84 | 20.84 | 20.84 |
| 33535 | 20.84 | 20.84 | 20.84 | 20.84 | 20.84 |
| 33536 | 28.56 | 28.56 | 28.56 | 28.56 | 28.56 |
| 33537 | 28.61 | 28.61 | 28.61 | 28.61 | 28.61 |
| 33538 | 28.64 | 28.64 | 28.64 | 28.64 | 28.64 |
| 33539 | 28.84 | 28.84 | 28.84 | 28.84 | 28.84 |
| 33540 | 29.86 | 29.86 | 29.86 | 29.86 | 29.86 |
| 33542 | 30.63 | 30.63 | 30.63 | 30.63 | 30.63 |
| 33544 | 30.72 | 30.72 | 30.72 | 30.72 | 30.72 |
| 33545 | 30.80 | 30.80 | 30.80 | 30.80 | 30.80 |
| 33546 | 31.60 | 31.60 | 31.60 | 31.60 | 31.60 |
| 33547 | 31.01 | 31.01 | 31.01 | 31.01 | 31.01 |
| 33548 | 31.63 | 31.63 | 31.63 | 31.63 | 31.63 |
| 33549 | 31.64 | 31.64 | 31.64 | 31.64 | 31.64 |
| 33550 | 31.64 | 31.64 | 31.64 | 31.64 | 31.64 |
| 33551 | 31.69 | 31.69 | 31.69 | 31.69 | 31.69 |
| 33552 | 31.72 | 31.72 | 31.72 | 31.72 | 31.72 |
| 33553 | 31.78 | 31.78 | 31.78 | 31.78 | 31.78 |
| 33554 | 31.86 | 31.86 | 31.86 | 31.86 | 31.86 |
| 33555 | 31.93 | 31.93 | 31.93 | 31.93 | 31.93 |
| 33556 | 32.81 | 32.81 | 32.81 | 32.81 | 32.81 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33557 | 32.79 | 32.79 | 32.79 | 32.79 | 32.79 |
| 33558 | 33.43 | 33.43 | 33.43 | 33.43 | 33.43 |
| 33559 | 34.14 | 34.14 | 34.14 | 34.14 | 34.14 |
| 33560 | 28.59 | 28.59 | 28.59 | 28.59 | 28.59 |
| 33561 | 28.62 | 28.62 | 28.62 | 28.62 | 28.62 |
| 33562 | 28.72 | 28.72 | 28.72 | 28.72 | 28.72 |
| 33564 | 29.45 | 29.45 | 29.45 | 29.45 | 29.45 |
| 33565 | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 |
| 33566 | 30.54 | 30.54 | 30.54 | 30.54 | 30.54 |
| 33567 | 31.04 | 31.04 | 31.04 | 31.04 | 31.04 |
| 33568 | 31.04 | 31.04 | 31.04 | 31.04 | 31.04 |
| 33569 | 31.90 | 31.90 | 31.90 | 31.90 | 31.90 |
| 33570 | 32.39 | 32.39 | 32.39 | 32.39 | 32.39 |
| 33571 | 32.57 | 32.57 | 32.57 | 32.57 | 32.57 |
| 33571 A | 34.63 | 34.63 | 34.63 | 34.63 | 34.63 |
| 33572 | 35.79 | 35.79 | 35.79 | 35.79 | 35.79 |
| 33575 | 31.91 | 31.91 | 31.91 | 31.91 | 31.91 |
| 33576 | 34.05 | 34.05 | 34.05 | 34.05 | 34.05 |
| 33577 | 35.53 | 35.53 | 35.53 | 35.53 | 35.53 |
| 33577A | 34.72 | 34.72 | 34.72 | 34.72 | 34.72 |
| 33580 | 17.70 | 17.72 | 17.72 | 17.72 | 17.72 |
| 33581 | 17.70 | 17.72 | 17.72 | 17.72 | 17.72 |
| 33582 | 18.86 | 18.86 | 18.86 | 18.86 | 18.86 |
| 33583 | 21.06 | 21.06 | 21.06 | 21.06 | 21.06 |
| 33584 | 21.07 | 21.07 | 21.07 | 21.07 | 21.07 |
| 33585 | 22.36 | 22.36 | 22.36 | 22.36 | 22.36 |
| 33586 | 18.87 | 18.87 | 18.87 | 18.87 | 18.87 |
| 33587 | 20.13 | 20.13 | 20.13 | 20.13 | 20.13 |
| 33588 | 18.30 | 18.31 | 18.30 | 18.31 | 18.30 |
| 33589 | 18.30 | 18.31 | 18.30 | 18.31 | 18.30 |
| 33590 | 20.51 | 20.51 | 20.51 | 20.51 | 20.51 |
| 33591 | 19.84 | 19.85 | 19.85 | 19.85 | 19.85 |
| 33592 | 19.84 | 19.84 | 19.84 | 19.84 | 19.84 |
| 33593 | 20.71 | 20.71 | 20.71 | 20.71 | 20.71 |
| 33595 | 22.42 | 22.42 | 22.42 | 22.42 | 22.42 |
| 33596 | 21.72 | 21.72 | 21.72 | 21.72 | 21.72 |
| 33598 | 21.76 | 21.76 | 21.76 | 21.76 | 21.76 |
| 33599 | 24.39 | 24.39 | 24.39 | 24.39 | 24.39 |
| 33602 | 22.75 | 22.75 | 22.75 | 22.75 | 22.75 |
| 33603 | 22.92 | 22.92 | 22.92 | 22.92 | 22.92 |
| 33605 | 24.98 | 24.98 | 24.98 | 24.98 | 24.98 |
| 33608 | 22.71 | 22.71 | 22.71 | 22.71 | 22.71 |
| 33609 | 23.86 | 23.86 | 23.86 | 23.86 | 23.86 |
| 33610 | 23.88 | 23.88 | 23.88 | 23.88 | 23.88 |
| 33611 | 30.77 | 30.77 | 30.77 | 30.77 | 30.77 |
| 33614 | 23.22 | 23.22 | 23.22 | 23.22 | 23.22 |
| 33618 | 24.86 | 24.86 | 24.86 | 24.86 | 24.86 |
| 33619 | 24.87 | 24.87 | 24.87 | 24.87 | 24.87 |
| 33620 | 25.23 | 25.23 | 25.23 | 25.23 | 25.23 |
| 33621 | 25.88 | 25.88 | 25.88 | 25.88 | 25.88 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33622 | 28.07 | 28.07 | 28.07 | 28.07 | 28.07 |
| 33623 | 31.41 | 31.41 | 31.41 | 31.41 | 31.41 |
| 33624 | 26.88 | 26.88 | 26.88 | 26.88 | 26.88 |
| 33625 | 27.50 | 27.50 | 27.50 | 27.50 | 27.50 |
| 33626 | 28.00 | 28.00 | 28.00 | 28.00 | 28.00 |
| 33627 | 28.81 | 28.81 | 28.81 | 28.81 | 28.81 |
| 33628 | 31.44 | 31.44 | 31.44 | 31.44 | 31.44 |
| 33629 | 32.40 | 32.40 | 32.40 | 32.40 | 32.40 |
| 33632 | 34.74 | 34.74 | 34.74 | 34.74 | 34.74 |
| 33633 | 35.36 | 35.36 | 35.36 | 35.36 | 35.36 |
| 33634 | 35.68 | 35.68 | 35.68 | 35.68 | 35.68 |
| 33635 | 36.52 | 36.52 | 36.52 | 36.52 | 36.52 |
| 33637 | 35.51 | 35.51 | 35.51 | 35.51 | 35.51 |
| 33638 | 35.52 | 35.52 | 35.52 | 35.52 | 35.52 |
| 33640 | 36.26 | 36.26 | 36.26 | 36.26 | 36.26 |
| 33642 | 32.66 | 32.66 | 32.66 | 32.66 | 32.66 |
| 33643 | 32.73 | 32.73 | 32.73 | 32.73 | 32.73 |
| 33644 | 25.84 | 25.84 | 25.84 | 25.84 | 25.84 |
| 33644A | 24.93 | 24.93 | 24.93 | 24.93 | 24.93 |
| 33645 | 25.04 | 25.04 | 25.04 | 25.04 | 25.04 |
| 33647 | 27.39 | 27.39 | 27.39 | 27.39 | 27.39 |
| 33648 | 27.75 | 27.75 | 27.75 | 27.75 | 27.75 |
| 33649 | 27.69 | 27.69 | 27.69 | 27.69 | 27.69 |
| 33650 | 29.61 | 29.61 | 29.61 | 29.61 | 29.61 |
| 33650A | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 |
| 33650B | 29.21 | 29.21 | 29.21 | 29.21 | 29.21 |
| 33650 C | 30.04 | 30.04 | 30.04 | 30.04 | 30.04 |
| 33650D | 26.69 | 26.69 | 26.69 | 26.69 | 26.69 |
| 33651 | 27.03 | 27.03 | 27.03 | 27.03 | 27.03 |
| 33652 | 28.40 | 28.40 | 28.40 | 28.40 | 28.40 |
| 33653 | 28.46 | 28.46 | 28.46 | 28.46 | 28.46 |
| 33654 | 28.56 | 28.56 | 28.56 | 28.56 | 28.56 |
| 33655 | 31.16 | 31.16 | 31.16 | 31.16 | 31.16 |
| 33656 | 31.18 | 31.18 | 31.18 | 31.18 | 31.18 |
| 33658 | 31.20 | 31.20 | 31.20 | 31.20 | 31.20 |
| 33659 | 31.43 | 31.43 | 31.43 | 31.43 | 31.43 |
| 33660 | 32.21 | 32.21 | 32.21 | 32.21 | 32.21 |
| 33661 | 32.21 | 32.21 | 32.21 | 32.21 | 32.21 |
| 33663 | 31.21 | 31.21 | 31.21 | 31.21 | 31.21 |
| 33664 | 35.70 | 35.70 | 35.70 | 35.70 | 35.70 |
| 33665 | 28.70 | 28.70 | 28.70 | 28.70 | 28.70 |
| 33667 | 29.19 | 29.19 | 29.19 | 29.19 | 29.19 |
| 33668 | 31.46 | 31.46 | 31.46 | 31.46 | 31.46 |
| 33669 | 31.46 | 31.46 | 31.46 | 31.46 | 31.46 |
| 33670 | 31.69 | 31.69 | 31.69 | 31.69 | 31.69 |
| 33671 | 31.69 | 31.69 | 31.69 | 31.69 | 31.69 |
| 33672 | 36.49 | 36.49 | 36.49 | 36.49 | 36.49 |
| 33674 | 30.78 | 30.78 | 30.78 | 30.78 | 30.78 |
| 33674A | 31.82 | 31.82 | 31.82 | 31.82 | 31.82 |
| 33675 | 31.93 | 31.93 | 31.93 | 31.93 | 31.93 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33675A | 32.94 | 32.94 | 32.94 | 32.94 | 32.94 |
| 33676 | 33.66 | 33.66 | 33.66 | 33.66 | 33.66 |
| 33677 | 33.66 | 33.66 | 33.66 | 33.66 | 33.66 |
| 33678 | 33.66 | 33.66 | 33.66 | 33.66 | 33.66 |
| 33679 | 34.54 | 34.54 | 34.54 | 34.54 | 34.54 |
| 33680 | 34.43 | 34.43 | 34.43 | 34.43 | 34.43 |
| 33681 | 32.32 | 32.32 | 32.32 | 32.32 | 32.32 |
| 33682 | 30.93 | 30.93 | 30.93 | 30.93 | 30.93 |
| 33683 | 30.82 | 30.82 | 30.82 | 30.82 | 30.82 |
| 33683A | 30.81 | 30.81 | 30.81 | 30.81 | 30.81 |
| 33684 | 30.85 | 30.85 | 30.85 | 30.85 | 30.85 |
| 33685 | 31.14 | 31.14 | 31.14 | 31.14 | 31.14 |
| 33686 | 31.58 | 31.58 | 31.58 | 31.58 | 31.58 |
| 33687 | 31.65 | 31.65 | 31.65 | 31.65 | 31.65 |
| 33688 | 31.65 | 31.65 | 31.65 | 31.65 | 31.65 |
| 33689 | 32.88 | 32.88 | 32.88 | 32.88 | 32.88 |
| 33690 | 32.84 | 32.84 | 32.84 | 32.84 | 32.84 |
| 33691 | 32.84 | 32.84 | 32.84 | 32.84 | 32.84 |
| 33692 | 32.84 | 32.84 | 32.84 | 32.84 | 32.84 |
| 33693 | 32.06 | 32.06 | 32.06 | 32.06 | 32.06 |
| 33694 | 32.50 | 32.50 | 32.50 | 32.50 | 32.50 |
| 33695 | 33.69 | 33.69 | 33.69 | 33.69 | 33.69 |
| 33696 | 33.92 | 33.92 | 33.92 | 33.92 | 33.92 |
| 33697 | 37.92 | 37.92 | 37.92 | 37.92 | 37.92 |
| 33698 | 33.72 | 33.72 | 33.72 | 33.72 | 33.72 |
| 33699 | 32.59 | 32.59 | 32.59 | 32.59 | 32.59 |
| 33699A | 31.82 | 31.82 | 31.82 | 31.82 | 31.82 |
| 33700 | 25.73 | 25.73 | 25.73 | 25.73 | 25.73 |
| 33701 | 25.39 | 25.39 | 25.39 | 25.39 | 25.39 |
| 33702 | 25.39 | 25.39 | 25.39 | 25.39 | 25.39 |
| 33703 | 25.41 | 25.41 | 25.41 | 25.41 | 25.41 |
| 33704 | 25.36 | 25.36 | 25.36 | 25.36 | 25.36 |
| 33705 | 25.48 | 25.48 | 25.48 | 25.48 | 25.48 |
| 33706 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 |
| 33707 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 |
| 33708 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 |
| 33709 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 |
| 33710 | 25.36 | 25.36 | 25.36 | 25.36 | 25.36 |
| 33711 | 25.36 | 25.36 | 25.36 | 25.36 | 25.36 |
| 33712 | 25.33 | 25.33 | 25.33 | 25.33 | 25.33 |
| 33713 | 24.70 | 24.70 | 24.70 | 24.70 | 24.70 |
| 33714 | 24.66 | 24.66 | 24.66 | 24.66 | 24.66 |
| 33715 | 25.83 | 25.83 | 25.83 | 25.83 | 25.83 |
| 33720 | 25.38 | 25.38 | 25.38 | 25.38 | 25.38 |
| 33721 | 25.92 | 25.92 | 25.92 | 25.92 | 25.92 |
| 33722 | 25.78 | 25.78 | 25.78 | 25.78 | 25.78 |
| 33723 | 24.69 | 24.69 | 24.69 | 24.69 | 24.69 |
| 33724 | 24.24 | 24.24 | 24.24 | 24.24 | 24.24 |
| 33725 | 24.70 | 24.70 | 24.70 | 24.70 | 24.70 |
| 33726 | 24.94 | 24.94 | 24.94 | 24.94 | 24.94 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33727 | 25.21 | 25.21 | 25.21 | 25.21 | 25.21 |
| 33750 | 9.91 | 9.83 | 9.85 | 9.82 | 9.86 |
| 33751 | 9.91 | 9.81 | 9.83 | 9.80 | 9.86 |
| 33752 | 9.91 | 9.78 | 9.82 | 9.79 | 9.86 |
| 33753 | 9.90 | 9.74 | 9.82 | 9.79 | 9.86 |
| 33754 | 9.90 | 9.74 | 9.82 | 9.79 | 9.86 |
| 33755 | 9.90 | 9.74 | 9.82 | 9.79 | 9.86 |
| 33756 | 9.90 | 9.74 | 9.82 | 9.79 | 9.86 |
| 33757 | 9.90 | 9.74 | 9.82 | 9.79 | 9.86 |
| 33758 | 9.90 | 9.74 | 9.82 | 9.78 | 9.86 |
| 33759 | 9.90 | 9.74 | 9.82 | 9.78 | 9.86 |
| 33760 | 9.90 | 9.74 | 9.82 | 9.79 | 9.86 |
| 33761 | 9.90 | 9.74 | 9.82 | 9.78 | 9.86 |
| 33762 | 9.90 | 9.74 | 9.82 | 9.78 | 9.85 |
| 33763 | 9.90 | 9.74 | 9.82 | 9.78 | 9.85 |
| 33764 | 9.91 | 9.75 | 9.81 | 9.79 | 9.86 |
| 33765 | 9.91 | 9.75 | 9.82 | 9.79 | 9.86 |
| 34000 | 27.21 | 27.21 | 27.21 | 27.21 | 27.21 |
| 34001 | 30.26 | 30.26 | 30.26 | 30.26 | 30.26 |
| 34002 | 27.58 | 27.58 | 27.58 | 27.58 | 27.58 |
| 34003 | 28.14 | 28.14 | 28.14 | 28.14 | 28.14 |
| 34004 | 27.63 | 27.63 | 27.63 | 27.63 | 27.63 |
| 34005 | 33.03 | 33.03 | 33.03 | 33.03 | 33.03 |
| 34006 | 29.88 | 29.88 | 29.88 | 29.88 | 29.88 |
| 34007 | 27.20 | 27.20 | 27.20 | 27.20 | 27.20 |
| 34008 | 27.18 | 27.18 | 27.18 | 27.18 | 27.18 |
| 34009 | 28.23 | 28.23 | 28.23 | 28.23 | 28.23 |
| 34010 | 27.50 | 27.50 | 27.50 | 27.50 | 27.50 |
| 34011 | 29.81 | 29.81 | 29.81 | 29.81 | 29.81 |
| 34012 | 28.52 | 28.52 | 28.52 | 28.52 | 28.52 |
| 34013 | 29.88 | 29.88 | 29.88 | 29.88 | 29.88 |
| 34014 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 |
| 34015 | 25.40 | 25.40 | 25.40 | 25.40 | 25.40 |
| 34016 | 25.51 | 25.51 | 25.51 | 25.51 | 25.51 |
| 34017 | 27.73 | 27.73 | 27.73 | 27.73 | 27.73 |
| 34018 | 26.88 | 26.88 | 26.88 | 26.88 | 26.88 |
| 34019 | 26.90 | 26.90 | 26.90 | 26.90 | 26.90 |
| 34020 | 27.52 | 27.52 | 27.52 | 27.52 | 27.52 |
| 34021 | 29.02 | 29.02 | 29.02 | 29.02 | 29.02 |
| 34022 | 29.69 | 29.69 | 29.69 | 29.69 | 29.69 |
| 34023 | 33.16 | 33.16 | 33.16 | 33.16 | 33.16 |
| 34024 | 30.52 | 30.52 | 30.52 | 30.52 | 30.52 |
| 34025 | 35.85 | 35.85 | 35.85 | 35.85 | 35.85 |
| 34026 | 27.26 | 27.26 | 27.26 | 27.26 | 27.26 |
| 34027 | 27.36 | 27.36 | 27.36 | 27.36 | 27.36 |
| 34028 | 28.31 | 28.31 | 28.31 | 28.31 | 28.31 |
| 34029 | 28.30 | 28.30 | 28.30 | 28.30 | 28.30 |
| 34030 | 30.66 | 30.66 | 30.66 | 30.66 | 30.66 |
| 34031 | 30.80 | 30.80 | 30.80 | 30.80 | 30.80 |
| 34032 | 30.83 | 30.83 | 30.83 | 30.83 | 30.83 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34033 | 32.97 | 32.97 | 32.97 | 32.97 | 32.97 |
| 34034 | 25.64 | 25.64 | 25.64 | 25.64 | 25.64 |
| 34035 | 25.79 | 25.79 | 25.79 | 25.79 | 25.79 |
| 34036 | 25.99 | 25.99 | 25.99 | 25.99 | 25.99 |
| 34037 | 26.27 | 26.27 | 26.27 | 26.27 | 26.27 |
| 34038 | 27.73 | 27.73 | 27.73 | 27.73 | 27.73 |
| 34039 | 29.72 | 29.72 | 29.72 | 29.72 | 29.72 |
| 34040 | 30.80 | 30.80 | 30.80 | 30.80 | 30.80 |
| 34041 | 30.84 | 30.84 | 30.84 | 30.84 | 30.84 |
| 34042 | 31.13 | 31.13 | 31.13 | 31.13 | 31.13 |
| 34043 | 31.18 | 31.18 | 31.18 | 31.18 | 31.18 |
| 34044 | 32.60 | 32.60 | 32.60 | 32.60 | 32.60 |
| 34045 | 33.84 | 33.84 | 33.84 | 33.84 | 33.84 |
| 34046 | 32.60 | 32.60 | 32.60 | 32.60 | 32.60 |
| 34047 | 31.26 | 31.26 | 31.26 | 31.26 | 31.26 |
| 34048 | 31.46 | 31.46 | 31.46 | 31.46 | 31.46 |
| 34049 | 27.52 | 27.52 | 27.52 | 27.52 | 27.52 |
| 34050 | 31.34 | 31.34 | 31.34 | 31.34 | 31.34 |
| 34051 | 31.65 | 31.65 | 31.65 | 31.65 | 31.65 |
| 34052 | 32.95 | 32.95 | 32.95 | 32.95 | 32.95 |
| 34053 | 27.51 | 27.51 | 27.51 | 27.51 | 27.51 |
| 34054 | 27.51 | 27.51 | 27.51 | 27.51 | 27.51 |
| 34055 | 27.52 | 27.52 | 27.52 | 27.52 | 27.52 |
| 34056 | 31.47 | 31.47 | 31.47 | 31.47 | 31.47 |
| 34057 | 27.52 | 27.52 | 27.52 | 27.52 | 27.52 |
| 34058 | 29.18 | 29.18 | 29.18 | 29.18 | 29.18 |
| 34059 | 29.22 | 29.22 | 29.22 | 29.22 | 29.22 |
| 34060 | 29.15 | 29.15 | 29.15 | 29.15 | 29.15 |
| 34061 | 29.48 | 29.48 | 29.48 | 29.48 | 29.48 |
| 34062 | 29.17 | 29.17 | 29.17 | 29.17 | 29.17 |
| 34063 | 27.37 | 27.37 | 27.37 | 27.37 | 27.37 |
| 34064 | 27.51 | 27.51 | 27.51 | 27.51 | 27.51 |
| 34065 | 28.71 | 28.71 | 28.71 | 28.71 | 28.71 |
| 34066 | 28.75 | 28.75 | 28.75 | 28.75 | 28.75 |
| 34067 | 26.07 | 26.07 | 26.07 | 26.07 | 26.07 |
| 34068 | 28.67 | 28.67 | 28.67 | 28.67 | 28.67 |
| 34069 | 29.71 | 29.71 | 29.71 | 29.71 | 29.71 |
| 34070 | 29.30 | 29.30 | 29.30 | 29.30 | 29.30 |
| 34071 | 30.39 | 30.39 | 30.39 | 30.39 | 30.39 |
| 34072 | 30.67 | 30.67 | 30.67 | 30.67 | 30.67 |
| 34073 | 30.69 | 30.69 | 30.69 | 30.69 | 30.69 |
| 34074 | 30.73 | 30.73 | 30.73 | 30.73 | 30.73 |
| 34075 | 30.52 | 30.52 | 30.52 | 30.52 | 30.52 |
| 34076 | 31.12 | 31.12 | 31.12 | 31.12 | 31.12 |
| 34077 | 34.81 | 34.81 | 34.81 | 34.81 | 34.81 |
| 34078 | 27.70 | 27.70 | 27.70 | 27.70 | 27.70 |
| 34079 | 27.70 | 27.70 | 27.70 | 27.70 | 27.70 |
| 34080 | 27.70 | 27.70 | 27.70 | 27.70 | 27.70 |
| 34081 | 27.70 | 27.70 | 27.70 | 27.70 | 27.70 |
| 34082 | 27.63 | 27.63 | 27.63 | 27.63 | 27.63 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34083 | 28.22 | 28.22 | 28.22 | 28.22 | 28.22 |
| 34084 | 28.20 | 28.20 | 28.20 | 28.20 | 28.20 |
| 34085 | 30.38 | 30.38 | 30.38 | 30.38 | 30.38 |
| 34086 | 30.44 | 30.44 | 30.44 | 30.44 | 30.44 |
| 34087 | 28.29 | 28.29 | 28.29 | 28.29 | 28.29 |
| 34088 | 28.95 | 28.95 | 28.95 | 28.95 | 28.95 |
| 34089 | 29.59 | 29.59 | 29.59 | 29.59 | 29.59 |
| 34090 | 32.30 | 32.30 | 32.30 | 32.30 | 32.30 |
| 34091 | 29.21 | 29.21 | 29.21 | 29.21 | 29.21 |
| 34092 | 29.21 | 29.21 | 29.21 | 29.21 | 29.21 |
| 34093 | 31.37 | 31.37 | 31.37 | 31.37 | 31.37 |
| 34094 | 31.25 | 31.25 | 31.25 | 31.25 | 31.25 |
| 34095 | 29.24 | 29.24 | 29.24 | 29.24 | 29.24 |
| 34096 | 29.49 | 29.49 | 29.49 | 29.49 | 29.49 |
| 34098 | 30.80 | 30.80 | 30.80 | 30.80 | 30.80 |
| 34101 | 32.82 | 32.82 | 32.82 | 32.82 | 32.82 |
| 34115 | 35.02 | 35.02 | 35.02 | 35.02 | 35.02 |
| 34220 | 17.71 | 17.73 | 17.72 | 17.73 | 17.72 |
| 34222 | 17.72 | 17.74 | 17.74 | 17.74 | 17.74 |
| 34225 | 18.26 | 18.27 | 18.27 | 18.27 | 18.27 |
| 34229 | 18.29 | 18.29 | 18.29 | 18.29 | 18.29 |
| 34230 | 18.33 | 18.34 | 18.33 | 18.34 | 18.33 |
| 34235 | 17.72 | 17.74 | 17.74 | 17.74 | 17.74 |
| 34250 | 35.44 | 35.44 | 35.44 | 35.44 | 35.44 |
| 34252 | 35.34 | 35.34 | 35.34 | 35.34 | 35.34 |
| 34254 | 35.05 | 35.05 | 35.05 | 35.05 | 35.05 |
| 34256 | 34.76 | 34.76 | 34.76 | 34.76 | 34.76 |
| 34258 | 33.92 | 33.92 | 33.92 | 33.92 | 33.92 |
| 34260 | 35.00 | 35.00 | 35.00 | 35.00 | 35.00 |
| 34300 | 30.78 | 30.78 | 30.78 | 30.78 | 30.78 |
| 34302 | 31.35 | 31.35 | 31.35 | 31.35 | 31.35 |
| 34304 | 31.35 | 31.35 | 31.35 | 31.35 | 31.35 |
| 34306 | 31.91 | 31.91 | 31.91 | 31.91 | 31.91 |
| 34320 | 31.31 | 31.31 | 31.31 | 31.31 | 31.31 |
| 34320 A | 31.30 | 31.30 | 31.30 | 31.30 | 31.30 |
| 34321 | 31.30 | 31.30 | 31.30 | 31.30 | 31.30 |
| 34322 | 31.30 | 31.30 | 31.30 | 31.30 | 31.30 |
| 34340 | 30.44 | 30.44 | 30.44 | 30.44 | 30.44 |
| 34342 | 30.17 | 30.17 | 30.17 | 30.17 | 30.17 |
| 34344 | 30.09 | 30.09 | 30.09 | 30.09 | 30.09 |
| 35000 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 35005 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 35010 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 35015 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 35020 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 35025 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 35030 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 35035 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 35040 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 35050 | 27.25 | 27.25 | 27.25 | 27.25 | 27.25 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 35060 | 29.01 | 29.01 | 29.01 | 29.01 | 29.01 |
| 35509 | 23.17 | 23.17 | 23.17 | 23.17 | 23.17 |
| 35510 | 25.19 | 25.19 | 25.19 | 25.19 | 25.19 |
| 35512 | 27.02 | 27.02 | 27.02 | 27.02 | 27.02 |
| 35513 | 27.19 | 27.19 | 27.19 | 27.19 | 27.19 |
| 35522 | 21.15 | 21.15 | 21.15 | 21.15 | 21.15 |
| 35523 | 21.25 | 21.25 | 21.25 | 21.25 | 21.25 |
| 35523A | 21.86 | 21.86 | 21.86 | 21.86 | 21.86 |
| 35524 | 21.16 | 21.16 | 21.16 | 21.16 | 21.16 |
| 35525 | 23.31 | 23.31 | 23.31 | 23.31 | 23.31 |
| 35526A | 25.25 | 25.25 | 25.25 | 25.25 | 25.25 |
| 35526B | 25.14 | 25.14 | 25.14 | 25.14 | 25.14 |
| 35527 | 25.33 | 25.33 | 25.33 | 25.33 | 25.33 |
| 35528 | 25.33 | 25.33 | 25.33 | 25.33 | 25.33 |
| 35528A | 25.34 | 25.34 | 25.34 | 25.34 | 25.34 |
| 35528B | 25.42 | 25.42 | 25.42 | 25.42 | 25.42 |
| 35528 C | 25.48 | 25.48 | 25.48 | 25.48 | 25.48 |
| 35528D | 25.42 | 25.42 | 25.42 | 25.42 | 25.42 |
| 35529 | 25.34 | 25.34 | 25.34 | 25.34 | 25.34 |
| 35529A | 25.38 | 25.38 | 25.38 | 25.38 | 25.38 |
| 35530 | 25.58 | 25.58 | 25.58 | 25.58 | 25.58 |
| 35531 | 28.31 | 28.31 | 28.31 | 28.31 | 28.31 |
| 35532 | 27.26 | 27.26 | 27.26 | 27.26 | 27.26 |
| 35532A | 28.26 | 28.26 | 28.26 | 28.26 | 28.26 |
| 35533 | 29.42 | 29.42 | 29.42 | 29.42 | 29.42 |
| 35534 | 31.20 | 31.20 | 31.20 | 31.20 | 31.20 |
| 35535 | 28.39 | 28.39 | 28.39 | 28.39 | 28.39 |
| 35536 | 31.73 | 31.73 | 31.73 | 31.73 | 31.73 |
| 35537 | 31.46 | 31.46 | 31.46 | 31.46 | 31.46 |
| 35538 | 32.16 | 32.16 | 32.16 | 32.16 | 32.16 |
| 35539 | 32.59 | 32.59 | 32.59 | 32.59 | 32.59 |
| 35540 | 33.38 | 33.38 | 33.38 | 33.38 | 33.38 |
| 35541 | 30.70 | 30.70 | 30.70 | 30.70 | 30.70 |
| 35542 | 21.16 | 21.16 | 21.16 | 21.16 | 21.16 |
| 35543 | 21.16 | 21.16 | 21.16 | 21.16 | 21.16 |
| 35544 | 21.16 | 21.16 | 21.16 | 21.16 | 21.16 |
| 35544A | 21.16 | 21.16 | 21.16 | 21.16 | 21.16 |
| 35544B | 25.61 | 25.61 | 25.61 | 25.61 | 25.61 |
| 35545 | 21.16 | 21.16 | 21.16 | 21.16 | 21.16 |
| 35546 | 22.92 | 22.92 | 22.92 | 22.92 | 22.92 |
| 35547 | 26.58 | 26.58 | 26.58 | 26.58 | 26.58 |
| 35548 | 26.58 | 26.58 | 26.58 | 26.58 | 26.58 |
| 35549 | 27.75 | 27.75 | 27.75 | 27.75 | 27.75 |
| 35550 | 27.77 | 27.77 | 27.77 | 27.77 | 27.77 |
| 35550A | 26.46 | 26.46 | 26.46 | 26.46 | 26.46 |
| 35551 | 27.08 | 27.08 | 27.08 | 27.08 | 27.08 |
| 35552 | 27.17 | 27.17 | 27.17 | 27.17 | 27.17 |
| 35553 | 27.69 | 27.69 | 27.69 | 27.69 | 27.69 |
| 35553B | 27.21 | 27.21 | 27.21 | 27.21 | 27.21 |
| 35554 | 28.50 | 28.50 | 28.50 | 28.50 | 28.50 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 35554A | 27.29 | 27.29 | 27.29 | 27.29 | 27.29 |
| 35555 | 27.69 | 27.69 | 27.69 | 27.69 | 27.69 |
| 35555A | 31.16 | 31.16 | 31.16 | 31.16 | 31.16 |
| 35556 | 32.13 | 32.13 | 32.13 | 32.13 | 32.13 |
| 35556A | 31.18 | 31.18 | 31.18 | 31.18 | 31.18 |
| 35557 | 31.93 | 31.93 | 31.93 | 31.93 | 31.93 |
| 35558 | 32.66 | 32.66 | 32.66 | 32.66 | 32.66 |
| 35558A | 31.92 | 31.92 | 31.92 | 31.92 | 31.92 |
| 35559 | 32.87 | 32.87 | 32.87 | 32.87 | 32.87 |
| 35560 | 33.46 | 33.46 | 33.46 | 33.46 | 33.46 |
| 35561 | 31.51 | 31.51 | 31.51 | 31.51 | 31.51 |
| 35562 | 32.88 | 32.88 | 32.88 | 32.88 | 32.88 |
| 35563 | 33.72 | 33.72 | 33.72 | 33.72 | 33.72 |
| 35563A | 33.72 | 33.72 | 33.72 | 33.72 | 33.72 |
| 35564 | 33.58 | 33.58 | 33.58 | 33.58 | 33.58 |
| 35565 | 32.05 | 32.05 | 32.05 | 32.05 | 32.05 |
| 35566 | 34.11 | 34.11 | 34.11 | 34.11 | 34.11 |
| 35566A | 32.17 | 32.17 | 32.17 | 32.17 | 32.17 |
| 35567 | 32.27 | 32.27 | 32.27 | 32.27 | 32.27 |
| 35568 | 32.27 | 32.27 | 32.27 | 32.27 | 32.27 |
| 35570 | 31.15 | 31.15 | 31.15 | 31.15 | 31.15 |
| 35571 | 36.06 | 36.06 | 36.06 | 36.06 | 36.06 |
| 35572 | 33.89 | 33.89 | 33.89 | 33.89 | 33.89 |
| 35575 | 35.47 | 35.47 | 35.47 | 35.47 | 35.47 |
| 35577 | 33.82 | 33.82 | 33.82 | 33.82 | 33.82 |
| 35578 | 33.83 | 33.83 | 33.83 | 33.83 | 33.83 |
| 35579 | 33.82 | 33.82 | 33.82 | 33.82 | 33.82 |
| 35581 | 33.01 | 33.01 | 33.01 | 33.01 | 33.01 |
| 35592 | 33.88 | 33.88 | 33.88 | 33.88 | 33.88 |
| 35594 | 34.53 | 34.53 | 34.53 | 34.53 | 34.53 |
| 35595 | 34.04 | 34.04 | 34.04 | 34.04 | 34.04 |
| 35596 | 34.70 | 34.70 | 34.70 | 34.70 | 34.70 |
| 35597 | 34.95 | 34.95 | 34.95 | 34.95 | 34.95 |
| 35598 | 34.70 | 34.70 | 34.70 | 34.70 | 34.70 |
| 35599 | 35.53 | 35.53 | 35.53 | 35.53 | 35.53 |
| 35599A | 34.71 | 34.71 | 34.71 | 34.71 | 34.71 |
| 35600 | 33.50 | 33.50 | 33.50 | 33.50 | 33.50 |
| 35600A | 38.39 | 38.39 | 38.39 | 38.39 | 38.39 |
| 35601 | 30.62 | 30.62 | 30.62 | 30.62 | 30.62 |
| 35610 | 25.56 | 25.56 | 25.56 | 25.56 | 25.56 |
| 35611 | 28.98 | 28.98 | 28.98 | 28.98 | 28.98 |
| 35612 | 29.17 | 29.17 | 29.17 | 29.17 | 29.17 |
| 35614 | 29.62 | 29.62 | 29.62 | 29.62 | 29.62 |
| 35615 | 29.83 | 29.83 | 29.83 | 29.83 | 29.83 |
| 35617 | 30.62 | 30.62 | 30.62 | 30.62 | 30.62 |
| 35620 | 17.33 | 17.36 | 17.36 | 17.36 | 17.36 |
| 35621 | 17.33 | 17.36 | 17.36 | 17.36 | 17.36 |
| 35622 | 17.34 | 17.36 | 17.36 | 17.36 | 17.36 |
| 35623 | 17.34 | 17.36 | 17.36 | 17.36 | 17.36 |
| 35624 | 17.61 | 17.64 | 17.63 | 17.64 | 17.63 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 35625 | 17.61 | 17.64 | 17.63 | 17.64 | 17.63 |
| 35626 | 17.61 | 17.64 | 17.63 | 17.64 | 17.63 |
| 35627 | 17.61 | 17.64 | 17.63 | 17.64 | 17.63 |
| 35628 | 17.61 | 17.64 | 17.63 | 17.64 | 17.63 |
| 35629 | 17.61 | 17.64 | 17.63 | 17.64 | 17.63 |
| 35630 | 16.13 | 16.22 | 16.21 | 16.21 | 16.20 |
| 35631 | 16.51 | 16.51 | 16.51 | 16.51 | 16.51 |
| 35632 | 17.28 | 17.28 | 17.28 | 17.28 | 17.28 |
| 35633 | 16.43 | 16.47 | 16.47 | 16.47 | 16.47 |
| 35640 | 20.77 | 20.77 | 20.77 | 20.77 | 20.77 |
| 35641 | 20.77 | 20.77 | 20.77 | 20.77 | 20.77 |
| 35641A | 20.84 | 20.84 | 20.84 | 20.84 | 20.84 |
| 35641B | 20.94 | 20.94 | 20.94 | 20.94 | 20.94 |
| 35642 | 21.30 | 21.30 | 21.30 | 21.30 | 21.30 |
| 35643 | 22.74 | 22.74 | 22.74 | 22.74 | 22.74 |
| 35644 | 21.03 | 21.03 | 21.03 | 21.03 | 21.03 |
| 35644A | 21.04 | 21.04 | 21.04 | 21.04 | 21.04 |
| 35645 | 24.88 | 24.88 | 24.88 | 24.88 | 24.88 |
| 35646 | 24.88 | 24.88 | 24.88 | 24.88 | 24.88 |
| 35650 | 29.96 | 29.96 | 29.96 | 29.96 | 29.96 |
| 35651 | 29.97 | 29.96 | 29.97 | 29.97 | 29.97 |
| 35652 | 29.97 | 29.96 | 29.97 | 29.97 | 29.97 |
| 35653 | 30.08 | 30.08 | 30.08 | 30.08 | 30.08 |
| 35655 | 33.95 | 33.95 | 33.95 | 33.95 | 33.95 |
| 35656 | 33.95 | 33.95 | 33.95 | 33.95 | 33.95 |
| 35657 | 33.95 | 33.95 | 33.95 | 33.95 | 33.95 |
| 35660 | 34.27 | 34.27 | 34.27 | 34.27 | 34.27 |
| 35661 | 34.29 | 34.29 | 34.29 | 34.29 | 34.29 |
| 35662 | 34.32 | 34.32 | 34.32 | 34.32 | 34.32 |
| 35665A | 20.77 | 20.77 | 20.77 | 20.77 | 20.77 |
| 35665B | 20.77 | 20.77 | 20.77 | 20.77 | 20.77 |
| 35665C | 20.77 | 20.77 | 20.77 | 20.77 | 20.77 |
| 35665D | 20.77 | 20.77 | 20.77 | 20.77 | 20.77 |
| 35665 E | 21.61 | 21.61 | 21.61 | 21.61 | 21.61 |
| 35665F | 24.96 | 24.96 | 24.96 | 24.96 | 24.96 |
| 35665G | 25.30 | 25.30 | 25.30 | 25.30 | 25.30 |
| 35665H | 26.01 | 26.01 | 26.01 | 26.01 | 26.01 |
| 35670 | 23.16 | 23.16 | 23.16 | 23.16 | 23.16 |
| 35671 | 23.16 | 23.16 | 23.16 | 23.16 | 23.16 |
| 35672 | 23.16 | 23.16 | 23.16 | 23.16 | 23.16 |
| 35673 | 23.16 | 23.16 | 23.16 | 23.16 | 23.16 |
| 35674 | 24.88 | 24.88 | 24.88 | 24.88 | 24.88 |
| 35680 | 22.47 | 22.47 | 22.47 | 22.47 | 22.47 |
| 35684 | 24.06 | 24.06 | 24.06 | 24.06 | 24.06 |
| 35690 | 22.88 | 22.88 | 22.88 | 22.88 | 22.88 |
| 35691 | 23.31 | 23.31 | 23.31 | 23.31 | 23.31 |
| 35693 | 23.87 | 23.87 | 23.87 | 23.87 | 23.87 |
| 35694 | 23.83 | 23.83 | 23.83 | 23.83 | 23.83 |
| 35695 | 23.15 | 23.15 | 23.15 | 23.15 | 23.15 |
| 35696 | 24.78 | 24.78 | 24.78 | 24.78 | 24.78 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 35697 | 24.77 | 24.77 | 24.77 | 24.77 | 24.77 |
| 35698 | 25.14 | 25.14 | 25.14 | 25.14 | 25.14 |
| 35700 | 21.95 | 21.95 | 21.95 | 21.95 | 21.95 |
| 35710 | 19.73 | 19.74 | 19.74 | 19.74 | 19.74 |
| 35712 | 19.73 | 19.74 | 19.74 | 19.74 | 19.74 |
| 35713 | 19.73 | 19.74 | 19.74 | 19.74 | 19.74 |
| 35715 | 19.73 | 19.74 | 19.74 | 19.74 | 19.74 |
| 35716 | 19.73 | 19.74 | 19.74 | 19.74 | 19.74 |
| 35717 | 19.73 | 19.74 | 19.74 | 19.74 | 19.74 |
| 35719 | 19.73 | 19.74 | 19.74 | 19.74 | 19.74 |
| 35720 | 21.77 | 21.77 | 21.77 | 21.77 | 21.77 |
| 35721 | 23.11 | 23.11 | 23.11 | 23.11 | 23.11 |
| 35722 | 23.11 | 23.11 | 23.11 | 23.11 | 23.11 |
| 35723 | 27.75 | 27.75 | 27.75 | 27.75 | 27.75 |
| 35724 | 23.12 | 23.12 | 23.12 | 23.12 | 23.12 |
| 35725 | 23.12 | 23.12 | 23.12 | 23.12 | 23.12 |
| 35726 | 23.13 | 23.13 | 23.13 | 23.13 | 23.13 |
| 35727 | 23.51 | 23.51 | 23.51 | 23.51 | 23.51 |
| 35728 | 23.97 | 23.97 | 23.97 | 23.97 | 23.97 |
| 35729 | 24.22 | 24.22 | 24.22 | 24.22 | 24.22 |
| 35730 | 25.36 | 25.36 | 25.36 | 25.36 | 25.36 |
| 35731 | 24.01 | 24.01 | 24.01 | 24.01 | 24.01 |
| 35732 | 24.06 | 24.06 | 24.06 | 24.06 | 24.06 |
| 35733 | 24.78 | 24.78 | 24.78 | 24.78 | 24.78 |
| 35734 | 25.37 | 25.37 | 25.37 | 25.37 | 25.37 |
| 35735 | 26.76 | 26.76 | 26.76 | 26.76 | 26.76 |
| 35740 | 24.30 | 24.30 | 24.30 | 24.30 | 24.30 |
| 35741 | 24.59 | 24.59 | 24.59 | 24.59 | 24.59 |
| 35742 | 25.84 | 25.84 | 25.84 | 25.84 | 25.84 |
| 35743 | 26.59 | 26.59 | 26.59 | 26.59 | 26.59 |
| 35744 | 24.64 | 24.64 | 24.64 | 24.64 | 24.64 |
| 35745 | 24.67 | 24.67 | 24.67 | 24.67 | 24.67 |
| 35746 | 19.04 | 19.04 | 19.04 | 19.04 | 19.04 |
| 35747 | 18.27 | 18.29 | 18.29 | 18.29 | 18.29 |
| 35750 | 19.20 | 19.21 | 19.20 | 19.21 | 19.20 |
| 35751 | 21.09 | 21.09 | 21.09 | 21.09 | 21.09 |
| 35752 | 20.37 | 20.38 | 20.38 | 20.38 | 20.38 |
| 35753 | 20.38 | 20.38 | 20.38 | 20.38 | 20.38 |
| 35754 | 20.70 | 20.70 | 20.70 | 20.70 | 20.70 |
| 35755 | 20.38 | 20.39 | 20.38 | 20.39 | 20.38 |
| 35756 | 21.44 | 21.44 | 21.44 | 21.44 | 21.44 |
| 35800 | 29.09 | 29.09 | 29.09 | 29.09 | 29.09 |
| 35805 | 28.08 | 28.08 | 28.08 | 28.08 | 28.08 |
| 35810 | 28.70 | 28.70 | 28.70 | 28.70 | 28.70 |
| 35815 | 29.87 | 29.87 | 29.87 | 29.87 | 29.87 |
| 35820 | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 |
| 35825 | 28.75 | 28.75 | 28.75 | 28.75 | 28.75 |
| 35830 | 29.88 | 29.88 | 29.88 | 29.88 | 29.88 |
| 35835 | 30.01 | 30.01 | 30.01 | 30.01 | 30.01 |
| 35840 | 30.18 | 30.18 | 30.18 | 30.18 | 30.18 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 35845 | 30.71 | 30.71 | 30.71 | 30.71 | 30.71 |
| 35850 | 30.18 | 30.18 | 30.18 | 30.18 | 30.18 |
| 35855 | 29.00 | 29.00 | 29.00 | 29.00 | 29.00 |
| 35860 | 30.02 | 30.02 | 30.02 | 30.02 | 30.02 |
| 35865 | 29.82 | 29.82 | 29.82 | 29.82 | 29.82 |
| 35870 | 30.25 | 30.25 | 30.25 | 30.25 | 30.25 |
| 35875 | 31.67 | 31.67 | 31.67 | 31.67 | 31.67 |
| 35880 | 30.83 | 30.83 | 30.83 | 30.83 | 30.83 |
| 35885 | 31.54 | 31.54 | 31.54 | 31.54 | 31.54 |
| 35890 | 31.14 | 31.14 | 31.14 | 31.14 | 31.14 |
| 35895 | 31.19 | 31.19 | 31.19 | 31.19 | 31.19 |
| 35900 | 31.55 | 31.55 | 31.55 | 31.55 | 31.55 |
| 35905 | 30.74 | 30.74 | 30.74 | 30.74 | 30.74 |
| 35910 | 30.36 | 30.36 | 30.36 | 30.36 | 30.36 |
| 35915 | 30.80 | 30.80 | 30.80 | 30.80 | 30.80 |
| 35920 | 36.09 | 36.09 | 36.09 | 36.09 | 36.09 |
| 35930 | 35.83 | 35.83 | 35.83 | 35.83 | 35.83 |
| 35935 | 26.92 | 26.92 | 26.92 | 26.92 | 26.92 |
| 35940 | 26.88 | 26.88 | 26.88 | 26.88 | 26.88 |
| 35945 | 25.63 | 25.63 | 25.63 | 25.63 | 25.63 |
| 35950 | 25.63 | 25.63 | 25.63 | 25.63 | 25.63 |
| 35955 | 27.42 | 27.42 | 27.42 | 27.42 | 27.42 |
| 35960 | 26.18 | 26.18 | 26.18 | 26.18 | 26.18 |
| 35965 | 29.45 | 29.45 | 29.45 | 29.45 | 29.45 |
| 35970 | 29.12 | 29.12 | 29.12 | 29.12 | 29.12 |
| 35975 | 25.63 | 25.63 | 25.63 | 25.63 | 25.63 |
| 35980 | 25.81 | 25.81 | 25.81 | 25.81 | 25.81 |
| 35985 | 27.81 | 27.81 | 27.81 | 27.81 | 27.81 |
| 35990 | 26.29 | 26.29 | 26.29 | 26.29 | 26.29 |
| 36000 | 23.86 | 23.86 | 23.86 | 23.86 | 23.86 |
| 36005 | 25.79 | 25.79 | 25.79 | 25.79 | 25.79 |
| 36010 | 26.26 | 26.26 | 26.26 | 26.26 | 26.26 |
| 36015 | 28.19 | 28.19 | 28.19 | 28.19 | 28.19 |
| 36020 | 26.48 | 26.48 | 26.48 | 26.48 | 26.48 |
| 36025 | 28.57 | 28.57 | 28.57 | 28.57 | 28.57 |
| 36030 | 26.59 | 26.59 | 26.59 | 26.59 | 26.59 |
| 36035 | 28.65 | 28.65 | 28.65 | 28.65 | 28.65 |
| 36040 | 26.81 | 26.81 | 26.81 | 26.81 | 26.81 |
| 36045 | 28.73 | 28.73 | 28.73 | 28.73 | 28.73 |
| 36050 | 29.25 | 29.25 | 29.25 | 29.25 | 29.25 |
| 36055 | 29.33 | 29.33 | 29.33 | 29.33 | 29.33 |
| 36060 | 30.20 | 30.20 | 30.20 | 30.20 | 30.20 |
| 36065 | 31.77 | 31.77 | 31.77 | 31.77 | 31.77 |
| 36075 | 28.56 | 28.56 | 28.56 | 28.56 | 28.56 |
| 36080 | 26.15 | 26.15 | 26.15 | 26.15 | 26.15 |
| 36085 | 28.56 | 28.56 | 28.56 | 28.56 | 28.56 |
| 36090 | 26.32 | 26.32 | 26.32 | 26.32 | 26.32 |
| 36095 | 28.57 | 28.57 | 28.57 | 28.57 | 28.57 |
| 36100 | 29.51 | 29.51 | 29.51 | 29.51 | 29.51 |
| 36105 | 28.57 | 28.57 | 28.57 | 28.57 | 28.57 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 36110 | 31.81 | 31.81 | 31.81 | 31.81 | 31.81 |
| 36115 | 34.11 | 34.11 | 34.11 | 34.11 | 34.11 |
| 36120 | 29.71 | 29.71 | 29.71 | 29.71 | 29.71 |
| 36125 | 29.58 | 29.58 | 29.58 | 29.58 | 29.58 |
| 36130 | 30.57 | 30.57 | 30.57 | 30.57 | 30.57 |
| 36135 | 30.58 | 30.58 | 30.58 | 30.58 | 30.58 |
| 36140 | 30.62 | 30.62 | 30.62 | 30.62 | 30.62 |
| 36145 | 31.79 | 31.79 | 31.79 | 31.79 | 31.79 |
| 36150 | 16.72 | 16.76 | 16.76 | 16.76 | 16.76 |
| 36155 | 17.25 | 17.29 | 17.28 | 17.29 | 17.28 |
| 36158 | 17.51 | 17.54 | 17.54 | 17.54 | 17.54 |
| 36160 | 19.09 | 19.09 | 19.09 | 19.09 | 19.09 |
| 36175 | 18.42 | 18.42 | 18.42 | 18.42 | 18.42 |
| 36185 | 19.27 | 19.27 | 19.27 | 19.27 | 19.27 |
| 36190 | 18.90 | 18.90 | 18.90 | 18.90 | 18.90 |
| 36195 | 18.90 | 18.90 | 18.90 | 18.90 | 18.90 |
| 36200 | 25.94 | 25.94 | 25.94 | 25.94 | 25.94 |
| 36205 | 20.02 | 20.02 | 20.02 | 20.02 | 20.02 |
| 36210 | 21.91 | 21.91 | 21.91 | 21.91 | 21.91 |
| 36215 | 20.02 | 20.02 | 20.02 | 20.02 | 20.02 |
| 36220 | 22.90 | 22.90 | 22.90 | 22.90 | 22.90 |
| 36225 | 22.66 | 22.66 | 22.66 | 22.66 | 22.66 |
| 36230 | 17.30 | 17.33 | 17.32 | 17.33 | 17.32 |
| 36235 | 17.05 | 17.07 | 17.07 | 17.07 | 17.07 |
| 36240 | 16.99 | 17.02 | 17.02 | 17.02 | 17.02 |
| 36245 | 17.01 | 17.04 | 17.03 | 17.04 | 17.03 |
| 36250 | 17.44 | 17.45 | 17.45 | 17.45 | 17.45 |
| 36255 | 16.99 | 17.02 | 17.02 | 17.02 | 17.02 |
| 36260 | 17.73 | 17.73 | 17.73 | 17.73 | 17.73 |
| 36263 | 17.45 | 17.47 | 17.47 | 17.47 | 17.47 |
| 36265 | 18.43 | 18.43 | 18.43 | 18.43 | 18.43 |
| 36270 | 18.88 | 18.88 | 18.88 | 18.88 | 18.88 |
| 36275 | 18.98 | 18.98 | 18.98 | 18.98 | 18.98 |
| 36280 | 19.11 | 19.11 | 19.11 | 19.11 | 19.11 |
| 36285 | 19.27 | 19.27 | 19.27 | 19.27 | 19.27 |
| 36295 | 20.15 | 20.15 | 20.15 | 20.15 | 20.15 |
| 36300 | 20.69 | 20.69 | 20.69 | 20.69 | 20.69 |
| 36305 | 20.20 | 20.20 | 20.20 | 20.20 | 20.20 |
| 36310 | 20.20 | 20.20 | 20.20 | 20.20 | 20.20 |
| 36315 | 20.53 | 20.53 | 20.53 | 20.53 | 20.53 |
| 36320 | 20.70 | 20.70 | 20.70 | 20.70 | 20.70 |
| 36325 | 20.64 | 20.64 | 20.64 | 20.64 | 20.64 |
| 36330 | 20.64 | 20.64 | 20.64 | 20.64 | 20.64 |
| 36335 | 21.54 | 21.54 | 21.54 | 21.54 | 21.54 |
| 36340 | 20.82 | 20.82 | 20.82 | 20.82 | 20.82 |
| 36350 | 21.32 | 21.32 | 21.32 | 21.32 | 21.32 |
| 36352 | 21.55 | 21.55 | 21.55 | 21.55 | 21.55 |
| 36355 | 21.71 | 21.71 | 21.71 | 21.71 | 21.71 |
| 36360 | 22.41 | 22.41 | 22.41 | 22.41 | 22.41 |
| 36365 | 22.30 | 22.30 | 22.30 | 22.30 | 22.30 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 36370 | 22.55 | 22.55 | 22.55 | 22.55 | 22.55 |
| 36375 | 22.31 | 22.31 | 22.31 | 22.31 | 22.31 |
| 36380 | 21.63 | 21.63 | 21.63 | 21.63 | 21.63 |
| 36385 | 22.46 | 22.46 | 22.46 | 22.46 | 22.46 |
| 36390 | 21.64 | 21.64 | 21.64 | 21.64 | 21.64 |
| 36395 | 23.02 | 23.02 | 23.02 | 23.02 | 23.02 |
| 36400 | 28.38 | 28.38 | 28.38 | 28.38 | 28.38 |
| 36405 | 30.94 | 30.94 | 30.94 | 30.94 | 30.94 |
| 36410 | 31.24 | 31.24 | 31.24 | 31.24 | 31.24 |
| 36415 | 31.25 | 31.25 | 31.25 | 31.25 | 31.25 |
| 36420 | 31.50 | 31.50 | 31.50 | 31.50 | 31.50 |
| 36430 | 31.50 | 31.50 | 31.50 | 31.50 | 31.50 |
| 36435 | 31.27 | 31.27 | 31.27 | 31.27 | 31.27 |
| 36445 | 31.29 | 31.29 | 31.29 | 31.29 | 31.29 |
| 36450 | 16.99 | 17.02 | 17.02 | 17.02 | 17.02 |
| 36500 | 24.53 | 24.53 | 24.53 | 24.53 | 24.53 |
| 36510 | 24.53 | 24.53 | 24.53 | 24.53 | 24.53 |
| 36520 | 26.73 | 26.73 | 26.73 | 26.73 | 26.73 |
| 36530 | 30.02 | 30.02 | 30.02 | 30.02 | 30.02 |
| 36540 | 30.21 | 30.21 | 30.21 | 30.21 | 30.21 |
| 36550 | 29.38 | 29.38 | 29.38 | 29.38 | 29.38 |
| 36560 | 25.41 | 25.41 | 25.41 | 25.41 | 25.41 |
| 36570 | 30.21 | 30.21 | 30.21 | 30.21 | 30.21 |
| 36580 | 28.57 | 28.57 | 28.57 | 28.57 | 28.57 |
| 36590 | 28.57 | 28.57 | 28.57 | 28.57 | 28.57 |
| 36600 | 28.79 | 28.79 | 28.79 | 28.79 | 28.79 |
| 36610 | 32.15 | 32.15 | 32.15 | 32.15 | 32.15 |
| 36620 | 32.29 | 32.29 | 32.29 | 32.29 | 32.29 |
| 36630 | 32.43 | 32.43 | 32.43 | 32.43 | 32.43 |
| 36640 | 34.86 | 34.86 | 34.86 | 34.86 | 34.86 |
| 36650 | 34.86 | 34.86 | 34.86 | 34.86 | 34.86 |
| 36660 | 34.30 | 34.30 | 34.30 | 34.30 | 34.30 |
| 36670 | 33.95 | 33.95 | 33.95 | 33.95 | 33.95 |
| 36680 | 34.92 | 34.92 | 34.92 | 34.92 | 34.92 |
| 36690 | 33.96 | 33.96 | 33.96 | 33.96 | 33.96 |
| 36700 | 34.04 | 34.04 | 34.04 | 34.04 | 34.04 |
| 36710 | 34.61 | 34.61 | 34.61 | 34.61 | 34.61 |
| 36720 | 34.09 | 34.09 | 34.09 | 34.09 | 34.09 |
| 36730 | 34.49 | 34.49 | 34.49 | 34.49 | 34.49 |
| 36740 | 34.39 | 34.39 | 34.39 | 34.39 | 34.39 |
| 36750 | 34.38 | 34.38 | 34.38 | 34.38 | 34.38 |
| 36760 | 34.37 | 34.37 | 34.37 | 34.37 | 34.37 |
| 36770 | 34.42 | 34.42 | 34.42 | 34.42 | 34.42 |
| 36780 | 34.42 | 34.42 | 34.42 | 34.42 | 34.42 |
| 36790 | 34.71 | 34.71 | 34.71 | 34.71 | 34.71 |
| 36800 | 34.92 | 34.92 | 34.92 | 34.92 | 34.92 |
| 36810 | 33.59 | 33.59 | 33.59 | 33.59 | 33.59 |
| 36820 | 34.41 | 34.41 | 34.41 | 34.41 | 34.41 |
| 36830 | 33.63 | 33.63 | 33.63 | 33.63 | 33.63 |
| 36840 | 33.60 | 33.60 | 33.60 | 33.60 | 33.60 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 36850 | 34.59 | 34.59 | 34.59 | 34.59 | 34.59 |
| 36860 | 34.54 | 34.54 | 34.54 | 34.54 | 34.54 |
| 36870 | 34.46 | 34.46 | 34.46 | 34.46 | 34.46 |
| 36880 | 33.61 | 33.61 | 33.61 | 33.61 | 33.61 |
| 36890 | 29.61 | 29.61 | 29.61 | 29.61 | 29.61 |
| 36900 | 28.57 | 28.57 | 28.57 | 28.57 | 28.57 |
| 36910 | 34.19 | 34.19 | 34.19 | 34.19 | 34.19 |
| 36930 | 34.18 | 34.18 | 34.18 | 34.18 | 34.18 |
| 36940 | 33.68 | 33.68 | 33.68 | 33.68 | 33.68 |
| 36950 | 34.16 | 34.16 | 34.16 | 34.16 | 34.16 |
| 36960 | 37.09 | 37.09 | 37.09 | 37.09 | 37.09 |
| 36970 | 37.14 | 37.14 | 37.14 | 37.14 | 37.14 |
| 36980 | 33.50 | 33.50 | 33.50 | 33.50 | 33.50 |
| 37000 | 27.12 | 27.12 | 27.12 | 27.12 | 27.12 |
| 37010 | 27.15 | 27.15 | 27.15 | 27.15 | 27.15 |
| 37020 | 27.15 | 27.15 | 27.15 | 27.15 | 27.15 |
| 37030 | 27.46 | 27.46 | 27.46 | 27.46 | 27.46 |
| 37040 | 27.55 | 27.55 | 27.55 | 27.55 | 27.55 |
| 37050 | 27.97 | 27.97 | 27.97 | 27.97 | 27.97 |
| 37060 | 28.34 | 28.34 | 28.34 | 28.34 | 28.34 |
| 37070 | 27.55 | 27.55 | 27.55 | 27.55 | 27.55 |
| 37080 | 24.56 | 24.56 | 24.56 | 24.56 | 24.56 |
| 37090 | 24.56 | 24.56 | 24.56 | 24.56 | 24.56 |
| 37100 | 34.67 | 34.67 | 34.67 | 34.67 | 34.67 |
| 37110 | 33.16 | 33.16 | 33.16 | 33.16 | 33.16 |
| 37120 | 30.36 | 30.36 | 30.36 | 30.36 | 30.36 |
| 37130 | 31.53 | 31.53 | 31.53 | 31.53 | 31.53 |
| 37140 | 31.47 | 31.47 | 31.47 | 31.47 | 31.47 |
| 37150 | 29.61 | 29.61 | 29.61 | 29.61 | 29.61 |
| 37200 | 12.19 | 12.19 | 12.19 | 12.19 | 12.19 |
| 37205 | 12.24 | 12.24 | 12.24 | 12.24 | 12.24 |
| 37210 | 12.52 | 12.52 | 12.52 | 12.52 | 12.52 |
| 37215 | 13.47 | 13.47 | 13.47 | 13.47 | 13.47 |
| 37220 | 14.23 | 14.23 | 14.23 | 14.23 | 14.23 |
| 37225 | 14.85 | 14.85 | 14.85 | 14.85 | 14.85 |
| 37230 | 13.73 | 13.73 | 13.73 | 13.73 | 13.73 |
| 37235 | 9.91 | 9.91 | 9.91 | 9.91 | 9.91 |
| 37240 | 11.97 | 11.97 | 11.97 | 11.97 | 11.97 |
| 37245 | 22.17 | 22.17 | 22.17 | 22.17 | 22.17 |
| 37250 | 20.65 | 20.65 | 20.65 | 20.65 | 20.65 |
| 37255 | 21.58 | 21.58 | 21.58 | 21.58 | 21.58 |
| 37260 | 22.14 | 22.14 | 22.14 | 22.14 | 22.14 |
| 37265 | 21.31 | 21.31 | 21.31 | 21.31 | 21.31 |
| 37270 | 23.27 | 23.27 | 23.27 | 23.27 | 23.27 |
| 37275 | 16.52 | 16.52 | 16.52 | 16.52 | 16.52 |
| 37280 | 16.12 | 16.12 | 16.12 | 16.12 | 16.12 |
| 37285 | 23.21 | 23.21 | 23.21 | 23.21 | 23.21 |
| 37290 | 24.05 | 24.05 | 24.05 | 24.05 | 24.05 |
| 37295 | 19.86 | 19.86 | 19.86 | 19.86 | 19.86 |
| 37300 | 15.86 | 15.86 | 15.86 | 15.86 | 15.86 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 37305 | 21.41 | 21.41 | 21.41 | 21.41 | 21.41 |
| 37310 | 20.12 | 20.12 | 20.12 | 20.12 | 20.12 |
| 37315 | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 |
| 37320 | 21.53 | 21.53 | 21.53 | 21.53 | 21.53 |
| 37325 | 26.44 | 26.44 | 26.44 | 26.44 | 26.44 |
| 37330 | 26.77 | 26.77 | 26.77 | 26.77 | 26.77 |
| 37335 | 29.14 | 29.14 | 29.14 | 29.14 | 29.14 |
| 37340 | 32.36 | 32.36 | 32.36 | 32.36 | 32.36 |
| 37345 | 31.37 | 31.37 | 31.37 | 31.37 | 31.37 |
| 37347 | 28.79 | 28.79 | 28.79 | 28.79 | 28.79 |
| 37350 | 31.30 | 31.30 | 31.30 | 31.30 | 31.30 |
| 37355 | 32.43 | 32.43 | 32.43 | 32.43 | 32.43 |
| 37360 | 31.63 | 31.63 | 31.63 | 31.63 | 31.63 |
| 37365 | 31.54 | 31.54 | 31.54 | 31.54 | 31.54 |
| 37370 | 33.14 | 33.14 | 33.14 | 33.14 | 33.14 |
| 37375 | 31.29 | 31.29 | 31.29 | 31.29 | 31.29 |
| 37380 | 31.85 | 31.85 | 31.85 | 31.85 | 31.85 |
| 37385 | 18.39 | 18.39 | 18.39 | 18.39 | 18.39 |
| 37390 | 29.71 | 29.71 | 29.71 | 29.71 | 29.71 |
| 37395 | 29.67 | 29.67 | 29.67 | 29.67 | 29.67 |
| 37400 | 31.11 | 31.11 | 31.11 | 31.11 | 31.11 |
| 37405 | 30.38 | 30.38 | 30.38 | 30.38 | 30.38 |
| 37410 | 30.19 | 30.19 | 30.19 | 30.19 | 30.19 |
| 37415 | 30.19 | 30.19 | 30.19 | 30.19 | 30.19 |
| 37420 | 31.12 | 31.12 | 31.12 | 31.12 | 31.12 |
| 37425 | 31.75 | 31.75 | 31.75 | 31.75 | 31.75 |
| 37430 | 33.29 | 33.29 | 33.29 | 33.29 | 33.29 |
| 37435 | 33.26 | 33.26 | 33.26 | 33.26 | 33.26 |
| 37440 | 24.34 | 24.34 | 24.34 | 24.34 | 24.34 |
| 37445 | 27.48 | 27.48 | 27.48 | 27.48 | 27.48 |
| 37450 | 24.31 | 24.31 | 24.31 | 24.31 | 24.31 |
| 37455 | 28.16 | 28.16 | 28.16 | 28.16 | 28.16 |
| 37460 | 19.49 | 19.49 | 19.49 | 19.49 | 19.49 |
| 37465 | 16.51 | 16.52 | 16.51 | 16.52 | 16.51 |
| 37470 | 18.33 | 18.33 | 18.33 | 18.33 | 18.33 |
| 37475 | 17.62 | 17.62 | 17.62 | 17.62 | 17.62 |
| 37480 | 18.76 | 18.76 | 18.76 | 18.76 | 18.76 |
| 37485 | 26.49 | 26.49 | 26.49 | 26.49 | 26.49 |
| 37490 | 29.71 | 29.71 | 29.71 | 29.71 | 29.71 |
| 37495 | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 |
| 37500 | 30.03 | 30.03 | 30.03 | 30.03 | 30.03 |
| 37505 | 26.75 | 26.75 | 26.75 | 26.75 | 26.75 |
| 37510 | 29.68 | 29.68 | 29.68 | 29.68 | 29.68 |
| 37515 | 29.58 | 29.58 | 29.58 | 29.58 | 29.58 |
| 37520 | 26.75 | 26.75 | 26.75 | 26.75 | 26.75 |
| 37525 | 27.12 | 27.12 | 27.12 | 27.12 | 27.12 |
| 37530 | 27.06 | 27.06 | 27.06 | 27.06 | 27.06 |
| 37535 | 29.63 | 29.63 | 29.63 | 29.63 | 29.63 |
| 37540 | 20.91 | 20.91 | 20.91 | 20.91 | 20.91 |
| 37545 | 21.66 | 21.66 | 21.66 | 21.66 | 21.66 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 37550 | 20.56 | 20.56 | 20.56 | 20.56 | 20.56 |
| 37555 | 22.08 | 22.08 | 22.08 | 22.08 | 22.08 |
| 37560 | 25.85 | 25.85 | 25.85 | 25.85 | 25.85 |
| 37565 | 21.14 | 21.14 | 21.14 | 21.14 | 21.14 |
| 37570 | 22.85 | 22.85 | 22.85 | 22.85 | 22.85 |
| 37575 | 31.14 | 31.14 | 31.14 | 31.14 | 31.14 |
| 37580 | 37.85 | 37.85 | 37.85 | 37.85 | 37.85 |
| 37583 | 30.10 | 30.10 | 30.10 | 30.10 | 30.10 |
| 37585 | 30.16 | 30.16 | 30.16 | 30.16 | 30.16 |
| 37590 | 31.04 | 31.04 | 31.04 | 31.04 | 31.04 |
| 37595 | 31.49 | 31.49 | 31.49 | 31.49 | 31.49 |
| 37600 | 32.82 | 32.82 | 32.82 | 32.82 | 32.82 |
| 37605 | 32.91 | 32.91 | 32.91 | 32.91 | 32.91 |
| 37610 | 33.13 | 33.13 | 33.13 | 33.13 | 33.13 |
| 37615 | 33.14 | 33.14 | 33.14 | 33.14 | 33.14 |
| 37620 | 17.73 | 17.76 | 17.75 | 17.76 | 17.75 |
| 37625 | 21.15 | 21.15 | 21.15 | 21.15 | 21.15 |
| 37630 | 17.74 | 17.77 | 17.76 | 17.77 | 17.76 |
| 37635 | 17.75 | 17.77 | 17.77 | 17.77 | 17.77 |
| 37640 | 17.76 | 17.79 | 17.78 | 17.79 | 17.78 |
| 37645 | 17.76 | 17.79 | 17.78 | 17.79 | 17.78 |
| 37650 | 18.21 | 18.21 | 18.21 | 18.21 | 18.21 |
| 37655 | 23.44 | 23.44 | 23.44 | 23.44 | 23.44 |
| 37660 | 26.24 | 26.24 | 26.24 | 26.24 | 26.24 |
| 37665 | 22.43 | 22.43 | 22.43 | 22.43 | 22.43 |
| 37670 | 19.33 | 19.33 | 19.33 | 19.33 | 19.33 |
| 37675 | 30.67 | 30.67 | 30.67 | 30.67 | 30.67 |
| 37680 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58 |
| 37685 | 26.10 | 26.10 | 26.10 | 26.10 | 26.10 |
| 37690 | 24.19 | 24.19 | 24.19 | 24.19 | 24.19 |
| 37695 | 24.67 | 24.67 | 24.67 | 24.67 | 24.67 |
| 37700 | 29.34 | 29.34 | 29.34 | 29.34 | 29.34 |
| 37705 | 26.40 | 26.40 | 26.40 | 26.40 | 26.40 |
| 37710 | 25.23 | 25.23 | 25.23 | 25.23 | 25.23 |
| 37715 | 25.41 | 25.41 | 25.41 | 25.41 | 25.41 |
| 37720 | 29.39 | 29.39 | 29.39 | 29.39 | 29.39 |
| 37725 | 30.92 | 30.92 | 30.92 | 30.92 | 30.92 |
| 37730 | 30.89 | 30.89 | 30.89 | 30.89 | 30.89 |
| 37735 | 25.92 | 25.92 | 25.92 | 25.92 | 25.92 |
| 37740 | 30.44 | 30.44 | 30.44 | 30.44 | 30.44 |
| 37745 | 21.46 | 21.46 | 21.46 | 21.46 | 21.46 |
| 37750 | 31.17 | 31.17 | 31.17 | 31.17 | 31.17 |
| 37755 | 32.61 | 32.61 | 32.61 | 32.61 | 32.61 |
| 37760 | 32.68 | 32.68 | 32.68 | 32.68 | 32.68 |
| 37765 | 34.25 | 34.25 | 34.25 | 34.25 | 34.25 |
| 37770 | 34.30 | 34.30 | 34.30 | 34.30 | 34.30 |
| 37775 | 34.54 | 34.54 | 34.54 | 34.54 | 34.54 |
| 37780 | 34.49 | 34.49 | 34.49 | 34.49 | 34.49 |
| 37785 | 34.57 | 34.57 | 34.57 | 34.57 | 34.57 |
| 37790 | 34.63 | 34.63 | 34.63 | 34.63 | 34.63 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 37795 | 33.98 | 33.98 | 33.98 | 33.98 | 33.98 |
| 37800 | 36.98 | 36.98 | 36.98 | 36.98 | 36.98 |
| 37805 | 36.68 | 36.68 | 36.68 | 36.68 | 36.68 |
| 37810 | 37.77 | 37.77 | 37.77 | 37.77 | 37.77 |
| 37815 | 36.80 | 36.80 | 36.80 | 36.80 | 36.80 |
| 37820 | 19.84 | 19.84 | 19.84 | 19.84 | 19.84 |
| 37825 | 24.18 | 24.18 | 24.18 | 24.18 | 24.18 |
| 37830 | 21.68 | 21.68 | 21.68 | 21.68 | 21.68 |
| 37835 | 21.49 | 21.49 | 21.49 | 21.49 | 21.49 |
| 37840 | 18.56 | 18.56 | 18.56 | 18.56 | 18.56 |
| 37845 | 24.66 | 24.66 | 24.66 | 24.66 | 24.66 |
| 37850 | 29.64 | 29.64 | 29.64 | 29.64 | 29.64 |
| 37855 | 25.32 | 25.32 | 25.32 | 25.32 | 25.32 |
| 37860 | 26.83 | 26.83 | 26.83 | 26.83 | 26.83 |
| 37865 | 30.15 | 30.15 | 30.15 | 30.15 | 30.15 |
| 37870 | 30.68 | 30.68 | 30.68 | 30.68 | 30.68 |
| 37875 | 31.19 | 31.19 | 31.19 | 31.19 | 31.19 |
| 37880 | 23.96 | 23.96 | 23.96 | 23.96 | 23.96 |
| 37885 | 24.08 | 24.08 | 24.08 | 24.08 | 24.08 |
| 37890 | 24.09 | 24.09 | 24.09 | 24.09 | 24.09 |
| 37895 | 28.44 | 28.44 | 28.44 | 28.44 | 28.44 |
| 37900 | 29.51 | 29.51 | 29.51 | 29.51 | 29.51 |
| 37905 | 21.67 | 21.67 | 21.67 | 21.67 | 21.67 |
| 37910 | 21.89 | 21.89 | 21.89 | 21.89 | 21.89 |
| 37915 | 16.04 | 16.12 | 16.11 | 16.12 | 16.11 |
| 37920 | 16.82 | 16.82 | 16.82 | 16.82 | 16.82 |
| 37925 | 19.62 | 19.62 | 19.62 | 19.62 | 19.62 |
| 37930 | 27.69 | 27.69 | 27.69 | 27.69 | 27.69 |
| 37935 | 26.54 | 26.54 | 26.54 | 26.54 | 26.54 |
| 37940 | 24.93 | 24.93 | 24.93 | 24.93 | 24.93 |
| 37945 | 21.96 | 21.96 | 21.96 | 21.96 | 21.96 |
| 37950 | 23.18 | 23.18 | 23.18 | 23.18 | 23.18 |
| 37955 | 25.70 | 25.70 | 25.70 | 25.70 | 25.70 |
| 37960 | 26.52 | 26.52 | 26.52 | 26.52 | 26.52 |
| 37965 | 28.20 | 28.20 | 28.20 | 28.20 | 28.20 |
| 37970 | 28.20 | 28.20 | 28.20 | 28.20 | 28.20 |
| 37975 | 28.20 | 28.20 | 28.20 | 28.20 | 28.20 |
| 37980 | 27.91 | 27.91 | 27.91 | 27.91 | 27.91 |
| 37985 | 26.72 | 26.72 | 26.72 | 26.72 | 26.72 |
| 37990 | 28.51 | 28.51 | 28.51 | 28.51 | 28.51 |
| 37995 | 28.54 | 28.54 | 28.54 | 28.54 | 28.54 |
| 38000 | 34.60 | 34.60 | 34.60 | 34.60 | 34.60 |
| 38005 | 34.60 | 34.60 | 34.60 | 34.60 | 34.60 |
| 38010 | 35.93 | 35.93 | 35.93 | 35.93 | 35.93 |
| 38015 | 20.84 | 20.85 | 20.85 | 20.85 | 20.84 |
| 38020 | 22.20 | 22.20 | 22.20 | 22.20 | 22.20 |
| 38025 | 22.34 | 22.34 | 22.34 | 22.34 | 22.34 |
| 38030 | 22.94 | 22.94 | 22.94 | 22.94 | 22.94 |
| 38035 | 23.16 | 23.16 | 23.16 | 23.16 | 23.16 |
| 38040 | 23.16 | 23.16 | 23.16 | 23.16 | 23.16 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 38045 | 22.15 | 22.15 | 22.15 | 22.15 | 22.15 |
| 38050 | 22.86 | 22.86 | 22.86 | 22.86 | 22.86 |
| 38055 | 21.73 | 21.73 | 21.73 | 21.73 | 21.73 |
| 38060 | 23.38 | 23.38 | 23.38 | 23.38 | 23.38 |
| 38065 | 24.14 | 24.14 | 24.14 | 24.14 | 24.14 |
| 38070 | 27.65 | 27.65 | 27.65 | 27.65 | 27.65 |
| 38075 | 25.91 | 25.91 | 25.91 | 25.91 | 25.91 |
| 38080 | 24.52 | 24.52 | 24.52 | 24.52 | 24.52 |
| 38085 | 29.96 | 29.96 | 29.96 | 29.96 | 29.96 |
| 38090 | 30.21 | 30.21 | 30.21 | 30.21 | 30.21 |
| 38095 | 25.22 | 25.22 | 25.22 | 25.22 | 25.22 |
| 38100 | 25.21 | 25.21 | 25.21 | 25.21 | 25.21 |
| 38105 | 34.27 | 34.27 | 34.27 | 34.27 | 34.27 |
| 38110 | 31.02 | 31.02 | 31.02 | 31.02 | 31.02 |
| 38115 | 33.45 | 33.45 | 33.45 | 33.45 | 33.45 |
| 38120 | 34.90 | 34.90 | 34.90 | 34.90 | 34.90 |
| 38125 | 39.53 | 39.53 | 39.53 | 39.53 | 39.53 |
| 38130 | 36.26 | 36.26 | 36.26 | 36.26 | 36.26 |
| 38135 | 22.95 | 22.95 | 22.95 | 22.95 | 22.95 |
| 38140 | 30.71 | 30.71 | 30.71 | 30.71 | 30.71 |
| 38145 | 36.66 | 36.66 | 36.66 | 36.66 | 36.66 |
| 38150 | 30.09 | 30.09 | 30.09 | 30.09 | 30.09 |
| 38155 | 30.61 | 30.61 | 30.61 | 30.61 | 30.61 |
| 38160 | 23.91 | 23.91 | 23.91 | 23.91 | 23.91 |
| 38165 | 16.75 | 16.75 | 16.75 | 16.75 | 16.75 |
| 38170 | 15.94 | 15.94 | 15.94 | 15.94 | 15.94 |
| 38175P | 33.28 | 33.28 | 33.28 | 33.28 | 33.28 |
| 38180 | 17.74 | 17.77 | 17.76 | 17.77 | 17.76 |
| 38185 | 11.11 | 12.77 | 12.74 | 12.75 | 12.73 |
| 38190 | 21.30 | 21.30 | 21.30 | 21.30 | 21.30 |
| 38195 | 26.70 | 26.70 | 26.70 | 26.70 | 26.70 |
| 38200 | 26.43 | 26.43 | 26.43 | 26.43 | 26.43 |
| 38205 | 27.84 | 27.84 | 27.84 | 27.84 | 27.84 |
| 38210 | 28.58 | 28.58 | 28.58 | 28.58 | 28.58 |
| 38215 | 29.63 | 29.63 | 29.63 | 29.63 | 29.63 |
| 38220 | 29.77 | 29.77 | 29.77 | 29.77 | 29.77 |
| 38295 | 32.06 | 32.06 | 32.06 | 32.06 | 32.06 |
| 38300 | 32.28 | 32.28 | 32.28 | 32.28 | 32.28 |
| 38305 | 32.39 | 32.39 | 32.39 | 32.39 | 32.39 |
| 38310 | 32.43 | 32.43 | 32.43 | 32.43 | 32.43 |
| 38315 | 33.23 | 33.23 | 33.23 | 33.23 | 33.23 |
| 38320 | 33.97 | 33.97 | 33.97 | 33.97 | 33.97 |
| 38325 | 34.30 | 34.30 | 34.30 | 34.30 | 34.30 |
| 38330 | 34.46 | 34.46 | 34.46 | 34.46 | 34.46 |
| 38335 | 34.49 | 34.49 | 34.49 | 34.49 | 34.49 |
| 38340 | 34.55 | 34.55 | 34.55 | 34.55 | 34.55 |
| 38345 | 19.95 | 19.95 | 19.95 | 19.95 | 19.95 |
| 38350 | 20.53 | 20.53 | 20.53 | 20.53 | 20.53 |
| 38355 | 22.87 | 22.87 | 22.87 | 22.87 | 22.87 |
| 38360 | 23.64 | 23.64 | 23.64 | 23.64 | 23.64 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 38365 | 22.57 | 22.57 | 22.57 | 22.57 | 22.57 |
| 38370 | 23.81 | 23.81 | 23.81 | 23.81 | 23.81 |
| 38380 | 23.08 | 23.08 | 23.08 | 23.08 | 23.08 |
| 38385 | 26.67 | 26.67 | 26.67 | 26.67 | 26.67 |
| 38390 | 28.25 | 28.25 | 28.25 | 28.25 | 28.25 |
| 38395 | 31.03 | 31.03 | 31.03 | 31.03 | 31.03 |
| 38400 | 18.27 | 18.28 | 18.28 | 18.28 | 18.28 |
| 38405 | 19.71 | 19.71 | 19.71 | 19.71 | 19.71 |
| 38410 | 19.71 | 19.71 | 19.71 | 19.71 | 19.71 |
| 38415 | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 |
| 38420 | 19.72 | 19.72 | 19.72 | 19.72 | 19.72 |
| 38425 | 31.28 | 31.28 | 31.28 | 31.28 | 31.28 |
| 38430 | 29.12 | 29.12 | 29.12 | 29.12 | 29.12 |
| 38435 | 29.77 | 29.77 | 29.77 | 29.77 | 29.77 |
| 38440 | 29.81 | 29.81 | 29.81 | 29.81 | 29.81 |
| 38445 | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 |
| 38450 | 30.30 | 30.30 | 30.30 | 30.30 | 30.30 |
| 38455 | 30.45 | 30.45 | 30.45 | 30.45 | 30.45 |
| 38460 | 30.44 | 30.44 | 30.44 | 30.44 | 30.44 |
| 38465 | 31.27 | 31.27 | 31.27 | 31.27 | 31.27 |
| 38470 | 29.20 | 29.20 | 29.20 | 29.20 | 29.20 |
| 38475 | 30.17 | 30.17 | 30.17 | 30.17 | 30.17 |
| 38480 | 9.11 | 9.13 | 9.11 | 9.11 | 9.11 |
| 38485 | 9.01 | 9.13 | 9.01 | 9.01 | 9.01 |
| 38490 | 8.81 | 9.13 | 8.81 | 8.82 | 8.81 |
| 38495 | 8.77 | 9.13 | 8.78 | 8.79 | 8.78 |
| 38500 | 8.33 | 8.62 | 8.33 | 8.33 | 8.33 |
| 38505 | 13.04 | 13.04 | 13.04 | 13.04 | 13.04 |
| 38510 | 13.36 | 13.36 | 13.36 | 13.36 | 13.36 |
| 38515 | 14.09 | 14.09 | 14.09 | 14.09 | 14.09 |
| 38520 | 14.41 | 14.41 | 14.41 | 14.41 | 14.41 |
| 38525 | 13.68 | 13.68 | 13.68 | 13.68 | 13.68 |
| 38530 | 13.73 | 13.73 | 13.73 | 13.73 | 13.73 |
| 38535 | 13.84 | 13.84 | 13.84 | 13.84 | 13.84 |
| 38540 | 13.96 | 13.96 | 13.96 | 13.96 | 13.96 |
| 38545 | 12.75 | 12.75 | 12.75 | 12.75 | 12.75 |
| 38550 | 21.33 | 21.33 | 21.33 | 21.33 | 21.33 |
| 38555 | 31.57 | 31.57 | 31.57 | 31.57 | 31.57 |
| 38560 | 31.80 | 31.80 | 31.80 | 31.80 | 31.80 |
| 38565 | 32.78 | 32.78 | 32.78 | 32.78 | 32.78 |
| 38570 | 28.01 | 28.01 | 28.01 | 28.01 | 28.01 |
| 38575 | 28.14 | 28.14 | 28.14 | 28.14 | 28.14 |
| 38580 | 29.51 | 29.51 | 29.51 | 29.51 | 29.51 |
| 38585 | 30.02 | 30.02 | 30.02 | 30.02 | 30.02 |
| 38590 | 19.67 | 19.67 | 19.67 | 19.67 | 19.67 |
| 38595 | 17.31 | 17.31 | 17.31 | 17.31 | 17.31 |
| 38600 | 31.76 | 31.76 | 31.76 | 31.76 | 31.76 |
| 38605 | 31.69 | 31.69 | 31.69 | 31.69 | 31.69 |
| 38610 | 28.15 | 28.15 | 28.15 | 28.15 | 28.15 |
| 38615 | 35.19 | 35.19 | 35.19 | 35.19 | 35.19 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| Node | ECM (ft) | RECM (ft) | PCM 1 (ft) | PCM 2 (ft) | PCM 3 (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 38620 | 25.72 | 25.72 | 25.72 | 25.72 | 25.72 |
| 38625 | 31.18 | 31.18 | 31.18 | 31.18 | 31.18 |
| 38630 | 22.00 | 21.99 | 22.00 | 21.99 | 22.00 |
| 38645 | 26.21 | 26.21 | 26.21 | 26.21 | 26.21 |
| 38650 | 24.72 | 24.72 | 24.72 | 24.72 | 24.72 |
| 39000 | 17.54 | 17.54 | 17.54 | 17.54 | 17.54 |
| 39010 | 20.57 | 20.57 | 20.57 | 20.57 | 20.57 |
| 39050 | 13.69 | 13.69 | 13.69 | 13.69 | 13.69 |
| 39055 | 27.16 | 27.16 | 27.16 | 27.16 | 27.16 |
| 39060 | 30.89 | 30.89 | 30.89 | 30.89 | 30.89 |
| 39065 | 31.12 | 31.12 | 31.12 | 31.12 | 31.12 |
| 39070 | 30.43 | 30.43 | 30.43 | 30.43 | 30.43 |
| 39075 | 29.57 | 29.57 | 29.57 | 29.57 | 29.57 |
| 39080 | 25.78 | 25.78 | 25.78 | 25.78 | 25.78 |
| 39085 | 22.22 | 22.22 | 22.22 | 22.22 | 22.22 |
| 39090 | 40.78 | 40.78 | 40.78 | 40.78 | 40.78 |
| 39095 | 21.86 | 21.86 | 21.86 | 21.86 | 21.86 |
| 39105 | 9.81 | 9.83 | 9.82 | 9.83 | 9.82 |
| 39110 | 7.22 | 7.22 | 7.21 | 7.22 | 7.21 |
| 39115 | 9.21 | 9.21 | 9.21 | 9.21 | 9.21 |
| 39120 | 17.10 | 17.10 | 17.10 | 17.10 | 17.10 |
| 39125 | 34.57 | 34.57 | 34.57 | 34.57 | 34.57 |
| 40127 | 15.45 | 15.45 | 15.45 | 15.45 | 15.45 |
| 40188 | 16.36 | 16.36 | 16.36 | 16.36 | 16.36 |
| 40298 | 13.53 | 13.53 | 13.53 | 13.53 | 13.53 |
| 40622 | 15.22 | 15.22 | 15.22 | 15.22 | 15.22 |
| 40645 | 15.39 | 15.39 | 15.39 | 15.39 | 15.39 |
| 40666 | 22.90 | 22.90 | 22.90 | 22.90 | 22.90 |
| 61400 | 33.52 | 33.52 | 33.52 | 33.52 | 33.52 |
| 61615 | 34.25 | 34.25 | 34.25 | 34.25 | 34.25 |
| 61760 | 34.64 | 34.64 | 34.64 | 34.64 | 34.64 |
| 61810 | 34.15 | 34.15 | 34.15 | 34.15 | 34.15 |
| 62600 | 35.54 | 35.54 | 35.54 | 35.54 | 35.54 |
| 62900 | 37.30 | 37.30 | 37.30 | 37.30 | 37.30 |
| 62940 | 34.48 | 34.48 | 34.48 | 34.48 | 34.48 |
| 64072 | 34.60 | 34.60 | 34.60 | 34.60 | 34.60 |
| 64073 | 34.63 | 34.63 | 34.63 | 34.63 | 34.63 |
| 80790 | 34.92 | 34.92 | 34.92 | 34.92 | 34.92 |
| 80931 | 34.66 | 34.66 | 34.66 | 34.66 | 34.66 |
| MH1 | 12.58 | 12.60 | 12.59 | 12.60 | 12.59 |
| MH2 | 12.57 | 12.60 | 12.58 | 12.60 | 12.58 |
| MH3 | 12.57 | 12.60 | 12.58 | 12.60 | 12.58 |
| MH6 | 12.58 | 12.60 | 12.59 | 12.60 | 12.59 |
| MH7 | 12.58 | 12.60 | 12.59 | 12.60 | 12.59 |
| MH8 | 12.57 | 12.60 | 12.58 | 12.60 | 12.58 |
| MH9 | 12.57 | 12.60 | 12.58 | 12.60 | 12.58 |
| PSF | 13.50 | 13.69 | 13.67 | 13.68 | 13.67 |
| PUMP | 8.16 | 8.33 | 8.16 | 8.16 | 8.16 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## Appendix F: ICPR Input

| MODEL UPDATE SUMMARY WORKSHEET Created by DBF Comparator |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basin: |  |  |  |  | Bayshed: |  |  |  |
| Project Name: |  | PJ1_ECMvRECM |  |  | Sec/Twn/Ran: |  |  |  |
| Modification Type: |  | New Construction Modification of Existing Conditions |  |  |  |  |  |  |
| Modification Date: |  | 7/17/2018 |  | SEU Staff: |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| NAME | BASIN | NODE | PIPE | CHAN | WEIR | X-SECT | $\begin{aligned} & \hline \text { DRP } \\ & \text { STR } \end{aligned}$ | BRIDGE |
| 30384_CHA5 |  |  |  | Addition |  |  |  |  |
| 30384_CHA8 |  |  |  | Addition |  |  |  |  |
| 30384_CHA14 |  |  |  | Addition |  |  |  |  |
| 30384 CHA20 |  |  |  | Addition |  |  |  |  |
| 30384_DAM |  |  |  |  | Addition |  |  |  |
| 30385 |  |  |  | Modification |  |  |  |  |
| 30384 |  |  |  | Deletion |  |  |  |  |
| 30384_STA5 |  | Addition |  |  |  |  |  |  |
| 30384_STA8 |  | Addition |  |  |  |  |  |  |
| 30384 STA14 |  | Addition |  |  |  |  |  |  |
| 30384 |  | Modification |  |  |  |  |  |  |
| 30384_STA20 |  | Addition |  |  |  |  |  |  |
| 30384_XS5 |  |  |  |  |  | Addition |  |  |
| 30384_XS8 |  |  |  |  |  | Addition |  |  |
| 30384_XS14 |  |  |  |  |  | Addition |  |  |
| 30384_XS16 |  |  |  |  |  | Addition |  |  |
| 30384_XS20 |  |  |  |  |  | Addition |  |  |
| 30384_XSDAM |  |  |  |  |  | Addition |  |  |
| 30383 AP |  |  |  |  |  | Modification |  |  |
| NOTES: |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| SKETCH |  |  |  |  |  |  |  |  |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report
Nodes ---------------------- -


EXISTING
Name:
Group:
Comment:

Init Stage (ft):
Warn Stage (ft):

| Stage (ft) | Area (ac) |
| :--- | :--- |
|  |  |

EXISTING
Name:
Group:
Comment:

Init Stage (ft):
Warn Stage (ft):


## EXISTING

|  | CHOOSE ONE |
| :---: | :---: |
| X | Addition |
|  | Modification |
|  | Deletion |

Name:
Group:
Comment:

Init Stage (ft):
Warn Stage (ft):

| Stage (ft) | Area (ac) |
| :--- | :--- |
|  |  |

## REVISED

```
        Name: 30384_STA5
        Group: MIDPHILL
        Comment:
```

            Init Stage (ft): 1.42
            Warn Stage (ft): 6.42
    | Stage (ft) | Area (ac) |
| :--- | :--- |
| No data |  |

REVISED

```
            Name: 30384_STA8
            Group: MIDPHILL
            Comment:
```

                    Init Stage (ft): \(\quad 1.42\)
    | Stage (ft) | Area (ac) |
| ---: | ---: |
| 6 | 0.02 |
| 7 | 0.11 |
| 8 | 0.16 |
| 9 | 0.21 |
| 10 | 0.29 |
| 11 | 0.34 |
| 12 | 0.39 |
| 14.14 | 0.5 |
| 14.64 | 0.79 |
| 15.14 | 1.1 |
| 16.14 | 1.49 |
| 16.64 | 1.74 |
| 17.14 | 1.82 |
| 17.78 | 1.83 |
| 32.78 | 1.83 |

## REVISED

Name: 30384_STA14
Group: MIDPHILL
Comment:

Init Stage (ft): 1.42
Warn Stage (ft): $\quad 6.42$

| Stage (ft) | Area (ac) |
| :--- | :--- |
| No data |  |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


EXISTING
Name:
Group: MIDPHILL
Comment:

Init Stage (ft): 1.42
Warn Stage (ft): $\quad 6.42$

| Stage (ft) | Area (ac) |
| ---: | ---: |
| -3.38 | 0.01 |
| 0.13 | 0.01 |
| 0.14 | 0.01 |
| 0.64 | 0.82 |
| 1.64 | 0.92 |
| 2.14 | 0.95 |
| 2.64 | 0.98 |
| 3.14 | 1.02 |
| 3.64 | 1.05 |
| 4.14 | 1.09 |
| 5.14 | 1.21 |
| 5.64 | 1.27 |
| 6.14 | 1.31 |
| 6.64 | 1.38 |
| 7.14 | 1.47 |
| 8.14 | 1.82 |
| 8.64 | 1.94 |
| 9.14 | 2.19 |
| 9.64 | 2.51 |
| 10.64 | 3.58 |
| 11.14 | 4.47 |
| 11.64 | 5.37 |
| 13.14 | 8.68 |
| 14.14 | 10.07 |
| 14.64 | 10.78 |
| 15.14 | 11.66 |
| 15.64 | 12.48 |
| 16.64 | 13.62 |
| 17.14 | 14.12 |
| 17.64 | 14.54 |
| 18.24 | 14.57 |
| 33.24 | 14.57 |
|  |  |

## EXISTING

CHOOSE ONE Addition Modification

Name:
Group:
Comment:

Init Stage (ft):
Warn Stage (ft):

## REVISED

Name: 30384_STA16
Group: MIDPHILL
Comment:

Init Stage (ft): 1.42
Warn Stage (ft): 6.42

| Stage (ft) | Area (ac) |
| ---: | ---: |
| 13.14 | 2.38 |
| 14.14 | 3.77 |
| 14.64 | 4.48 |
| 15.14 | 5.36 |
| 15.64 | 6.18 |
| 16.64 | 7.32 |
| 17.14 | 7.82 |
| 17.64 | 8.24 |
| 18.24 | 8.27 |
| 33.24 | 8.27 |

## REVISED

Name: 30384_STA20
Group: MIDPHILL
Comment:

Init Stage (ft): 1.42
Warn Stage (ft): $\quad 6.42$

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


REVISED
$\begin{aligned} \text { Name: } & \text { 30384_XS5 } \\ \text { Group: } & \text { MIDPHILL } \\ \text { Comment: } & \end{aligned}$

X-sta (ft) Y-ele.(ft)

|  | $n$ |  |
| ---: | ---: | ---: |
| 950 | 10.58 | 0.08 |
| 960 | 8.42 | 0.08 |
| 970 | 3.78 | 0.08 |
| 980 | 0.11 | 0.04 |
| 990 | -2.5 | 0.04 |
| 1000 | -2.76 | 0.04 |
| 1010 | -2.76 | 0.04 |
| 1020 | -2.71 | 0.04 |
| 1030 | -2.69 | 0.04 |
| 1040 | -2.59 | 0.04 |
| 1050 | -2.27 | 0.04 |
| 1060 | -2.04 | 0.04 |
| 1070 | -1.14 | 0.04 |
| 1080 | -0.49 | 0.04 |
| 1090 | -0.46 | 0.04 |
| 1100 | 0.13 | 0.04 |
| 1110 | 1.65 | 0.08 |
| 1120 | 2.4 | 0.08 |
| 1130 | 5 | 0.08 |
| 1140 | 6.45 | 0.08 |

REVISED
$\begin{aligned} \text { Name: } & 30384 \text { _XS8 } \\ \text { Group: } & \text { MIDPHILL } \\ \text { Comment: } & \end{aligned}$

| X-sta (ft) | Y-ele.(ft) | Manning's |
| ---: | ---: | ---: |
| 940 | 11.03 | 0.08 |
| 950 | 9.89 | 0.08 |
| 960 | 8.28 | 0.08 |
| 970 | 5.47 | 0.08 |
| 980 | 2.68 | 0.08 |
| 990 | 0.38 | 0.04 |
| 1000 | -1.54 | 0.04 |
| 1010 | -2.79 | 0.04 |
| 1020 | -2.48 | 0.04 |
| 1030 | -2.44 | 0.04 |
| 1040 | -2.1 | 0.04 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| 1050 | -1.62 | 0.04 |
| :--- | ---: | ---: |
| 1060 | -1.28 | 0.04 |
| 1070 | -1.31 | 0.04 |
| 1080 | -1.26 | 0.04 |
| 1090 | -1.31 | 0.04 |
| 1100 | -1.17 | 0.04 |
| 1110 | -1.2 | 0.04 |
| 1120 | -1.06 | 0.04 |
| 1130 | -0.54 | 0.04 |
| 1140 | 1.55 | 0.08 |
| 1150 | 4.5 | 0.08 |
| 1160 | 5.32 | 0.08 |

REVISED
Name: 30384_XS14
Group: MIDPHILL
Comment:
X-sta (ft) Y-ele.(ft)

|  | Yt) | Y-ele.(ft) |
| ---: | ---: | ---: |
|  | Manning's |  |
| 920 | 12.82 |  |
| n | 0.08 |  |
| 930 | 11.57 | 0.08 |
| 940 | 10.26 | 0.08 |
| 950 | 9.36 | 0.08 |
| 960 | 9.06 | 0.08 |
| 970 | 8.78 | 0.08 |
| 980 | 8.12 | 0.08 |
| 990 | 6.62 | 0.08 |
| 1000 | 3.01 | 0.08 |
| 1010 | 0.37 | 0.04 |
| 1020 | -2.5 | 0.04 |
| 1030 | -2.78 | 0.04 |
| 1040 | -2.57 | 0.04 |
| 1050 | -2.14 | 0.04 |
| 1060 | -1.72 | 0.04 |
| 1070 | -1.82 | 0.04 |
| 1080 | -1.72 | 0.04 |
| 1090 | -1.42 | 0.04 |
| 1100 | -1.75 | 0.04 |
| 1110 | -2.21 | 0.04 |
| 1120 | -2.59 | 0.04 |
| 1130 | -2.48 | 0.04 |
| 1140 | -2.6 | 0.04 |
| 1150 | -2.57 | 0.04 |
| 1160 | -2.47 | 0.04 |
| 1170 | -1.1 | 0.04 |
| 1180 | -0.41 | 0.04 |
| 1190 | 1.61 | 0.08 |
| 1200 | 5.5 | 0.08 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| CHOOSE ONE |  | Name: <br> Group: <br> Comment: |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Modification | X-sta (ft) | Y-ele.(ft) | Manning's <br> n |
| Deletion |  |  |  |  |

REVISED
Name: 30384_XS16
Group: MIDPHILL
Comment:

X-sta (ft) Y-ele.(ft) (ft)
$950 \quad 11.66$

| 960 | 11.49 | 0.08 |
| :--- | :--- | :--- |
| 970 | 11.34 | 0.08 |

$980 \quad 11.12 \quad 0.08$
$\begin{array}{rrr}990 & 10.82 & 0.08 \\ 1000 & 9.37 & 0.08\end{array}$
$1010 \quad 8.68 \quad 0.08$
$1020 \quad 7.46 \quad 0.08$
$1030 \quad 6.36 \quad 0.08$
$1040 \quad 5.53 \quad 0.08$
$1050 \quad 4.99 \quad 0.08$
$\begin{array}{lll}1060 & 4.13 & 0.08 \\ 1070 & 3.93 & 0.08\end{array}$
$1080 \quad 3.69 \quad 0.08$
$1090 \quad 3.27 \quad 0.08$
$\begin{array}{lll}1100 & 2.99 & 0.08 \\ 1110 & 2.82 & 0.08\end{array}$
$1120 \quad 2.72 \quad 0.08$
$1130 \quad 2.67 \quad 0.08$
$1140 \quad 2.57 \quad 0.08$
$1150 \quad 2.43 \quad 0.08$
$1160 \quad 2.27 \quad 0.08$
$1170 \quad 2.09 \quad 0.08$
$1180 \quad 1.8 \quad 0.08$
$1190 \quad 1.46 \quad 0.04$
$1200 \quad 1.22 \quad 0.04$
$1210 \quad 1 \quad 0.04$
$1220 \quad 1 \quad 0.04$
$\begin{array}{lll}1230 & 1.06 & 0.04 \\ 1240 & 0.22 & 0.04\end{array}$
$\begin{array}{lrr}1250 & -1.1 & 0.04 \\ 1260 & -1.79 & 0.04\end{array}$
1270 -2.31 0.04
1280 -2.78 0.04
1290 -2.63 0.04
1300 -2.36 0.04
$1310 \quad-2.37 \quad 0.04$
$\begin{array}{lll}1320 & -2.27 & 0.04 \\ 1330 & -1.88 & 0.04\end{array}$
$1340 \quad-0.21 \quad 0.04$

| 1350 | 2.6 | 0.04 |
| :--- | ---: | ---: |
| 1360 | 0.16 | 0.08 |


| 1360 | 6.16 | 0.08 |
| :--- | :--- | :--- |
| 1370 | 7.62 | 0.08 |


| 1370 | 7.62 | 0.08 |
| :--- | :--- | :--- |
| 1380 | 8.25 | 0.08 |

$1390 \quad 8.53 \quad 0.08$

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

1400

EXISTING


Name: Group: Comment: X-sta (ft) Y-ele.(ft)

Ma


REVISED
Name: 30384_XS20
Group: MIDPHILL
Comment:

| X-sta (ft) | Y-ele.(ft) |  |
| ---: | ---: | ---: |
|  | Manning's |  |
| 1600 | 10.7 | 0.08 |
| 1610 | 8.7 | 0.08 |
| 1620 | 7.33 | 0.08 |
| 1630 | 5.52 | 0.08 |
| 1640 | 3.45 | 0.08 |
| 1650 | 0.45 | 0.04 |
| 1660 | -0.67 | 0.04 |
| 1670 | -0.81 | 0.04 |
| 1680 | -1.92 | 0.04 |
| 1690 | -2.22 | 0.04 |
| 1700 | -2.61 | 0.04 |
| 1710 | -2.83 | 0.04 |
| 1720 | -3.07 | 0.04 |
| 1730 | -3.5 | 0.04 |
| 1740 | -2.42 | 0.04 |
| 1750 | 2.83 | 0.08 |
| 1760 | 6.12 | 0.08 |
| 1770 | 7.36 | 0.08 |
| 1780 | 8.16 | 0.08 |
| 1790 | 8.4 | 0.08 |

## REVISED

Name: 30384_XSDAM
Group: MIDPHILL
Comment:

| X-sta (ft) | Y-ele.(ft) | Manning's |  |
| ---: | ---: | ---: | :---: |
| 1060 | 1.18 | 0.04 |  |
| 1161 | 1.19 | 0.045 |  |
| 1161 | -2.76 | 0.045 |  |
| 1171 | -2.76 | 0.045 |  |
| 1171 | 1.27 | 0.045 |  |
| 1172 | 1.27 | 0.045 |  |
| 1172 | -3.39 | 0.045 |  |
| 1181 | -3.39 | 0.045 |  |
| 1181 | 1.2 | 0.045 |  |
| 1182 | 1.2 | 0.045 |  |
| 1182 | -2.62 | 0.045 |  |
| 1191 | -2.62 | 0.045 |  |
| 1191 | 1.2 | 0.045 |  |
| 1192 | 1.2 | 0.045 |  |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| 1192 | -2.5 | 0.045 |
| ---: | ---: | ---: | ---: |
| 1201 | -2.5 | 0.045 |
| 1201 | 1.2 | 0.045 |
| 1202 | 1.2 | 0.045 |
| 1202 | -2 | 0.045 |
| 1211 | -2 | 0.045 |
| 1211 | 1.2 | 0.045 |
| 1212 | 1.2 | 0.045 |
| 1212 | -1.28 | 0.045 |
| 1221 | -1.28 | 0.045 |
| 1221 | 7.72 | 0.045 |


| CHOOSE ONE |  |
| :---: | :---: |
| X | Addition |
| - | Modification |
|  | Deletion |


| EXISTING |  |  |
| :---: | :---: | :---: |
| Name: | 30383AP |  |
| Group: | MIDPHILL |  |
| Comment: |  |  |
| X-sta (ft) | Y-ele.(ft) | Manning's <br> n |
| 874.9 | 25.92 | 0.08 |
| 875 | 13.92 | 0.08 |
| 875.1 | 10.92 | 0.08 |
| 900 | 9.92 | 0.08 |
| 914 | 9.82 | 0.08 |
| 928 | 9.62 | 0.08 |
| 939 | 0.02 | 0.08 |
| 970 | -4.98 | 0.035 |
| 1000 | -6.58 | 0.035 |
| 1022 | -7.18 | 0.035 |
| 1050 | -0.78 | 0.035 |
| 1063 | 7.52 | 0.04 |
| 1079 | 8.02 | 0.06 |
| 1120 | 8.92 | 0.06 |
| 1124.9 | 10.92 | 0.06 |
| 1125 | 13.92 | 0.06 |
| 1125.1 | 25.92 | 0.06 |

REVISED
$\begin{array}{ll}\text { Name: } & \text { 30383AP } \\ \text { Group: } & \text { MIDPHILL }\end{array}$
Comment:

| X-sta (ft) | Y-ele.(ft) | Manning's |  |
| ---: | ---: | ---: | :---: |
|  | n |  |  |
| 874.9 | 25.92 | 0.08 |  |
| 875 | 13.92 | 0.08 |  |
| 875.1 | 10.92 | 0.08 |  |
| 912.5 | 9.4 | 0.08 |  |

$917.6 \quad 9.2 \quad 0.08$ $\begin{array}{lll}921 & 8.9 & 0.08\end{array}$ $931 \quad 4.9 \quad 0.08$

| 932.5 | 4.1 | 0.08 |
| :--- | ---: | ---: |
| 938.4 | 3 | 0.08 |


| 945.5 | 0.5 | 0.04 |
| :--- | :--- | :--- |

$952.2 \quad-1.2 \quad 0.04$
$957.1 \quad-1.9 \quad 0.04$
$962 \quad-1.9 \quad 0.04$
$966.4 \quad-1.6 \quad 0.04$
$972 \quad-2 \quad 0.04$
$977.3 \quad-2.4 \quad 0.04$
$\begin{array}{lll}983.2 & -4.6 & 0.04 \\ 987.3 & -3.1 & 0.04\end{array}$
$\begin{array}{lll}987.3 & -3.1 & 0.04 \\ 992.2 & -3.9 & 0.04\end{array}$
997 -4.8 0.04
$1002.2 \quad-4.1 \quad 0.04$
$1007.1 \quad-4.1 \quad 0.04$
$1012.1 \quad-4.2 \quad 0.04$
$1017.5 \quad-6.7 \quad 0.04$
$1022.5 \quad-6.4 \quad 0.04$
1027 -4.1 0.04
1032.7 -6.3 0.04
$1037.5 \quad-6.9 \quad 0.04$
$1042.3 \quad-5.9 \quad 0.04$
1047 -5.8 0.04
$\begin{array}{lrl}1051.6 & -4 & 0.04 \\ 1056.5 & -3.5 & 0.04\end{array}$

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| 1061.4 | -2.9 | 0.04 |
| ---: | ---: | ---: |
| 1066.9 | -2.1 | 0.04 |
| 1071.9 | -1.9 | 0.04 |
| 1076.3 | -1.8 | 0.04 |
| 1081.8 | -1.6 | 0.04 |
| 1085.8 | -1.5 | 0.04 |
| 1090 | 2.55 | 0.04 |
| 1100 | 4.63 | 0.08 |
| 1110 | 6.47 | 0.08 |
| 1120 | 8.92 | 0.08 |
| 1124.9 | 10.92 | 0.08 |
| 1125 | 13.92 | 0.08 |
| 1125.1 | 25.92 | 0.08 |



Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

Inlet Cntrl

## Spec:

Stabilizer Option:

## EXISTING

$\square$

## Name:

Group:
From Node: To Node: Length (ft): Count:

Geometry:
Upstream Downstream Invert (ft):
TclplnitZ (ft):
Manning's n :
Tclip (ft):
Bclip (ft):
Main Xsec:
AxEl1 (ft):
Aux Xsec1:
AxEl2 (ft):
Aux Xsec2: Twidth (ft): Depth (ft): Bwidth (ft):
LSdSIp (h/v):
RSdSIp (h/v):
Equation:
Flow:
Eddy Contrac Coef:
Eddy Expans Coef:
Entrance Loss Coef:
Exit Loss Coef:
Outlet Cntrl
Spec: Inlet Cntrl Spec: Stabilizer Option:

## EXISTING

Name:
Group:
From Node: To Node:

```
Inlet Cntrl Spec: Use dn
Stabilizer Option: No Stabilization
```


## REVISED

Name: 30384_CHA8
Group: MIDPHILL
From Node: 30384_STA8
To Node: 30384_STA5
Length (ft): 300
Count: 1

|  | Upstream | Downstream |
| ---: | :--- | :--- |
| Geometry: | Irregular | Irregular |
| Invert (ft): | -2.79 | -2.76 |
| TclpInitZ (ft): | 97.92 | 97.922 |

Manning's n :
Tclip (ft):
Bclip (ft):
Main Xsec: 30384_XS8 30384_XS5
AxEl1 (ft): 0
Aux Xsec1:
AxEl2 (ft): 00
Aux Xsec2:
Twidth (ft):
Depth (ft):
Bwidth (ft):
LSdSIp (h/v):
RSdSIp (h/v):
Equation: Average Conveyance
Flow: Both
Eddy Contrac 0.1
Coef:
Eddy Expans 0.3
Coef:
Entrance Loss 0
Coef:
Exit Loss Coef: 0
Outlet Cntrl Spec: Use dc or tw
Inlet Cntrl Spec: Use dc
Stabilizer Option: No Stabilization

## REVISED

Name: 30384_CHA14
Group: MIDPHILL
From Node: 30384_STA14
To Node: 30384_STA8

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

$\qquad$
Geometry: Invert (ft):
TclplnitZ (ft):
Manning's n:
Tclip (ft):
Bclip (ft):
Main Xsec:
AxEl1 (ft):
Aux Xsec1:
AxEl2 (ft):
Aux Xsec2:
Twidth (ft):
Depth (ft):
Bwidth (ft):
LSdSIp (h/v):
RSdSIp (h/v):
Equation:
Flow: Eddy Contrac Coef:

Eddy Expans Coef:
Entrance Loss Coef:
Exit Loss Coef: Outlet Cntrl Spec: Inlet Cntrl Spec:
Stabilizer Option:

## EXISTING

| CHOOSE |
| :---: |
| ONE |
| $\times$ |
| Addition |
| Modification |
| Deletion |

Name:
Group:
From Node: To Node: Length (ft): Count:

|  | Upstream Downstream |
| ---: | :--- |
| Geometry: |  |
| Invert (ft): |  |
| TclpInitZ (ft): |  |
| Manning's n : |  |
| Tclip (ft): |  |
| Bclip (ft): |  |
| Main Xsec: |  |

Upstream Downstream

Length (ft): 500
Count: 1


Upstream
Geometry: Irregular
Invert (ft): -2.78
TclplnitZ (ft): 97.92
Manning's n :
Tclip (ft):
Bclip (ft):
Main Xsec: 30384_XS14 30384_XS8
AxEl1 (ft): 0
Aux Xsec1:
AxEl2 (ft):
Aux Xsec2:
Twidth (ft):
Depth (ft):
SdSIp (h/v):
RSdSIp (h/v):
Equation: Average Conveyance
Flow: Both
0.3

Coef:
0
Outlet Cntrl Spec: Use dc or tw
Inlet Cntrl Spec: Use dc
Stabilizer Option: No Stabilization

## REVISED

Name: 30384_CHA20
Group: MIDPHILL
From Node: 30384_STA20
To Node: 30384_STA16
Length (ft): 500
Count: 1

|  | Upstream | Downstream <br> Irregular |
| ---: | :--- | :--- |
| Geometry: | Irregular | -2.78 |
| Invert (ft): | -3.5 | 97.92 |
| TclpInitZ (ft): | 97.92 |  |
| Manning's n: |  |  |
| Tclip (ft): |  |  |
| Bclip (ft): |  |  |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

AxEl1 (ft):
Aux Xsec1:
AxEl2 (ft):
Aux Xsec2:
Twidth (ft):
Depth (ft):
Bwidth (ft):
LSdSIp (h/v):
RSdSIp (h/v):
Equation:
Flow:
Eddy Contrac Coef:
Eddy Expans Coef:
Entrance Loss Coef:
Exit Loss Coef:
Outlet Cntrl
Spec:
Inlet Cntrl
Spec:
Stabilizer
Option:

## EXISTING

| CHOOSE |
| :---: |
| ONE |
| $-\quad$ Addition |
| $\times$ |
| Modification |
| Deletion |

Name: 30385
Group: MIDPHILL
From Node: 30385 To Node: 30384 Length (ft): 764 Count: 1

| Geometry: | Upstream <br> Irregular | Downstream <br> Irregular |
| ---: | :--- | :--- |
| Invert (ft): | -7.08 | -3.38 |
| TclpInitZ (ft): | 9997.92 | 9997.92 |
| Manning's n: |  |  |
| Tclip (ft): |  |  |
| Bclip (ft): |  |  |
| Main Xsec: | 30386 EX | 30384 |
| AxEl1 (ft): | 0 | 0 |
| Aux Xsec1: |  |  |
| AxEl2 (ft): | 0 | 0 |
| Aux Xsec2: |  |  |
| Twidth (ft): |  |  |
| Depth (ft): |  |  |
| Bwidth (ft): |  |  |
| LSdSIp (h/v): |  |  |
| RSdSIp (h/v): | Average Conveyance |  |
| Equation: | A |  |
| Flow: | Both |  |

AxEl1 (ft): 0
0
Aux Xsec1:
AxEl2 (ft):
Aux Xsec2:
Twidth (ft):
Depth (ft):
Bwidth (ft):
LSdSIp (h/v):
RSdSIp (h/v):
Equation: Average Conveyance
Flow: Both
Eddy Contrac 0.1
Coef:
Eddy Expans 0.3
Coef:
Entrance Loss 0
Coef:
Exit Loss Coef: 0
Outlet Cntrl Spec: Use dc or tw
Inlet Cntrl Spec: Use dc
Stabilizer Option: No Stabilization

REVISED
Name: 30385

Group: MIDPHILL
From Node: 30385
To Node: 30384_STA20
Length (ft): 150
Count: 1

| Geometry: | Upstream <br> Irregular | Downstream <br> Irregular |
| ---: | :--- | :--- |
| Invert (ft): | -7.08 | -3.5 |
| TclpInitZ (ft): | 97.92 | 97.92 |
| Manning's n: |  |  |
| Tclip (ft): |  |  |
| Bclip (ft): |  |  |
| Main Xsec: | 30386 EX | $30384 \_$XS20 |
| AxEI1 (ft): | 0 | 0 |
| Aux Xsec1: |  |  |
| AxEI2 (ft): | 0 | 0 |
| Aux Xsec2: |  |  |
| Twidth (ft): |  |  |
| Depth (ft): |  |  |
| Bwidth (ft): |  |  |
| LSdSIp (h/v): |  |  |
| RSdSIp (h/v): |  |  |
| Equation: | Average Conveyance |  |
| Flow: | Both |  |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

| Eddy Contrac Coef: | 0.1 |
| ---: | :--- | :--- |
| Eddy Expans Coef: | 0.3 |
| Entrance Loss Coef: | 0 |
| Exit Loss Coef: | 0 |
| Outlet Cntrl | Use dc or tw |
| Spec: |  |
| Inlet Cntrl | Use dn |
| Spec: |  |
| Stabilizer | No Stabilization |
| Option: |  |


| Eddy Contrac | 0.1 |
| ---: | :--- |
| Coef: |  |
| Eddy Expans | 0.3 |
| Coef: |  |
| Entrance Loss | 0 |
| Coef: |  |
| Exit Loss Coef: | 0 |
| Outlet Cntrl Spec: | Use dc or tw |
| Inlet Cntrl Spec: | Use dn |
| Stabilizer Option: | No Stabilization |

## EXISTING

$\qquad$ Addition
Deletion

Name: 30384
Group: MIDPHILL
From Node: 30384 To Node: 30383
Length (ft): 900
Count: 1

| Geometry: <br> Invert (ft): | Upstream | Downstream |
| :---: | :---: | :---: |
|  | Irregular | Irregular |
|  | -3.38 | -7.18 |
| TclplnitZ (ft): | 9997.92 | 9997.92 |
| Manning's n: |  |  |
| Tclip (ft): |  |  |
| Bclip (ft): |  |  |
| Main Xsec: | 30384 | 30383AP |
| AxEl1 (ft): | 0 | 0 |
| Aux Xsec1: |  |  |
| AxEl2 (ft): | 0 | 0 |
| Aux Xsec2: |  |  |
| Twidth (ft): |  |  |
| Depth (ft): |  |  |
| Bwidth (ft): |  |  |
| LSdSIp (h/v): |  |  |
| RSdSIp (h/v): |  |  |
| Equation: | Average Conveyance |  |
| Flow: | Both |  |
| Eddy Contrac Coef: | 0.1 |  |
| Eddy Expans Coef: | 0.3 |  |
| Entrance Loss Coef: | 0 |  |
| Exit Loss Coef: | 0 |  |
| Outlet Cntrl | Use dc or tw |  |
| Spec: |  |  |
| Inlet Cntrl | Use dn |  |
| Spec: |  |  |
| Stabilizer | No Stabilization |  |

## REVISED

Name:
Group:
From Node:
To Node:
Length (ft):
Count:

Upstream Downstream
Geometry: Invert (ft):
TclpInitZ (ft):
Manning's n :
Tclip (ft):
Bclip (ft):
Main Xsec:
AxEl1 (ft):
Aux Xsec1:
AxEl2 (ft):
Aux Xsec2:
Twidth (ft):
Depth (ft):
Bwidth (ft):
LSdSIp (h/v):
RSdSIp (h/v):
Equation:
Flow:
Eddy Contrac
Coef:
Eddy Expans
Coef:
Entrance Loss Coef:
Exit Loss Coef:
Outlet Cntrl Spec:
Inlet Cntrl Spec:
Stabilizer Option:

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

|  | EXISTING | REVIS |  |
| :---: | :---: | :---: | :---: |
| CHOOSE ONE | Name: | Name: | 30384_DAM |
|  | Group: | Group: | MIDPHILL |
| $X$ Addition | From Node: | From Node: | 30384_STA16 |
|  | To Node: | To Node: | 30384_STA14 |
| Modification | Count: | Count: | 1 |
|  | Type: | Type: | Vertical: Mavis Equation |
| Deletion | Xsec Name: | Xsec Name: | 30384_XSDAM |
|  | Invert (ft): | Invert (ft): | -3.39 |
|  | Control Elev (ft): | Control Elev (ft): | 1.2 |
|  | Struct Opening Dim (ft): | Struct Opening Dim (ft): | 9999 |
|  | Bottom Clip (in): | Bottom Clip (in): | 0 |
|  | Top Clip (in): | Top Clip (in): | 0 |
|  | Weir Discharge Coef: | Weir Discharge Coef: | 3.2 |
|  | Orifice Discharge Coef: | Orifice Discharge Coef: | 0.6 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Cross Sections

| CHOOSE ONE |  |
| :---: | :---: |
| $\times$ | Addition |
| $\times$ | Modification |
| - | Deletion |

EXISTING
Name: 30384_XS5
Group: MIDPHILL
Comment:

| X-sta (ft) | Y-ele.(ft) | Manning's |
| ---: | ---: | :---: |
| 950 | 10.58 | n |
| 960 | 8.42 | 0.08 |
| 970 | 3.78 | 0.08 |
|  |  | 0.08 |

## REVISED

Name: 30384_XS5
Group: MIDPHILL Comment:

| X-sta (ft) | Y-ele.(ft) | Manning's |  |
| ---: | ---: | ---: | :---: |
| 950 | 10.58 | n |  |
| 960 | 8.42 | 0.08 |  |
| 970 | 3.79 | 0.08 |  |
|  |  |  |  |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| 980 | 0.11 | 0.04 | 980 | 1.08 |
| ---: | ---: | ---: | ---: | ---: |
| 990 | -2.5 | 0.04 | 990 | -0.7 |
| 1000 | -2.76 | 0.04 | 1000 | -1.35 |
| 1010 | -2.76 | 0.04 | 1010 | -1.96 |
| 1020 | -2.71 | 0.04 | 1020 | -2.64 |
| 1030 | -2.69 | 0.04 | 1030 | -3.3 |
| 1040 | -2.59 | 0.04 | 1040 | -3.53 |
| 1050 | -2.27 | 0.04 | 1050 | -3.54 |
| 1060 | -2.04 | 0.04 | 1060 | -3.48 |
| 1070 | -1.14 | 0.04 | 1070 | -3.28 |
| 1080 | -0.49 | 0.04 | 1080 | -2.48 |
| 1090 | -0.46 | 0.04 | 1090 | -1.78 |
| 1100 | 0.13 | 0.04 | 1100 | -0.03 |
| 1110 | 1.65 | 0.08 | 1110 | 0.04 |
| 1120 | 2.4 | 0.08 | 1120 | 0.04 |
| 1130 | 5 | 0.08 | 1130 | 0.04 |
| 1140 | 6.45 | 0.08 | 1140 | 6.04 |
| 10 |  |  | 5.04 | 0.04 |
|  |  |  |  | 0.08 |

## EXISTING



Comment:
X-sta (ft)

Name: 30384_XS8 Group: MIDPHILL

|  | (ft) | Y-ele.(ft) |
| ---: | ---: | ---: |
| Manning's |  |  |
| 940 | 11.03 | 0.08 |
| 950 | 9.89 | 0.08 |
| 960 | 8.28 | 0.08 |
| 970 | 5.47 | 0.08 |
| 980 | 2.68 | 0.08 |
| 990 | 0.38 | 0.04 |
| 1000 | -1.54 | 0.04 |
| 1010 | -2.79 | 0.04 |
| 1020 | -2.48 | 0.04 |
| 1030 | -2.44 | 0.04 |
| 1040 | -2.1 | 0.04 |
| 1050 | -1.62 | 0.04 |
| 1060 | -1.28 | 0.04 |
| 1070 | -1.31 | 0.04 |
| 1080 | -1.26 | 0.04 |
| 1090 | -1.31 | 0.04 |
| 1100 | -1.17 | 0.04 |
| 1110 | -1.2 | 0.04 |
| 1120 | -1.06 | 0.04 |
| 1130 | -0.54 | 0.04 |
| 1140 | 1.55 | 0.08 |
| 1150 | 4.5 | 0.08 |
| 1160 | 5.32 | 0.08 |

## REVISED

Name: 30384_XS8
Group: MIDPHILL
Comment:

| X-sta (ft) | Y-ele.(ft) | Manning's |
| ---: | ---: | ---: |
|  | n |  |
| 940 | 11.03 | 0.08 |
| 950 | 9.89 | 0.08 |
| 960 | 8.28 | 0.08 |
| 970 | 5.47 | 0.08 |
| 980 | 3.35 | 0.08 |
| 990 | 1.55 | 0.08 |
| 1000 | 0.03 | 0.04 |
| 1010 | -0.97 | 0.04 |
| 1020 | -1.97 | 0.04 |
| 1030 | -2.97 | 0.04 |
| 1040 | -3.5 | 0.04 |
| 1050 | -3.83 | 0.04 |
| 1060 | -4 | 0.04 |
| 1070 | -4 | 0.04 |
| 1080 | -3.99 | 0.04 |
| 1090 | -3.07 | 0.04 |
| 1100 | -2.07 | 0.04 |
| 1110 | -1.07 | 0.04 |
| 1120 | -0.07 | 0.04 |
| 1130 | 0.93 | 0.04 |
| 1140 | 1.98 | 0.08 |
| 1150 | 4.5 | 0.08 |
| 1160 | 5.32 | 0.08 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report


EXISTING
Name: 30384_XS14
Group: MIDPHILL
Comment:

| X-sta (ft) | Y-ele.(ft) | Manning's <br> n |
| :---: | :---: | :---: |
| 920 | 12.82 | 0.08 |
| 930 | 11.57 | 0.08 |


| 940 | 10.26 | 0.08 |
| ---: | ---: | ---: |
| 950 | 9.36 | 0.08 |

$960 \quad 9.06 \quad 0.08$
$970 \quad 8.78 \quad 0.08$
$\begin{array}{lll}980 & 8.12 & 0.08\end{array}$
$\begin{array}{lll}990 & 6.62 & 0.08 \\ 1000 & 3.01 & 0.08\end{array}$
$\begin{array}{lll}1000 & 3.01 & 0.08 \\ 1010 & 0.37 & 0.04\end{array}$
$1020 \quad-2.5 \quad 0.04$
1030 -2.78 0.04
$1040 \quad-2.57 \quad 0.04$
$1050 \quad-2.14 \quad 0.04$
$1060 \quad-1.72 \quad 0.04$
1070 -1.82 0.04
$1080 \quad-1.72 \quad 0.04$
1090 -1.42 0.04
$1100 \quad-1.75 \quad 0.04$
$1110 \quad-2.21 \quad 0.04$
1120 -2.59 0.04
1130 -2.48 0.04
$1140 \quad-2.6 \quad 0.04$
$1150 \quad-2.57 \quad 0.04$
$1160 \quad-2.47 \quad 0.04$
1170 -1.1 0.04
$1180 \quad-0.41 \quad 0.04$
$1190 \quad 1.61 \quad 0.08$
$1200 \quad 5.5 \quad 0.08$

EXISTING


Name: 30384_XS16
Group: MIDPHILL
Comment:

| X-sta (ft) | Y-ele.(ft) | Manning's |
| ---: | ---: | :---: |
|  | n |  |
| 950 | 11.66 | 0.08 |
| 960 | 11.49 | 0.08 |
| 970 | 11.34 | 0.08 |
| 980 | 11.12 | 0.08 |
| 990 | 10.82 | 0.08 |
| 1000 | 9.37 | 0.08 |

## REVISED

Name:
Group:
Comment:

X-sta (ft) Y-ele.(ft) Manning's n

## REVISED

Name: 30384_XS16
Group: MIDPHILL
Comment:

| X-sta (ft) | Y-ele.(ft) | Manning's |  |
| ---: | ---: | :---: | :---: |
| 960 | 11.49 | 0.08 |  |
| 970 | 11.23 | 0.08 |  |
| 980 | 11.01 | 0.08 |  |
| 990 | 10.67 | 0.08 |  |
| 1000 | 10.22 | 0.08 |  |
| 1010 | 9.75 | 0.08 |  |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| 1010 | 8.68 | 0.08 | 1020 | 9.37 | 0.08 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 1020 | 7.46 | 0.08 | 1030 | 8.69 | 0.08 |
| 1030 | 6.36 | 0.08 | 1040 | 8.14 | 0.08 |
| 1040 | 5.53 | 0.08 | 1050 | 7.89 | 0.08 |
| 1050 | 4.99 | 0.08 | 1060 | 7.28 | 0.08 |
| 1060 | 4.13 | 0.08 | 1070 | 6.59 | 0.08 |
| 1070 | 3.93 | 0.08 | 1080 | 5.89 | 0.08 |
| 1080 | 3.69 | 0.08 | 1090 | 5.36 | 0.08 |
| 1090 | 3.27 | 0.08 | 1100 | 4.75 | 0.08 |
| 1100 | 2.99 | 0.08 | 1110 | 4.25 | 0.08 |
| 1110 | 2.82 | 0.08 | 1120 | 3.9 | 0.08 |
| 1120 | 2.72 | 0.08 | 1130 | 3.58 | 0.08 |
| 1130 | 2.67 | 0.08 | 1140 | 3.5 | 0.08 |
| 1140 | 2.57 | 0.08 | 1150 | 3.36 | 0.08 |
| 1150 | 2.43 | 0.08 | 1160 | 3.14 | 0.08 |
| 1160 | 2.27 | 0.08 | 1170 | 2.84 | 0.08 |
| 1170 | 2.09 | 0.08 | 1180 | 2.31 | 0.08 |
| 1180 | 1.8 | 0.08 | 1190 | 1.6 | 0.08 |
| 1190 | 1.46 | 0.04 | 1200 | 0.59 | 0.04 |
| 1200 | 1.22 | 0.04 | 1210 | -0.49 | 0.04 |
| 1210 | 1 | 0.04 | 1220 | -1.49 | 0.04 |
| 1220 | 1 | 0.04 | 1230 | -1.99 | 0.04 |
| 1230 | 1.06 | 0.04 | 1240 | -2.45 | 0.04 |
| 1240 | 0.22 | 0.04 | 1250 | -2.92 | 0.04 |
| 1250 | -1.1 | 0.04 | 1260 | -3.24 | 0.04 |
| 1260 | -1.79 | 0.04 | 1270 | -3.44 | 0.04 |
| 1270 | -2.31 | 0.04 | 1280 | -3.53 | 0.04 |
| 1280 | -2.78 | 0.04 | 1290 | -3.51 | 0.04 |
| 1290 | -2.63 | 0.04 | 1300 | -3.22 | 0.04 |
| 1300 | -2.36 | 0.04 | 1310 | -2.89 | 0.04 |
| 1310 | -2.37 | 0.04 | 1320 | -2.42 | 0.04 |
| 1320 | -2.27 | 0.04 | 1330 | -1.66 | 0.04 |
| 1330 | -1.88 | 0.04 | 1340 | -0.31 | 0.04 |
| 1340 | -0.21 | 0.04 | 1350 | 2.62 | 0.08 |
| 1350 | 2.6 | 0.04 | 1360 | 5.27 | 0.08 |
| 1360 | 6.16 | 0.08 | 1370 | 6.86 | 0.08 |
| 1370 | 7.62 | 0.08 | 1380 | 7.81 | 0.08 |
| 1380 | 8.25 | 0.08 | 1390 | 8.22 | 0.08 |
| 1390 | 8.53 | 0.08 | 1400 | 8.87 | 0.08 |
| 1400 | 8.96 | 0.08 |  |  |  |
|  |  |  |  |  |  |


|  | EXISTING |  |  | REVISED |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CHOOSE ONE | Name: | 30384 XSDAM |  | Name: |  |  |
|  | Group: | MIDPHILL |  | Gro |  |  |
| Addition | Comment: |  |  | Comment: |  |  |
| Modification | X-sta (ft) | Y-ele.(ft) | Manning's <br> n | X-sta (ft) | Y-ele.(ft) | Manning's <br> n |
|  | 1060 | 1.18 | 0.04 |  |  |  |
| Deletion | 1161 | 1.19 | 0.045 |  |  |  |
|  | 1161 | -2.76 | 0.045 |  |  |  |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| 1171 | -2.76 | 0.045 |
| ---: | ---: | ---: |
| 1171 | 1.27 | 0.045 |
| 1172 | 1.27 | 0.045 |
| 1172 | -3.39 | 0.045 |
| 1181 | -3.39 | 0.045 |
| 1181 | 1.2 | 0.045 |
| 1182 | 1.2 | 0.045 |
| 1182 | -2.62 | 0.045 |
| 1191 | -2.62 | 0.045 |
| 1191 | 1.2 | 0.045 |
| 1192 | 1.2 | 0.045 |
| 1192 | -2.5 | 0.045 |
| 1201 | -2.5 | 0.045 |
| 1201 | 1.2 | 0.045 |
| 1202 | 1.2 | 0.045 |
| 1202 | -2 | 0.045 |
| 1211 | -2 | 0.045 |
| 1211 | 1.2 | 0.045 |
| 1212 | 1.2 | 0.045 |
| 1212 | -1.28 | 0.045 |
| 1221 | -1.28 | 0.045 |
| 1221 | 7.72 | 0.045 |

## Channels

## EXISTING

| CHOOSE |  |
| :---: | :---: |
| ONE |  |
| - | Addition |
| $\times$ | Modification |
|  | Deletion |

Group: MIDPHILL
From Node: 30384_STA5
To Node: 30383
Length (ft): 300
Count: 1
Upstream

Name: 30384_CHA5

Downstream
Geometry: Irregular
Invert (ft):
TclplnitZ (ft):
Manning's n :
Tclip (ft):
Bclip (ft):
Main Xsec: 30384_XS5 30383AP
AxEl1 (ft): 0
Aux Xsec1:
AxEl2 (ft):
Aux Xsec2:
Twidth (ft):
Depth (ft):
Bwidth (ft):
LSdSIp (h/v):
RSdSIp (h/v):
Equation: Average Conveyance

## REVISED

Name: 30384_CHA5
Group: MIDPHILL
From Node: 30384_STA5
To Node: 30383
Length (ft): 300
Count: 1

| Geometry: | Upstream <br> Irregular | Downstream <br> Irregular |
| ---: | :--- | :--- |
| Invert (ft): | -3.54 | -7.18 |
| TclpInitZ (ft): | 97.92 | 97.92 |
| Manning's $\mathrm{n}:$ |  |  |
| Tclip (ft): |  |  |
| Bclip (ft): |  |  |
| Main Xsec: | $30384 \_$XS5 | 30383 AP |
| AxEI1 (ft): | 0 | 0 |
| Aux Xsec1: |  |  |
| AxEI2 (ft): | 0 | 0 |
| Aux Xsec2: |  |  |
| Twidth (ft): |  |  |
| Depth (ft): |  |  |
| Bwidth (ft): |  |  |
| LSdSIp (h/v): |  |  |
| RSdSIp (h/v): |  |  |
| Equation: | Average Conveyance |  |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

Flow: Both

| Flow: | Both |
| ---: | :--- |
| Eddy Contrac Coef: | 0.1 |
| Eddy Expans Coef: | 0.3 |
| Entrance Loss Coef: | 0 |
| Exit Loss | 0 |
| Coef: |  |
| Outlet Cntrl | Use dc or tw |
| Spec: |  |
| Inlet Cntrl | Use dn |
| Spec: |  |
| Stabilizer |  |
| Option: | No Stabilization |

## EXISTING



Name: 30384_CHA8
Group: MIDPHILL
$\begin{array}{rr}\text { From Node: } & 30384 \_ \text {STA8 } \\ \text { To Node: } & 30384 \_ \text {STA5 }\end{array}$ Length (ft): 300

Count: 1

Flow: Both
Eddy Contrac 0.1
Coef:
Eddy Expans 0.3
Coef:
Entrance Loss 0
Coef:
Exit Loss Coef: 0
Outlet Cntrl Use dc or tw
Spec:
Inlet Cntrl Spec: Use dn
Stabilizer Option: No Stabilization

## REVISED

Name: 30384_CHA8
Group: MIDPHILL
From Node: 30384_STA8
To Node: 30384_STA5
Length (ft): 300
Count: 1

|  | Upstream | Downstream |
| :---: | :---: | :---: |
| Geometry: | Irregular | Irregular |
| Invert (ft): | -4 | -3.54 |
| TclplnitZ (ft): | 97.92 | 97.922 |
| Manning's n: |  |  |
| Tclip (ft): |  |  |
| Bclip (ft): |  |  |
| Main Xsec: | 30384_XS8 | 30384_XS5 |
| AxEl1 (ft): | 0 | 0 |
| Aux Xsec1: |  |  |
| AxEl2 (ft): | 0 | 0 |

Aux Xsec2:
Twidth (ft):
Depth (ft):
Bwidth (ft):
LSdSIp (h/v):
RSdSIp (h/v):

## Equation: Average Conveyance

Flow: Both
Eddy Contrac 0.1
Coef:
Eddy Expans 0.3
Coef:
Entrance Loss 0
Coef:
Exit Loss Coef: 0
Outlet Cntrl Use dc or tw Spec:

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


## EXISTING

CHOOSE
ONE
Addition

Name: 30384_CHA20
Group: MIDPHILL
From Node: 30384_STA20

Inlet Cntrl Spec: Use dc
Stabilizer Option: No Stabilization

## REVISED

Name: 30384_CHA14
Group: MIDPHILL
From Node: 30384_STA14
To Node: 30384_STA8
Length (ft): 500
Count: 1

| Geometry: | Upstream <br> Irregular | Downstream <br> Irregular |
| ---: | :--- | :--- |
| Invert (ft): | -4 | -4 |
| TclplnitZ (ft): | 97.92 | 97.92 |
| Manning's n: |  |  |
| Tclip (ft): |  |  |
| Bclip (ft): |  |  |
| Main Xsec: | $30384 \_$XS14 | $30384 \_$XS8 |
| AxEI1 (ft): | 0 | 0 |
| Aux Xsec1: |  | 0 |

AxEl2 (f).
Aux Xsec2:
Twidth (ft):
Depth (ft):
Bwidth (ft):
LSdSIp (h/v):
RSdSIp (h/v):
Equation: Average Conveyance
Flow: Both
Eddy Contrac 0.1
Coef:
Eddy Expans 0.3
Coef:
Entrance Loss 0
Coef:
Exit Loss Coef: 0
Outlet Cntrl Use dc or tw Spec:
Inlet Cntrl Spec: Use dc
Stabilizer Option: No Stabilization

## REVISED

Name: 30384_CHA20
Group: MIDPHILL
From Node: 30384_STA20

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Irregular Weirs

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report
Weir Discharge Coef: 3.2
Orifice Discharge Coef: 0.6
Weir Discharge Coef:
Orifice Discharge Coef:

-------------------- - Cross Sections

| Name: | 30384_XS16 |  |
| ---: | :--- | :--- |
| Group: | MIDPHILL |  |
| Comment: |  |  |
|  |  |  |
| X-sta (ft) | Y-ele.(ft) | Manning's |
| 960 | 11.49 | 0.08 |
| 970 | 11.23 | 0.08 |
| 980 | 11.01 | 0.08 |

REVISED

Name: 30384_XS16
Group: MIDPHILL
Comment:

| X-sta (ft) | Y-ele.(ft) | Manning's |  |
| ---: | ---: | ---: | :---: |
|  |  |  |  |
| 960 | 11.49 | 0.08 |  |
| 970 | 11.23 | 0.08 |  |
| 980 | 11.01 | 0.08 |  |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| 990 | 10.67 | 0.08 | 990 | 10.67 | 0.08 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 | 10.22 | 0.08 | 1000 | 9.66 | 0.08 |
| 1010 | 9.75 | 0.08 | 1010 | 9 | 0.08 |
| 1020 | 9.37 | 0.08 | 1020 | 8.17 | 0.08 |
| 1030 | 8.69 | 0.08 | 1030 | 7.04 | 0.08 |
| 1040 | 8.14 | 0.08 | 1040 | 5.7 | 0.08 |
| 1050 | 7.89 | 0.08 | 1050 | 4.9 | 0.08 |
| 1060 | 7.28 | 0.08 | 1060 | 4.25 | 0.08 |
| 1070 | 6.59 | 0.08 | 1070 | 3.28 | 0.08 |
| 1080 | 5.89 | 0.08 | 1080 | 2.37 | 0.08 |
| 1090 | 5.36 | 0.08 | 1090 | 1.4 | 0.08 |
| 1100 | 4.4 | 0.08 | 1100 | 0.65 | 0.04 |
| 1110 | 3.98 | 0.08 | 1110 | 0.23 | 0.04 |
| 1120 | 3.72 | 0.08 | 1120 | -0.18 | 0.04 |
| 1130 | 3.58 | 0.08 | 1130 | -1.09 | 0.04 |
| 1140 | 3.5 | 0.08 | 1140 | -2.01 | 0.04 |
| 1150 | 3.36 | 0.08 | 1150 | -2.27 | 0.04 |
| 1160 | 3.14 | 0.08 | 1160 | -2.49 | 0.04 |
| 1170 | 2.84 | 0.08 | 1170 | -2.72 | 0.04 |
| 1180 | 2.31 | 0.08 | 1180 | -3 | 0.04 |
| 1190 | 1.6 | 0.08 | 1190 | -3.43 | 0.04 |
| 1200 | 0.59 | 0.04 | 1200 | -3.94 | 0.04 |
| 1210 | -0.49 | 0.04 | 1210 | -4.3 | 0.04 |
| 1220 | -1.49 | 0.04 | 1220 | -4.63 | 0.04 |
| 1230 | -1.99 | 0.04 | 1230 | -4.63 | 0.04 |
| 1240 | -2.45 | 0.04 | 1240 | -4.61 | 0.04 |
| 1250 | -2.92 | 0.04 | 1250 | -4.83 | 0.04 |
| 1260 | -3.24 | 0.04 | 1260 | -5.11 | 0.04 |
| 1270 | -3.44 | 0.04 | 1270 | -4.96 | 0.04 |
| 1280 | -3.53 | 0.04 | 1280 | -4.4 | 0.04 |
| 1290 | -3.51 | 0.04 | 1290 | -3.67 | 0.04 |
| 1300 | -3.22 | 0.04 | 1300 | -2.9 | 0.04 |
| 1310 | -2.89 | 0.04 | 1310 | -2.32 | 0.04 |
| 1320 | -2.42 | 0.04 | 1320 | -1.6 | 0.04 |
| 1330 | -1.66 | 0.04 | 1330 | -0.93 | 0.04 |
| 1340 | -0.31 | 0.04 | 1340 | 0.04 | 0.04 |
| 1350 | 2.62 | 0.08 | 1350 | 2.7 | 0.04 |
| 1360 | 5.27 | 0.08 | 1360 | 5.31 | 0.08 |
| 1370 | 6.86 | 0.08 | 1370 | 6.86 | 0.08 |
| 1380 | 7.81 | 0.08 | 1380 | 7.81 | 0.08 |
| 1390 | 8.22 | 0.08 | 1390 | 8.23 | 0.08 |
| 1400 | 8.87 | 0.08 | 1400 | 8.87 | 0.08 |

## Channels

EXISTING

| CHOOSE |
| :---: |
| ONE |
| Addition |
| $\mathrm{X}^{\mathrm{X}}$ |
|  |

Name: 30384_CHA20
Group: MIDPHILL
From 30384_STA20 Node:
To Node: 30384_STA16
Length (ft): 500

REVISED
Name: 30384_CHA20
Group: MIDPHILL
From Node: 30384_STA20
To Node: 30384_STA16
Length (ft): 500

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report


## Count: 1

| Geometry: | Upstream | Downstream |
| :---: | :---: | :---: |
|  | Irregular | Irregular |
| Invert (ft): | -3.5 | -5.11 |
| TclpInitZ | 97.92 | 97.92 |
| Manning's |  |  |
|  |  |  |
| n : |  |  |
| Tclip (ft): |  |  |
| Bclip (ft): |  |  |
| Main Xsec: | 30384_XS20 | 30384_XS16 |
| AxEl1 (ft): | 0 | 0 |
| Aux Xsec1: |  |  |
| AxEl2 (ft): | 0 | 0 |
| Aux Xsec2: |  |  |
| Twidth (ft): |  |  |
| Depth (ft): |  |  |
| Bwidth (ft): |  |  |
| LSdSIp (h/v): |  |  |
|  |  |  |
| Equation: | Average Conveyance |  |
| Flow: | Both |  |
| Eddy | 0.1 |  |
| Contrac |  |  |
| Coef: |  |  |
| Eddy | 0.3 |  |
| Expans |  |  |
| Coef: |  |  |
| Entrance | 0 |  |
| Loss Coef: |  |  |
| Exit Loss | 0 |  |
| Coef: |  |  |
| Outlet Cntrl | Use dc or tw |  |
| Spec: |  |  |
| Inlet Cntrl | Use dc |  |
| Spec: |  |  |
| Stabilizer | No Stabilizatio |  |
| Option: |  |  |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


|  |  | EXISTING |  |  | REVISED |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CHOOSE ONE |  | Name: | 30384_XS16 |  | Name: | 30384_XS16 |  |
|  |  | Group: | MIDPHILL |  | Group: | MIDPHILL |  |
|  | Addition | Comment: |  |  | Comment: |  |  |
| x | Modification | X-sta (ft) | Y-ele.(ft) | Manning's <br> n | X-sta (ft) | $Y$-ele.(ft) | Manning's <br> n |
|  |  | 960 | 11.49 | 0.08 | 960 | 11.49 | 0.08 |
|  | Deletion | 970 | 11.23 | 0.08 | 970 | 11.23 | 0.08 |
|  |  | 980 | 11.01 | 0.08 | 980 | 11.01 | 0.08 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

| 990 | 10.67 | 0.08 | 990 | 10.67 | 0.08 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 | 10.22 | 0.08 | 1000 | 10.22 | 0.08 |
| 1010 | 9.75 | 0.08 | 1010 | 9.75 | 0.08 |
| 1020 | 9.37 | 0.08 | 1020 | 9.37 | 0.08 |
| 1030 | 8.69 | 0.08 | 1030 | 8.69 | 0.08 |
| 1040 | 8.14 | 0.08 | 1040 | 8.14 | 0.08 |
| 1050 | 7.89 | 0.08 | 1050 | 7.89 | 0.08 |
| 1060 | 7.28 | 0.08 | 1060 | 7.28 | 0.08 |
| 1070 | 6.59 | 0.08 | 1070 | 6.59 | 0.08 |
| 1080 | 5.89 | 0.08 | 1080 | 5.89 | 0.08 |
| 1090 | 5.36 | 0.08 | 1090 | 5.36 | 0.08 |
| 1100 | 4.4 | 0.08 | 1100 | 4.75 | 0.08 |
| 1110 | 3.98 | 0.08 | 1110 | 4.25 | 0.08 |
| 1120 | 3.72 | 0.08 | 1120 | 3.9 | 0.08 |
| 1130 | 3.58 | 0.08 | 1130 | 3.58 | 0.08 |
| 1140 | 3.5 | 0.08 | 1140 | 3.5 | 0.08 |
| 1150 | 3.36 | 0.08 | 1150 | 3.36 | 0.08 |
| 1160 | 3.14 | 0.08 | 1160 | 3.14 | 0.08 |
| 1170 | 2.84 | 0.08 | 1170 | 2.84 | 0.08 |
| 1180 | 2.31 | 0.08 | 1180 | 2.31 | 0.08 |
| 1190 | 1.6 | 0.08 | 1190 | 1.6 | 0.08 |
| 1200 | 0.59 | 0.04 | 1200 | 0.59 | 0.04 |
| 1210 | -0.49 | 0.04 | 1210 | -0.49 | 0.04 |
| 1220 | -1.49 | 0.04 | 1220 | -1.49 | 0.04 |
| 1230 | -1.99 | 0.04 | 1230 | -1.99 | 0.04 |
| 1240 | -2.45 | 0.04 | 1240 | -2.45 | 0.04 |
| 1250 | -2.92 | 0.04 | 1250 | -2.92 | 0.04 |
| 1260 | -3.24 | 0.04 | 1260 | -3.24 | 0.04 |
| 1270 | -3.44 | 0.04 | 1270 | -3.44 | 0.04 |
| 1280 | -3.53 | 0.04 | 1280 | -3.53 | 0.04 |
| 1290 | -3.51 | 0.04 | 1290 | -3.51 | 0.04 |
| 1300 | -3.22 | 0.04 | 1300 | -3.22 | 0.04 |
| 1310 | -2.89 | 0.04 | 1310 | -2.89 | 0.04 |
| 1320 | -2.42 | 0.04 | 1320 | -2.42 | 0.04 |
| 1330 | -1.66 | 0.04 | 1330 | -1.66 | 0.04 |
| 1340 | -0.31 | 0.04 | 1340 | -0.31 | 0.04 |
| 1350 | 2.62 | 0.08 | 1350 | 2.62 | 0.08 |
| 1360 | 5.27 | 0.08 | 1360 | 5.27 | 0.08 |
| 1370 | 6.86 | 0.08 | 1370 | 6.86 | 0.08 |
| 1380 | 7.81 | 0.08 | 1380 | 7.81 | 0.08 |
| 1390 | 8.22 | 0.08 | 1390 | 8.22 | 0.08 |
| 1400 | 8.87 | 0.08 | 1400 | 8.87 | 0.08 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## Appendix G: Estimate of Engineer's Probable BMP Cost

Design Alternative 1

| Item No. | Description | Unit | Unit Price | Unit Price Source | Quantity | Amount |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5-7-3 | Construction Stakeout | HR | \$90.15 | F. Derr and Co. | 45 | \$4,056.75 |
| 5-7-7 | Record drawings | LS | \$20,000.00 | WEC | 1 | \$20,000.00 |
| 102-1-3 | Mobilization (10\%) | EA | \$45,311.50 | WEC | 1 | \$45,311.50 |
| 101-2-1S | Project Sign | EA | \$1,500.00 | FDOT | 1 | \$1,500.00 |
| 104-10-3 | Sediment barrier | LF | \$1.24 | FDOT | 850 | \$1,054.00 |
| 104-11 | Turbidity barrier, floating | LF | \$11.61 | FDOT | 600 | \$6,966.00 |
| 104-15 | Soil tracking prevention device | EA | \$2,824.13 | FDOT | 1 | \$2,824.13 |
| 104-30S | Prevention, control, abatement of erosion \& water pollution | LS | \$100,000.00 | WEC | 1 | \$100,000.00 |
| $\begin{gathered} \text { 104-31- } \\ 15 \end{gathered}$ | Dust abatement water | MG | \$1,000.00 | WEC | 10 | \$10,000.00 |
| 110-1 | Clearing and grubbing | AC | \$10,752.56 | FDOT | 1.5 | \$16,128.84 |
| 120-5 | Channel Excavation | CY | \$10.19 | FDOT | 10414 | \$106,118.66 |
| 120-6 | Embankment | CY | \$6.95 | FDOT | 4247 | \$29,516.65 |
| 146-1 | Special bank treatment 1 | SF | \$15.00 | WEC | 5000 | \$75,000.00 |
| 162-1-11 | Prepared soil layer, finish soil layer, littoral shelf, 6" | SY | \$15.00 | WEC | 1200 | \$18,000.00 |
| 110-73 | Remove existing bulkhead | LF | \$350.00 | WEC | 177 | \$61,950.00 |
| 570-1-2 | Performance Turf - Sod | SY | \$3.00 | FDOT | 4300 | \$12,900.00 |
| Additional items |  |  |  |  |  |  |
|  | Rehabilitate shuffleboard courts |  | \$4,000.00 |  | 1 | \$4,000.00 |
|  | Geotechnical Analysis |  | \$3,600.00 |  | 1 | \$3,600.00 |
|  | Design and Permitting |  | \$85,000.00 |  | 1 | \$85,000.00 |
|  | Temporary Easement acquisition |  |  | unknown |  |  |
|  | CEI | $\begin{aligned} & 15 \% \\ & \text { total } \end{aligned}$ | $\begin{gathered} \$ \\ 74,763.98 \end{gathered}$ |  | 1 | \$74,763.98 |
|  |  |  |  |  | Subtotal | \$678,690.51 |
|  |  |  |  |  | $\begin{array}{r} 30 \% \\ \text { contingency } \end{array}$ | \$882,297.67 |
| Deduct (Excavated sediment found suitable for bank restructuring) |  |  |  |  |  |  |
| 120-5 | Channel Excavation | CY | \$10.19 | FDOT | 4247 | \$43,276.93 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report
Design Alternative 2

| Item No. | Description | Unit | Unit Price | Unit Price Source | Quantity | Amount |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5-7-3 | Construction Stakeout | HR | \$90.15 | F. Derr and Co. | 60 | \$5,409.00 |
| 5-7-7 | Record drawings | LS | \$20,000.00 | WEC | 1 | \$20,000.00 |
| 102-1-3 | Mobilization (10\%) | EA | \$65,717.63 | WEC | 1 | \$65,717.63 |
| 101-2-1S | Project Sign | EA | \$1,500.00 | FDOT | 1 | \$1,500.00 |
| 104-10-3 | Sediment barrier | LF | \$1.24 | FDOT | 850 | \$1,054.00 |
| 104-11 | Turbidity barrier, floating | LF | \$11.61 | FDOT | 600 | \$6,966.00 |
| 104-15 | Soil tracking prevention device | EA | \$2,824.13 | FDOT | 1 | \$2,824.13 |
| 104-30S | Prevention, control, abatement of erosion \& water pollution | LS | \$150,000.00 | WEC | 1 | \$150,000.00 |
| $\begin{gathered} \hline \text { 104-31- } \\ 15 \\ \hline \end{gathered}$ | Dust abatement water | MG | \$1,000.00 | WEC | 15 | \$15,000.00 |
| 110-1 | Clearing and grubbing | AC | \$10,752.56 | FDOT | 1.75 | \$18,816.98 |
| 120-5 | Channel Excavation | CY | \$10.19 | FDOT | 20062 | \$204,431.78 |
| 120-6 | Embankment | CY | \$6.95 | FDOT | 4251 | \$29,544.45 |
| BS-1 | \#250 Sand | CY | \$25.04 | F. Derr and Co. | 750 | \$18,780.00 |
| 146-1 | Special bank treatment 1 | SF | \$15.00 | WEC | 5000 | \$75,000.00 |
| 162-1-11 | Prepared soil layer, finish soil layer, littoral shelf, 6" | SY | \$15.00 | WEC | 2200 | \$33,000.00 |
| 110-73 | Remove existing bulkhead | LF | \$350.00 | WEC | 177 | \$61,950.00 |
| 570-1-2 | Performance Turf - Sod | SY | \$3.00 | FDOT | 4300 | \$12,900.00 |
| 580-1-1 | Emergent plants | LS | \$8,500.00 | FDOT | 1 | \$8,500.00 |
| Additional items |  |  |  |  |  |  |
|  | Rehabilitate shuffleboard courts |  | \$4,000.00 |  | 1 | \$4,000.00 |
|  | Geotechnical Analysis |  | \$3,600.00 |  | 1 | \$3,600.00 |
|  | Design and Permitting |  | \$95,000.00 |  | 1 | \$95,000.00 |
|  | Temporary Easement acquisition |  |  | unknown |  |  |
|  | CEI | $\begin{aligned} & 15 \% \\ & \text { total } \\ & \hline \end{aligned}$ | \$125,099.10 |  | 1 | \$125,099.10 |
|  |  |  |  |  | Subtotal | \$959,093.07 |
|  |  |  |  |  | $\begin{array}{r} 30 \% \\ \text { contingency } \end{array}$ | \$1,246,820.99 |
| Deduct (Excavated sediment found suitable for bank restructuring) |  |  |  |  |  |  |
| 120-5 | Channel Excavation | CY | \$10.19 | FDOT | 4251 | \$43,317.69 |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report
Design Alternative 3

| Item No. | Description | Unit | Unit Price | Unit Price Source | Quantity | Amount |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5-7-3 | Construction Stakeout | HR | \$90.15 | F. Derr and Co. | 45 | \$4,056.75 |
| 5-7-7 | Record drawings | LS | \$20,000.00 | WEC | 1 | \$20,000.00 |
| 102-1-3 | Mobilization (10\%) | EA | \$60,200.00 | WEC | 1 | \$60,200.00 |
| $\begin{gathered} 101-2- \\ 1 S \end{gathered}$ | Project Sign | EA | \$1,500.00 | FDOT | 1 | \$1,500.00 |
| $\begin{gathered} 104-10- \\ 3 \\ \hline \end{gathered}$ | Sediment barrier | LF | \$1.24 | FDOT | 850 | \$1,054.00 |
| 104-11 | Turbidity barrier, floating | LF | \$11.61 | FDOT | 600 | \$6,966.00 |
| 104-15 | Soil tracking prevention device | EA | \$2,824.13 | FDOT | 1 | \$2,824.13 |
| 104-30S | Prevention, control, abatement of erosion \& water pollution | LS | \$100,000.00 | WEC | 1 | \$100,000.00 |
| $\begin{gathered} \hline 104-31- \\ 15 \\ \hline \end{gathered}$ | Dust abatement water | MG | \$1,000.00 | WEC | 10 | \$10,000.00 |
| 110-1 | Clearing and grubbing | AC | \$10,752.56 | FDOT | 1.5 | \$16,128.84 |
| 120-5 | Channel Excavation | CY | \$10.19 | FDOT | 10414 | \$106,118.66 |
| 120-6 | Embankment | CY | \$6.95 | FDOT | 18547 | \$128,901.65 |
| 146-1 | Special bank treatment 1 | SF | \$15.00 | WEC | 5000 | \$75,000.00 |
| $\begin{gathered} 162-1- \\ 11 \end{gathered}$ | Prepared soil layer, finish soil layer, littoral shelf, 6" | SY | \$15.00 | WEC | 4500 | \$67,500.00 |
| 110-73 | Remove existing bulkhead | LF | \$350.00 | WEC | 177 | \$61,950.00 |
| 570-1-2 | Performance Turf - Sod | SY | \$3.00 | FDOT | 4300 | \$12,900.00 |
| 580-1-1 | Emergent plants | LS | \$22,800.00 | FDOT | 1 | \$22,800.00 |
| Additional items |  |  |  |  |  |  |
|  | Rehabilitate shuffleboard courts |  | \$4,000.00 |  | 1 | \$4,000.00 |
|  | Geotechnical Analysis |  | \$3,600.00 |  | 1 | \$3,600.00 |
|  | Design and Permitting |  | \$85,000.00 |  | 1 | \$85,000.00 |
|  | Temporary Easement acquisition | unknown |  |  |  |  |
|  | CEI | $\begin{aligned} & 15 \% \\ & \text { total } \end{aligned}$ | $\begin{gathered} \$ \\ 99,330.00 \end{gathered}$ |  | 1 | \$99,330.00 |
|  |  |  |  |  | Subtotal | \$889,830.04 |
|  |  |  |  |  | $\begin{array}{r} 30 \% \\ \text { contingency } \end{array}$ | \$1,156,779.05 |

Deduct (Excavated sediment found suitable for bank restructuring)

| $120-5$ | Channel Excavation | CY | $\$ 10.19$ | FDOT | 10414 | $\$ 106,118.66$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## Appendix H: 100-Year Flood pla in Property Graphics

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 1



RECM 100yr floodplain

PCM - Area now included in the 100yr floodplain

PCM - Area now removed from the 100 yr floodplain
Page 2 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report


Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 1



Relf RECM 100 yr floodplain
$\square$ PCM - Area now included in the 100yr floodplain
$\square$ PCM - Area now removed from the 100 yr floodplain
Page 5 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 1

(llen RECM 100 yr floodplain
$\square$ PCM - Area now included in the 100 yr floodplain
PCM - Area now removed from the 100 yr floodplain
Page 6 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 1

(lan RECM 100 yr floodplain
$\square$ PCM - Area now included in the 100 yr floodplain
PCM - Area now removed from the 100 yr floodplain
Page 7 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 1


RECM 100yr floodplain
$\square$ PCM - Area now included in the 100yr floodplain
Page 8 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 1


RECM 100yr floodplain
$\square$ PCM - Area now included in the 100 yr floodplain
PCM - Area now removed from the 100 yr floodplain
Page 9 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 1

(1) RECM 100 yr floodplain
$\square$ PCM - Area now included in the 100 yr floodplain
$\square$ PCM - Area now removed from the 100 yr floodplain
Page 10 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 1


(7) RECM 100 yr floodplain

DPCM - Area now included in the 100 yr floodplain

PCM - Area now removed from the 100 yr floodplain

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 2


RECM 100yr floodplain

PCM - Area now included in the 100yr floodplain

PCM - Area now removed from the 100 yr floodplain

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 2



RECM 100yr floodplain

PCM - Area now included in the 100yr floodplain

PCM - Area now removed from the 100 yr floodplain

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 2



RECM 100yr floodplain

PCM - Area now included in the 100 yr floodplain

PCM - Area now removed from the 100 yr floodplain

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 2


(V) RECM 100 yr floodplain

D PCM - Area now included in the 100 yr floodplain

PCM - Area now removed from the 100 yr floodplain

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 2



Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4-Analysis Report

## PCM 2



RECM 100yr floodplain

PCM - Area now included in the 100 yr floodplain

PCM - Area now removed from the 100 yr floodplain

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 2


RECM 100yr floodplain

PCM - Area now included in the 100 yr floodplain

PCM - Area now removed from the 100 yr floodplain

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 2


RECM 100yr floodplain

PCM - Area now included in the 100yr floodplain

PCM - Area now removed from the 100 yr floodplain

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 2



5


RECM 100yr floodplain

PCM - Area now included in the 100 yr floodplain

PCM - Area now removed from the 100 yr floodplain

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 2



Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 2



Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 3

(lla RECM 100 yr floodplain
$\square$ PCM - Area now included in the 100yr floodplain
$\square$ PCM - Area now removed from the 100 yr floodplain
Page 1 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 3
RECM 100yr floodplain
$\square$ PCM - Area now included in the 100 yr floodplain
PCM - Area now removed from the 100 yr floodplain
Page 2 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 3


Whan RECM 100 yr floodplain
$\square$ PCM - Area now included in the 100yr floodplain
$\square$ PCM - Area now removed from the 100 yr floodplain
Page 3 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 3


RII RECM 100yr floodplain
$\square$ PCM - Area now included in the 100 yr floodplain
$\square$ PCM - Area now removed from the 100 yr floodplain
Page 4 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 3



Whan RECM 100yr floodplain
$\square$ PCM - Area now included in the 100 yr floodplain
$\square$ PCM - Area now removed from the 100 yr floodplain
Page 5 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 3


(lle RECM 100 yr floodplain
$\square$ PCM - Area now included in the 100 yr floodplain
$\square$ PCM - Area now removed from the 100 yr floodplain
Page 6 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 3

(lan RECM 100 yr floodplain
$\square$ PCM - Area now included in the 100 yr floodplain
PCM - Area now removed from the 100 yr floodplain
Page 7 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 3


RECM 100yr floodplain
$\square$ PCM - Area now included in the 100yr floodplain
Page 8 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

PCM 3


RECM 100yr floodplain
$\square$ PCM - Area now included in the 100yr floodplain
PCM - Area now removed from the 100 yr floodplain
Page 9 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 3



Wm RECM 100 yr floodplain
$\square$ PCM - Area now included in the 100 yr floodplain
$\square$ PCM - Area now removed from the 100 yr floodplain
Page 10 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## PCM 3


$\square$ RECM 100 yr floodplainPCM - Area now included in the 100 yr floodplain
PCM - Area now removed from the 100 yr floodplain
Page 11 of 11

Sediment Management, Sarasota County WA666, Contract No. 2016-168
Project 1: Phillippi Creek Barrier Removal Feasibility Study
Task 4 - Analysis Report

## Appendix I: WaterQuality Calculations

TSS Reduction Calculation

$$
\begin{aligned}
& \text { RB3 contributing area }=\text { Approx. } 5850 \text { ac } \\
& \text { RB5 contributing area }=\text { Approx. } 29120 \text { ac } \\
& \text { Alternative } 2 \text { Sump = Approx. } 31210 \text { ac } \\
& \text { RB3 Sediment Removal }=149,454 \frac{\text { lb TSS removed }^{1}}{y r} \\
& \text { Assumed Sediment Sump efficiency }=80 \% \\
& \frac{149,454 \frac{\mathrm{lb} \text { TSS removed }}{y r}}{0.8}=186,818 \frac{\mathrm{lbTSS}}{\mathrm{yr}} \\
& 186,818 \frac{l b T S S}{y r} \div 5850 a c=31.93 \frac{l b T S S}{y r * a c} \\
& 31210 a c * 31.93 \frac{l b T S S}{y r * a c}=996,535 \frac{l b T S S}{y r} \\
& 29120 a c * 31.93 \frac{l b T S S}{y r * a c}=929,802 \frac{l b T S S}{y r} \\
& \text { 929,802 } \frac{l b T S S}{y r}-149,454 \frac{\text { lb TSS removed }}{y r}=780,348 \frac{l b T S S}{y r}=R B 5 \text { influent } \\
& 780,348 \frac{l b T S S}{y r} * 0.8=624,278 \frac{l b \text { TSS removed }}{y r}=R B 5 \text { Sediment Removal } \\
& \left(996,535 \frac{l b T S S}{y r}-624,278 \frac{l b T S S ~ r e m o v e d}{y r}-149,454 \frac{l b \text { TSS removed }}{y r}\right) * 0.8=178,242 \frac{l b \text { TSS removed }}{y r} \\
& \text { Alternative } 2 \text { Sump Removal }=178,242 \frac{\text { lb TSS removed }}{y r} \\
& \frac{\$ 1,246,821}{178,242 \frac{\text { lb TSS removed }}{y r}}=\frac{\$ 7.00}{\frac{\text { lb TSS removed }}{y r}}
\end{aligned}
$$

## TP Reduction Calculation

$$
178,242 \frac{l b T S S ~ r e m o v e d}{y r} * 0.00036 \frac{l b T P^{1}}{l b T S S}=64 \frac{\text { lb TP removed }}{y r}
$$

## TN Reduction Calculation

$$
178,242 \frac{l b T S S ~ r e m o v e d}{y r} * 0.00090 \frac{l b T N^{1}}{l b T S S}=160 \frac{l b T P \text { removed }}{y r}
$$

${ }^{1}$ Data received from the County

Appendix D
The Harbor Acres Alternatives Analysis Report by Kimley Horn and Associates, dated 2021.

## FINAL REPORT

## HARBOR ACRES <br> ALTERNATIVES ANALYSIS

Prepared for:
Sarasota County
1001 Sarasota Center Blvd.
Sarasota, FL 34240

## Kimley»Horn

FINAL REPORT

## HARBOR ACRES <br> ALTERNATIVES ANALYSIS

Prepared for:
Sarasota County
1001 Sarasota Center Blvd.
Sarasota, FL 34240
Prepared by:
Kimley-Horn and Associates, Inc.

KELLIE CLARK, P.E.

STATE OF FLORIDA
PROFESSIONAL ENGINEER LICENSE NO. 77642

THIS ITEM HAS BEEN DIGITALLY SIGNED AND SEALED BY
KELLIE CLARK, P.E
ON THE DATE INDICATED HERE
PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES

THIS IS TO CERTIFY THAT THE ENCLOSED ENGINEERING CALCULATIONS WERE PERFORMED BY ME OR UNDER MY DIRECT SUPERVISION.

## Kimley»>Horn <br> TABLE OF CONTENTS

Introduction .....  1
Background .....  1
Modeling Assumptions .....  3
Model Development ..... 4
Hydrology. ..... 4
Terrain .....  4
Basin Delineation .....  4
Rainfall .....  5
Runoff. ..... 5
Hydraulics .....  6
Conveyance Structures .....  6
Storage ..... 7
Overland Weirs .....  7
Boundary Conditions. .....  7
Initial Stages .....  8
Alternatives .....  . 8
Current Conditions Alternatives ..... 9
Future Conditions Alternatives ..... 11
Cost Benefit Analysis ..... 15

APPENDICES

APPENDIX A: EXHIBITS

APPENDIX B: MEETING MINUTES

APPENDIX C: LOS FOR CURRENT AND FUTURE CONDITIONS

APPENDIX D: ENGINEERS OPINION OF PROBABLE COST

APPENDIX E: COST BENEFIT MATRIX

APPENDIX F: COST BENEFIT ANALYSIS TABLE

## INTRODUCTION

The Harbor Acres development is approximately 61.5 acres and is located within the City of Sarasota. The development is bounded to the west, south, and north by Sarasota Bay and to the east by South Orange Avenue. Harbor Acres was originally designed in the 1940s and home sizes were anticipated to be around $3,000 \mathrm{sf}$. Since that time, multiple residential structures have been demolished and redeveloped with larger waterfronthomes with a significant increase in impervious area. The properties have been elevated to meet current Florida Building Code and City of Sarasota code requirements. According to Sarasota County, flooding issues have been reported within the Harbor Acres community by residents. Kimley-Horn and Associates, Inc. was hired by Sarasota County to perform a study of the drainage system within the community including historical conditions, current conditions, and future buildout conditions, as well as an alternative analysis to evaluate potential solutions to resolve or reduce flooding and evaluate how potential solutions will perform in future conditions. Historical conditions refer to the original buildout of the development in the 1940s including historical topography, tailwater conditions, impervious area, and inlet and drainage pipe location and dimensions. The current conditions refer to the mix of original and redeveloped parcels as of 2017 and the changes to the topography and tailwater conditions. For current conditions, the inlets and drainage pipe locations and dimensions are consistent with the historical conditions. The future buildout conditions refer to the assumption that all parcels will be redeveloped with an increase in impervious area and modifications to the topography to meet the Florida Building Code and the projected changes in tailwater conditions for 2050. Throughout this report the study performed by Kimley-Horn is referred to as "the study" or "this study".

It should be noted that a portion of the Harbor Acres development was previously modeled as a part of the Coastal Fringe Phase 3 (CF3) Watershed Management Plan (WMP) completed and accepted by Sarasota County in 2015. Harbor Drive, Hawthorne Street, and South Orange Avenue were all previously identified within the CF3 WMP as failing to meet neighborhood level of service, or roadway flooding of 12 inches or less during a 100-year 24-hour storm event.

The purpose of this study is to determine the impacts increased impervious area on the existing stormwater system as well as provide alternatives to achieve three different levels of service under current conditions, and review the impacts of sea level rise (changing tailwater conditions) on each of those alternatives. The historical conditions were modeled to establish the original design conditions in the 1940s and the future buildout conditions model was created to understand the effects of the increase impervious and topographical modifications due to the re-development to larger ho mes within
the community. Alternatives were determined using the current conditions model and were also modeled under future buildout conditions to determine impacts of sea level rise on level of service in the future. Additionally, cost-benefits were evaluated for proposed alternatives by considering capital costs, maintenance costs, life-cyclealternative, and impacts to upstream areas for each level of service.

## BACKGROUND

Three (3) baseline models (the historic, the current, and the future build out conditions models) were developed during this study and the Mean-Annual (2.33-year)/24-hour, 25 -year/24-hour, and 100-year/24-hour storm events were used in the evaluation. Two (2) additional sets of models were developed (using the current and the future buildout conditions baseline models) to include proposed alternatives under each scenario. The historic conditions were intended to establish the performance of the stormwater systemunder the original design scenario (1940s). The current conditions model was intended to represent the existing conditions of the stormwater system and its performance and to better define the extents of the flooding issues currently affecting the community. The future buildout conditions model was developed to predict the potential performance of the current stormwater system in a future scenario that includes sea level rise conditions (for year 2050) and continued increase of building footprints and other impervious areas. The three conditions were developed using available data and assumptions, no model calibration was included in this analysis.

Once the performance of the stormwater system was established for current conditions, six (6) different alternatives were developed using the current conditions model to identify potential solutions or mitigation to the flooding affecting the Harbor Acres development. Three (3) of these alternatives were selected by the County and were incorporated into the future buildout conditions. The future buildout conditions with the alternatives served to predict how the stormwater system will perform in the future with the proposed improvements.

Per the County's direction, the ICPR3 Modeling software was used (same as CF3 model). The 2007 LiDAR obtained from Sarasota County was best available topographic information and was used as the topography for all the models and alternatives. For historic and future buildout conditions, modifications were incorporated to the Digital Elevation Map (DEM) of the LiDAR to best represent each scenario (discussed in following sections). Per the County's request, this project was completed in NAVD88.

Aerials from 1948 were used to establish the historical conditions model. The aerials were obtained from Sarasota County. To establish the inland boundary conditions and supplement the model to
include areas upstream of Harbor Acres, the CFR3 model was used. In addition, the stormwater infrastructure within the Harbor Acres development was obtained from survey completed in Feb ruary 2017 provided by the County (NAVD88) and survey completed in May 2017 by Hyatt Surveying (NAVD88). This stormwater infrastructure was used for all the base models under the historical, current, and future buildout conditions. For the analyzed alternatives, proposed improvements as identified for each alternative were incorporated into the model (under current and future buildout conditions).

The tailwater conditions for the historic and future buildout conditions scenarios were based on the sea level information for each condition and by utilizing the data from the St. Petersburg NOAA tidal station \#8726520. The tailwater for the current conditions model was set based on further evaluation of this NOAA station \#8726083 and presented to the County for concurrence. Additional details for the parameters applied on each scenario are provided in the model development section of this report.

Several assumptions were made to create the historic, current, and future buildout conditions models, and these were based upon assumptions agreed upon with the County as well as best available information. Meeting minutes of discussions with the County are included within Appendix B of this report.

Assumptions made during the baseline models' development are listed below:

## All Models

- The lots bordering Sarasota Bay and S Orange Avenue were delineated as type B lots, and all internal lots were assumed to be type A lots. Type A lots are lots that drains to the front (to the street) of the lot for the public storm drainage system. Type B lots drains to the front (to the street) and to the back of the lot (split drain). This assumption is reasonable given the current lot elevations.


## Historical Conditions Model

- For the impervious calculations, all lots within the Harb or Acres Development were assumed to be $100 \%$ developed with a 3,000 square foot home.
- For the impervious calculations, lots did not include impervious area for a patio or a pool.
- For the impervious calculations, driveways were assumed to be $2.75 \%$ of the total lot area.
- Current day design rainfall distribution, amount, and intensity was assumed to be applicable. This allowed for more straightforward comparison related to increased development and sea level rise.
- The elevation of area surrounding existing homes was assumed to be the average grade of the area surrounding current homes.


## Current Conditions Model

- For the impervious calculations, the building footprint layer acquired from Sarasota County was used to determine the amount of impervious area in current conditions.
- For the impervious calculations, all lots were assumed to have an 1,800 square foot pool or patio.
- For the impervious calculations, driveways were assumed to be $11 \%$ of the parcel area.


## Future Buildout Model

- For the impervious calculations, all lots within the Harb or Acres Development were assumed to be $100 \%$ developed with a 12,000 square foot home. Lots greater than 30,000 square feet were assumed to have a single-story home with a footprint of 12,000 square feet. Lots less than 30,000 square feet were assumed to have a two-story home with a footprint of 6,000 square feet.
- For the impervious calculations, all lots were assumed to have an 1,800 square foot pool or patio.
- For the impervious calculations, driveways were assumed to be $11 \%$ of the parcel area.
- Current day design rainfall distribution, amount, and intensity was assumed to be applicable. This allowed for more straightforward comparison related to increased development and sea level rise.
- The elevation of area surrounding existing homes was assumed to be the average grade of the area surrounding current homes.


## MODEL DEVELOPMENT

For this study, Kimley-Horn developed hydrologic and hydraulic models using ICPR version 3. The below report sections describe the parameters used to create each of the models considered during this study.

## Hydrology

## Terrain

Three terrain surfaces were used during this project. For the current conditions model and the associated alternatives scenarios for the current condition the 2007 LiDAR was used as the base data. Current building footprints obtained from the County, were incorporated into the surface at an elevation higher than anticipated maximum stages. This was done so no flow unrealistically occurred through the footprint of a home.

For historic conditions, the 2007 terrain surface was used as the base, but the building footprints were modified assuming that the historic building footprints were 3,000 square feet. Because the historic
homes were different shapes than the existing homes, it was necessary to also modify the area around the homes. In cases where there was a current home on the lot, these homes were removed from the DEM by buffering the current home footprint. An average elevation was acquired for the area between the current home footprint and the buffer. This average elevation was then applied to the current home to effectively remove the home from the DEM. The historic homes were then added to the DEM to complete the historic conditions surface. The same methodology was applied to obtain the projected building footprint.

For the future buildout conditions, the 2007 terrain surface was modified to reflect building footprints of 12,000 square feet in all lots. In cases where a 12,000 square foot footprint did not fit on the lots (lots less than 30,000 square feet), a two-story home with a 6,000 square foot footprint was used.

## Basin Delineation

Kimley-Horn performed basin delineation for the historic, current and future buildout conditions using the 2007 LiDAR and Aerial Photography provided by Sarasota County. Basin divides were generated using averages to the center of homes of the lots and high points in the roadway from LiDAR. The generated basin divides were reviewed to create the final model basins based on review of the 2007 LiDAR, aerial photographs, and engineering judgment.

- Basins were delineated at a local scale, with a subbasin delineated for each group of stormwater inlets serving one side of a road. As such, basin divides fall on both along homes or backs of lots and along the center of roadways.
- An average distance to current homes (which represent both smaller historic homes and larger buildout homes) was determined. This distance represents how far back on the lot the buildings were. Historic homes were assumed to be set this far back from the front of the property and the basin boundary was drawn along the center of the building footprints. Basins were smoothed along home locations to the average distance.


## Rainfall

For the current conditions, Kimley-Horn modeled the Mean-Annual (2.33-year)/24-hour, 25-year/24hour, and 100-year/24-hour storm events in ICPR using the Natural Resources Conservation Services (NRCS) Type-II Florida-Modified Rainfall Distribution. Rainfall volumes for these storms were derived from rainfall isohyetal maps provided in SWFWMD Environmental Resource Permit Applicant's Handbook Volume II. The same rainfall parameters were used in the historic and future buildout conditions models.

## Runoff

The NRCS method of calculating runoffwas used for all models based onthe requirement in SWFWMD Environmental Resource Permit Applicant's Handbook Volume II. The unit hydrograph peaking factor for all subbasins was set to 256 in accordance with SWFWMD guidance documents. Curve numbers were determined to be 98 for impervious and 80 for pervious based on hydrologic soil group, cover type, and hydrologic condition. Hydrologic soil group was determined to act as type D based on a type A/D classification from NRCS soil mapping and water table elevations in this area. The cover type and hydrologic condition for the site was determined to be a combination of impervious and good condition lawn based on aerial photography. Impervious coverage for historic, current, and future buildout conditions were determined based on aerial photography, eng ineering judgement, and information from Sarasota County (as applicable). Relevant aspects for the impervious coverage obtained from engineering judgement and/or information provided by the County are shown below:

- Historic Conditions: All lots within the Harb or Acres Development are $100 \%$ developed with a 3,000 square foot home with $2.75 \%$ of the lot assumed impervious for the driveway. No additional impervious area for pools or patios.
- Current Conditions: Existing home footprints within the Harbor Acres Development were acquired from Sarasota County and used to determine impervious area. Forthe driveway, 11\% of the lotwas assumed impervious. An ad ditional 1,800 square feet of impervious was included for pools or patios.
- Future Buildout Conditions: All lots within the Harbor Acres Development are 100\% developed with a 12,000 square foot home. Lots greater than 30,000 square feet were assigned a singlestory home with a footprint of 12,000 feet while lots less than 30,000 square feet were assigned a two-story home with a footprint of 6,000 square feet. For the driveway, $11 \%$ of the lot was assumed impervious. An additional 1,800 square feet of impervious was included for pools or patios.

Impervious area was also added for driveways and pools/patios for all three conditions. Driveways for current conditions were determined to be approximately $11 \%$ of the parcel area for each house based on a sample of driveway sizes measured off of the aerial in GIS, and this percentage was also applied during the future buildout conditions. The driveways for historic conditions were determined to be $25 \%$ of the current driveway impervious ( $2.75 \%$ of the lot area) size because the assigned house size for historic conditions is $25 \%$ of the size of the current conditions house. Pools or patios of 1,800 square feet were assigned to each current condition house based on the average of a sample of pool/patio
areas measured from the aerial in GIS. A pool/patio of 1,800 square feet was also applied for the future buildout conditions calculation, while during historic conditions no pool or patio were considered.

The time of concentration ( $T_{c}$ ) for each subbasin was calculated as the combination of sheet flow and shallow concentrated flow over paved and unpaved surfaces. The Manning's roughness coefficients were derived from the TR-55 (NRCS, 1986). A coefficient of 0.011 was used for paved surfaces and a coefficient of 0.15 was used for unpaved surfaces. Travel distances were determined using the provided Sarasota County Aerials and GIS. Slopes were determined from the 2007 LiDAR. The minimum slope used in calculations was 0.001 ftft . The 2-year, 24 -hour rainfall depth was referenced from the rainfall isohyetal maps provided in SWFWMD Environmental Resource Permit Applicant's Handbook Volume $I I$. The maximum $T_{c}$ used was 30 minutes. The calculated $T_{c}$ values were the same for the historic, current, and future buildout conditions model.

## Hydraulics

## Conveyance Structures

The stormwater network included in the ICPR model was defined using the survey data received from Sarasota County and from Hyatt Surveying, as well as the CF3 model. The stormwater network assessed during this evaluation included all the contributing areas within the Harbor Acres development. This network consists of pipes and inlets with a main discharge waterbody (Sarasota Bay). Seventeen (17) outfall pipes were identified within the study area. Two (2) out of the seventeen outfall pipes are elliptical, while the other fifteen are circular pipes. Outfall pipes upstream invert elevations range between 6.4 feet and -2.08 feet. The outfall downstream invert elevations range between 1.9 feet and -4.21 feet. Circular outfall pipes' diameters range from 12 " to 48 ", and elliptical pipes range from 14 " $\times 23^{\prime \prime}$ to 29 " x 45 ". Outfall pipe material varies from PVC, CMP, and concrete.

Thirty more pipes interconnected to the outfalls were part of this evaluation. Thirteen (13) pipes have survey from the County and at least three (3) of those thirteen (13) pipes also have survey from Hyatt. Thirteen more pipes have only Hyatt survey. In the case of varying pipe elevations between surveys, the higher invert elevation was selected for the model. In some cases where no survey was available, Environmental Resources Permit (ERP) information was used. Pipes made of concrete, CPP, terra cotta, and CMP were assumed to have Manning's roughness coefficients of $0.012,0.024,0.013$, and 0.024 respectively. The CF3 model was mostly used to define the contributing areas to the Harbor Acres, but that are not part of the development.

Fifty-eight (58) nodes representing manholes, inlets or junction boxes were included in the model. Twenty-four (24) out of the fifty-eight (58) have at least one basin connected to them. All inlets found within the development were modeled as weirs and weir sizes were based on survey.

## Storage

Basin stage-storage for the historic, current, and future buildout conditions was based on the pertaining surface generated for each task. ArcHydro tools were used to obtain the stage-storage relationship for each basin.

## Overland Weirs

Overland weirs for historic, current and future buildout conditions were defined by utilizing the pertaining modified surfaces. ArcGIS was used to extract the station/elevation points along historic and future buildout basin boundaries to capture high points, low points, and grade changes. For the historic and future buildout conditions, the overland weirs were delineated along the center of the placed houses. For the current conditions, overland weirs were defined along the main terrain surface ridges as defined in the 2007 LiDAR.

## Boundary Conditions

The Harbor Acres neighborhood and all upstream contributing area was modeled; therefore, only one boundary condition at the outfall was required. Kimley-Horn evaluated and obtained the current tailwater based on an evaluation of NOAA tidal station \#8726083 data. The tailwater elevation of 1.95 (NAVD 88) for current conditions was presented to the County and concurrence was obtained. The tailwater elevation for historic conditions was determined to be 1.54 ' (NAVD 88). This was determined by using the CRS recommended U.S. Army Corps of Engineers "Sea-Level Change Calculator" to back calculate from the current conditions tailwater elevation to the 1940s. Data from St. Petersburg NOAA tidal station \#8726520 during 1947 to 1957 was used to determine the historic MHHW in St. Petersburg. This was compared to the MHHW from St. Petersburg NOAA tidal station \#8726520 from2007 to 2017. The difference between the MHHW for historic and current conditions at the St. Petersburg gauge was used to select a NOAA curve to back calculate the historic conditions for Sarasota. The intermediate low curve for the St. Petersburg NOAA tidal station \#8726520. Tailwater for future buildout conditions was projected for the year 2050 utilizing the NOAA Tidal Data for station \#8726520 and Sea Level Rise Calculator utilizing the intermediate high curve for calculations. The resulting tailwater for Node NH3050 was $2.99^{\prime}$ ( $1.95{ }^{\prime}+1.04^{\prime}$ ). All modeled scenarios consider a constant tailwater at the Sarasota Bay for the entire simulation.

## Initial Stages

Initial stages for all the modeled scenarios were set to static wet conditions for each node and were updated for each scenario to consider the pertaining scenario tailwater elevations.

## ALTERNATIVES

As part of alternatives analysis, different alternatives were analyzed to help achieve a specific Level of Service (LOS) in the Harbor Acres Community. Utilizing the current and future buildout conditions models as the base, the alternatives were incorporated in the current and future buildout scenarios and the resulting Level of Service (LOS) was documented.

The alternatives analysis (task 5) performed on the current conditions scenario included the analysis of six (6) alternatives to achieve a desired LOS associated to the 100-year 24 hour storm event. The current conditions model was used as the base and was modified to evaluate alternatives to provide different LOS., alternatives were evaluated and classified as follows:

- Three (3) alternatives that reduce the flood water levels on local roads to be no greater than 12 inches
- Two (2) alternatives that reduce the flood water levels on the local roads to be no greater than 6 inches
- One (1) alternative that reduces the flood water levels on local roads to be no greater than 0 inches.

Improvements considered during this study were:

- Adding inlets
- Upsizing pipes
- Adding pump station(s)
- Purchasing homes to create additional storage

Model updates were performed to incorporate the proposed improvements.

As part of the future buildout conditions, three (3) alternatives from the alternative analysis were selected by the County and were incorporated in the future buildout conditions scenario. The resulting LOS was established for each alternative under the future buildout conditions scenario.

A description of the alternatives for both scenarios (current and future buildout) are included in the following paragraphs. Ap pendix $C$ shows the peak stages obtained for the current conditions and the future buildout conditions, as well as the corresponding Level of Service (in inches).

## Current Conditions - Alternatives

## Level of Service of 12 inches of Standing Water on Local Roads

The three (3) alternatives that were determined to reduce the water levels on the road to be no greater than 12 inches were named as alternative 1, alternative 2 and alternative 3 and are described as follows:

- Alternative 1: Considered increasing the pipes' size, the addition of pipes to the network and the addition and/or size increase of inlets within the Harbor Acres community.
- Alternative 2: Considered the changes determined during Alternative 1 but included additional storage within some critical basins (Basins HA03 and HA05). Basins, overland weirs and pertaining cross sections affected by the storage addition were revised accordingly. Considering the level of analysis, this model was edited at Basins HA03 and HA05 to reflect (mainly) the outfall and not the internal drainage elements. This was done assuming that the internal inlets and pipes will be adequately designed during a final design phase.
- Alternative 3: Considered the changes determined during Alternative 1 but included additional modifications for a pump system at one of the most critical basins (Basin HA05). It also considered modifications to (some) inlets invert/control elevations.


## Level of Service of 6" Standing Water on Local Roads

The two (2) alternatives that were determined to reduce the water levels on the road to be no greater than 6 " were named as alternative 4 and alternative 5 and are described as follows:

- Alternative 4: Considered the changes determined on Alternative 2 but included additional increase of pipes' size and the addition and/or size increase of inlets.
- Alternative 5: Considered additional storage in all basins (within the study area), increase of pipe sizes, and the addition and/or size increase of inlets. Basins, overland weirs and pertaining cross sections affected by the storage addition were revised accordingly. Considering the level of analysis, this model was edited to reflect mainly the outfall and not the internal drainage elements.

This was done assuming that the internal inlets and pipes will be adequately design during a final design phase.

## Level of Service of 0" Standing Water on Local Roads

One (1) alternative was identified to reduce the water levels on the road to be no greater than 0 ". This alternative was named as alternative 6 and is described as follows:

- Alternative 6: Considered the changes determined on Alternative 5, but included additional increase of pipes' size, and the addition and/or size increase of inlets.

To model the alternatives, modifications were made to the current conditions model.
For the alternative analysis, additional storage was considered for some of the bas ins. Stage-storage for those basins was modified to reflect the particular lot changes. A constant additional storage area of $90 \%$ of the lot size was used from the approximate pond bottom to the top of the storage. The stage area relationships were determined by subtracting the storage determined during the current and future buildout conditions for a particular lot (underits base conditions) from the total storage area of the basin and then adding the estimated additional storage associated to the particular lot. The storage top of bank area was estimated based on the total area of the lot selected ( $90 \%$ of the lot size).

Overland weirs were also modified for those alternatives including additional storage. Specifically, the portion of the overland weir that is within the modified parcel(s) were updated to reflect the changes on the lot(s).

## Future Buildout Conditions - Alternatives

The alternatives the County selected from the alternative analysis to be modeled under the future build out conditions scenario were: alternative 1 , alternative 2 , and alternative 5 . The numbering schema used during the alternative analysis to identify each alternative was maintained during the future buildout with alternatives (e.g. ICPR Models: FBC_Alternative_1, FBC_Alternative_2 and FBC_Alternative_5). This was done forcomparison and reference purposes. In terms of model network, descriptions provided under the Current Conditions - Alternatives section apply for the future buildout alternatives 1,2 and 5 . However, model differences between the current and future buildout conditions baseline models prevails.

A graphical representation of the analyzed alternatives is included in Appendix A.
Kimley »>Horn
みodəy|eu! Harbor Acres Study
The following table summarizes the main model parameters highlights and/or differences between the modeled scenarios.

| Parameters | Historic Conditions | Current Conditions | Alternative Analysis | Future Buildout Conditions |
| :---: | :---: | :---: | :---: | :---: |
| Basin Divides | For the basin delineation it was assumed that lots bordering Sarasota Bay and S Orange Avenue are type B lots, and all internal lots are type A lots. For type B lots, the average distance to the back of each group of houses was determined and then used to create the basin divides though lots. Type A lots were divided by lot lines. Roadway crossing were determined by identifying roadway high points from 2007 LiDAR. |  |  |  |
| Areas | All basin areas were calculated using ArcGIS. | All basin areas were calculated using ArcGIS. | All basin areas were calculated using ArcGIS. However, for alternatives where additional storage was considered, the portion of the lot(s) that were added to accommodate such storage was considered in the total basin area. | All basin areas were calculated using ArcGIS. |
| Curve Number/Impenvious Areas | All lots within the Harbor Acres Development were considered 100\% developed with a 3,000 square foot home. Lots did not include neither patio nor pool, and driveways were assumed to be 2.75\% of the total lot area. | The existing building footprints were used for the impervious calculations. All lots were assumed to have an 1,800 square foot pool or patio, and driveways were assumed to be $11 \%$ of the parcel area. | Same as current conditions, but for alternatives with additional storage considers the area added from the particular lot(s) and the structure removal. | All lots within the Harbor Acres Development were considered 100\% developed with a 12,000 square foot home. All lots were assumed to have an 1,800 square foot pool or patio, and driveways were assumed to be $11 \%$ of the parcel area. |


| $\|e v \gg\rangle$ |  |  |  | Final Report Harbor Acres Study |
| :---: | :---: | :---: | :---: | :---: |
| Stage Storage | Building footprints of 3,000 square feet were burned into the 2007 LiDAR to effectively remove the building area from the stage area. The modified surface was used with ArcHydro tools to obtain stage area for historical conditions. | Current building footprints obtained from the County were burned into the 2007 LiDAR to effectively remove the building area from the stage area. The modified surface was used with ArcHydro tools to obtain stage area for current conditions. | Stage Area was obtained from the current conditions model and was modified for alternatives with proposed additional storage. The top of bank area was estimated based on the $90 \%$ total area of the lot selected. Current conditions storage associated to the particular lots were removed from the total basin area and the proposed storage was added accordingly. | Building footprints of 12,000 square feet were burned into the 2007 LiDAR to effectively remove the building area from the stage area. The modified surface was used with ArcHydro tools to obtain stage area for future buildout conditions. For alternatives considering additional storage, the methodology used during the alternative analysis was applied. |
| Overland Weirs | The modified surface used for the historic conditions stage storage calculations was used to develop overland weirs. Points were taken along all basin boundaries capturing high points, low points, and grade changes. As this follows the basin boundaries, mostly the building footprints were considered on its definition. | The modified surface used for current conditions stage storage calculations was used to develop overland weirs. Points were taken along the main terrain ridges to capture high points, low points, and grade changes. These do not necessarily match the basin boundary in all its length. | The process used to define the overland weirs in the current conditions was applied. However, alternatives where additional storage was considered, the portion of the overland weirs that represent the parcel(s) that were modified to accommodate the additional storage were modified accordingly. | The modified surface used for future buildout conditions stage storage calculations was used to develop overland weirs. Points were taken along all basin boundaries to capture high points, low points, and grade changes. For the alternatives where additional storage is proposed, same methodology as the one used during the alternative analysis was applied. As this follows the basin boundaries, mostly the building footprints were considered on its definition. |



## COST BENEFIT ANALYSIS

A cost benefit analysis was developed for each of the proposed alternatives evaluated during the alternative analysis. This cost benefit analysis includes capital costs, maintenance costs, Level of Service (LOS), life cycle of the alternatives (without surpassing year 2050), and impacts to upstream areas.

The capital costs were determined considering the probable construction cost of each alternative. Stormwater infrastructure construction, demolition, excavation, land acquisition, and ancillary costs were considered for the p robable construction costestimate. The cost for each item was assigned using the Florida Department of Transportations (FDOT) Item Average Unit Cost Table (as presented on the FDOT website for the time range 2019/01/01 to 2019/12/31) and projects with similar characteristics. For items without FDOT values, an estimated unit price was assumed based on available construction information. A detailed probable construction cost estimate for each alternative is included in Appendix D. Rankings for the final cost benefit matrix were based on the costs determined in these EOPCs.

The rankings for maintenance were determined based on the level of difficulty of maintaining the system. Alternatives with pumps included were ranked to include the highest maintenance, followed by stormwater ponds, and finally addition of pipe infrastructure.

Level of Service rankings were based on the results for the Alternatives Level of Service Analysis. Alternatives that achieved a higher level of service, for example 0 ", were ranked betterthan alternatives achieving 6 " for the level of service.

Similar to level of service, the life cycle of the alternatives was based on the effectiveness of each alternatives under the future buildout conditions scenario. Because not all of the alternatives were modeled under the future buildout conditions, these were assumed to be equal in ranking to the current level of service. The actual level of service was not calculated, but the overall effectiveness is assumed to be the same in relation to the other alternatives.

The impacts to upstream areas were ranked based on a review of the reduction in stages in areas outside of the Harbor Acres Development.

Appendix E includes a cost benefit matrix that has been created and summarizes the cost analysis find ings of for all six (6) alternatives considered evaluated during the alternative analysis. It should be
noted that to draw conclusions fromthe provided cost benefit matrix, priority ranking should be assigned to each category in order to capture which parameters are most important to the project success.

In addition to the cost benefit matrix, the cost-benefit ratio was also calculated for Alternatives 1, 2, and 5. This was done by determining cost of damages and displacement, lost wages or income, and road detours.

The cost of damages included costs for build ing damages, content damages, automobile damages, and exterior property damages. The building damages were calculated by determining the assessed property value of each building in the vertical floodplain and then multiplying that by the building damage multiplier of 0.12. A building was determined to be in the vertical floodplain if the finished floor elevation (FFE) was less than the flood elevation for a given storm. The next few paragraphs describe the process used to determine the FFE of the buildings.

Of the 59 homes with possible flooding, 25 elevation certificates were provided to determine FFE. There were five different elevation categories on each certificate including top of bottom floor, top of next higher floor, bottom of lowest structural member, attached garage, and lowest elevation of machinery. However, these categories were not all populated on each certificate, so a specific methodology was used to determine which of those provided elevations was the FFE. If the bottom of lowest structural member elevation was provided, then that was assumed to be the FFE. If that elevation was not provided and the top of next higher floor elevation was 8 ft or more higher than the top of bottom floor elevation or if the top of next higher floor was not provided, then the top of bottom floor elevation was assumed to be the FFE. If the difference between the top of next higher floor and bottom floor elevation was less than 8 ft , then the top of next higher floor elevation was assumed to be the FFE.

For the homes within the floodplain but without elevation certificates, an assumption needed to be made regarding if these homes flooded. First, the DEM and available elevation data were reviewed. When the homes built prior to 2008 were reviewed against the 2007 DEM (at the roadway centerlines and the building footprints), there was no correlation between the DEM and the FFE. Based on this review, there was no evidence to believe a relationship can be assumed between the DEM elevations and the FFE. Additionally, because all available data indicates FFE higher than flood elevations, and without elevation data to determine whether a home is flooded, it was assumed that no buildings flood under any conditions and building damage costs were not included in the cost-benefit analysis. This assumption reviewed by the County and accepted as a valid assumption prior to proceeding with the cost-benefit analysis.

Both content damage and automobile damages are calculated as a multiplier of structure flooding. Since there were no homes in the vertical floodplain, there were no content damage costs or automobile damage costs.

The exterior property damages were calculated by multiplying the landscape/hardscape cost of $\$ 2,000$ by the number of homes in the horizontal floodplain. GIS was used to map the floodplains and determine the number of homes that intersected with them and were in the horizontal floodplain. Each of the alternatives and storms incurred costs for exterior property damages.

Displacement costs included those for flooded structures and for structures in the horizontal floodplain. Displacement costs for flooded structures were calculated by multiplying the number of homes in the vertical floodplain by displacement duration of 14 days by the per diem cost for displacement of $\$ 250$. This cost was $\$ 0$ because there were no flooded homes. The displacement cost for structures in the horizontal floodplain was calculated by multiplying the number of homes in the horizontal floodplain by displacement duration of two days by the per diem cost for displacement of $\$ 250$. There were displacement costs for structures in the horizontal floodplain for each alternative and storm.

The lost wages due to residential flooding as well as lost business income and lost wages due to closed business were calculated. The lost wages due to residential flooding were calculated by multiplying the average household income of $\$ 61,683$ by the fraction of work hours missed in a day/total work hours in a year of $8 / 2080$ by the number of homes in the horizontal floodplain by the displacement duration of two days plus this same calculation for the number of homes in the vertical floodplain with a displacement duration of 14 days. There was a cost associated with lost wages due to residential flooding because there were homes in the horizontal floodplain in each storm and alternative.

Lost business income was calculated by finding the sum of the number of commercial structures in the horizontal floodplain multiplied by the displacement duration of two days and the number of commercial structures in the vertical floodplain multiplied by the displacement duration of 14 days and multiplying this sum by the average daily commercial revenue of $\$ 5,101$. Lost wages due to closed business was calculated by finding the sum of the number of commercial structures in the horizontal floodplain multiplied by the displacement duration of two days and the number of commercial structures in the vertical floodplain multiplied by the displacement duration of 14 days and multiplying this sum by the average number of employees per business of 10 by the number of work hours lost in a day of 8 by the average Sarasota County payroll rate of $\$ 17.39 /$ hour. Since there were no commercial structures flooded, there was no cost for lost business income or lost wages due to closed business.

Road detour and public works costs were calculated by cost of manpower, materials, and duration of events, but there were no costs associated with this because no road detours or maintenance needed to take place.

Flood insurance costs were calculated by multiplying the total assessed property for each storm by $1 \%$, but there were no homes in the vertical flood plain, so there were no flood insurance costs.

These costs were calculated for the current conditions as well as each of the three alternatives. The difference between the current conditions cost and the costs for each of the alternatives, were the avoided damages. The avoided damages was divided by the anticipated cost of construction to calculate the cost-benefit ratios. A higher cost-benefit ratio indicates a project that provide more benefit for its relative cost. A summary of the cost-benefit ratios is shown in the table below, and more detail can be seen in Appendix F.

| Alternative | Avoided <br> Damages | Anticipated <br> Construction <br> Cost | Cost-Benefit <br> Ratio |
| :---: | :---: | :---: | :---: |
| Alternative 1 | $\$ 1,033,000$ | $\$ 2,024,624$ | 0.51 |
| Alternative 2 | $\$ 1,124,000$ | $\$ 7,411,250$ | 0.15 |
| Alternative 3 | $\$ 1,223,000$ | $\$ 34,912,199$ | 0.04 |











|  |  |  |  |  | cumamer | HARBOR ACRES ALTERNATIVE ANALYSIS SARASOTA COUNTY, FLORIDA | STORMWATER DRAINAGE SYSTEM ALTERNATIVE 4 | EXHEIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | momitum |  |  | 8 |
|  | REvISOMS | date | Br |  | \% \% ¢ |  |  |  |




# Meeting Minutes 

## Meeting with Sarasota County Harbor Acres Alternative - Kimley-Horn Project Number 048048123.1

January 27, 2017

Ben Quartermaine, Sarasota County
Molly Williams, Sarasota County
Kellie Clark, Kimley-Horn

Michael DelRossi, City of Sarasota
Douglas Jeffcoat, City of Sarasota
Amy Wicks, Kimley-Horn

## General Information

- Sarasota County explained that they are currently surveying the project area. They are not working off a benchmark but instead using a hand held. Survey may be 0.1' off. County will send survey to Kimley-Horn once they are done. Likely sometime the week of January 30.
- Survey will be in NAVD 88. County requires the project completed in NAVD 88.
- Sarasota County agrees that Kimley-Horn can wait to start the data collection task until Kimley-Horn receives the County survey. Kimley-Horn indicated while it will affect the data collection deliverable date, other project milestone dates should not be affected by the delay.


## Kimley-Horn Needs from County:

- LiDAR and 1948 Aerials - Kimley-Horn to request through Sarasota County Mapping.
- Flooding complaints - County will pull information and send to Kimley-Horn. This will include pictures of flooding and complaints after events.
- Model of the area including Harbor Acres - Kimley-Horn to follow up with Robert for the latest and greatest. It should be the Sarasota Bay Coastal Phase 3 Model.


## Utilities Work in Harbor Acres:

- Sarasota County explained County Utilities is doing work in Harbor Acres at very end including resurfacing. In addition, new work is anticipated to include a County project that will modify the inlets to a hybrid box with open throats that will still have the ability to capture organics before they are discharged.


## Conditions to be Addressed:

- At historic conditions - was the system adequate? What was the level of service?
- At current conditions - is the system adequate? What is the level of service?
- At future conditions - is the system adequate? What is the level of service?


## Kimley»)Horn

## Methodology:

- Sea level rise will be considered by setting tailwater conditions based on sea level information for each condition.
- The full contributing area to Harbor Acres will be considered.
- Kimely-Horn asked if modeling will be done in ICPR 3 or ICPR 4. Sarasota County said to use whatever model version the Sarasota Bay Coastal Phase 3 Model is in.


## Alternatives that may be Considered:

- New system including conveyance and inlets
- Pumps
- Elevate road to elevation $5^{\prime}$ or $6^{\prime}$ since homes are now at elevation $12^{\prime}$
- Cost analysis of alternatives

Sarasota County explained to the City of Sarasota that because the stormwater utility does not fund CIP projects, the cost will be borne by the properties in the contributing basin.

## Coordination:

- Deliverables will be provided to the County and the County will provide them to the City.
- The City can provide comments on deliverables.
- The City will be invited to any meetings the project team has.

Sarasota County verified this is a lump sum contract.
Results for Current, Current with Alternatives, Future and Future with Alternatives Conditions

| Basin Name | Minimum Edge of Pavement (ft) | Water Surface Elevation <br> (ft) |  |  |  |  |  |  |  | Level of Service <br> (in) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Current Conditions | Future Conditions | Alternative 1 |  | Alternative 2 |  | Alternative 5 |  | Current Conditions | Future Conditions | Alternative 1 |  | Alternative 2 |  | Alternative 5 |  |
|  |  |  |  | Current Conditions | Future Conditions | $\begin{gathered} \text { Current } \\ \text { Conditions } \end{gathered}$ | Future Conditions | Current Conditions | Future Conditions |  |  | Current Conditions | Future Conditions | $\begin{gathered} \text { Current } \\ \text { Conditions } \end{gathered}$ | Future Conditions | Current Conditions | Future Conditions |
| HA01 | 1.98 | 4.0 | 4.1 | 2.8 | 3.6 | 2.8 | 3.6 | 2.3 | 3.0 | 25 | 25 | 10 | 19 | 10 | 19 | 4 | 12 |
| HA02 | 1.67 | 4.1 | 4.1 | 2.7 | 3.6 | 2.7 | 3.5 | 2.1 | 3.0 | 29 | 29 | 12 | 23 | 12 | 22 | 5 | 16 |
| HAO3 | 2.24 | 4.0 | 4.1 | 3.2 | 3.7 | 2.6 | 3.2 | 2.6 | 3.2 | 22 | 22 | 11 | 17 | 4 | 12 | 4 | 12 |
| HAO4 | 3.66 | 4.8 | 4.9 | 4.6 | 4.4 | 4.6 | 4.4 | 3.7 | 4.4 | 14 | 14 | 11 | 9 | 11 | 9 | 1 | 9 |
| HAOS | 2.9 | 4.8 | 4.5 | 3.9 | 4.1 | 3.2 | 3.1 | 2.8 | 3.1 | 23 | 20 | 11 | 14 | 3 | 3 | 0 | 3 |
| HA06 | 3.47 | 4.8 | 4.7 | 4.5 | 4.6 | 4.5 | 4.6 | 3.8 | 4.6 | 16 | 15 | 12 | 13 | 12 | 13 | 3 | 13 |
| HA07 | 2.57 | 4.2 | 4.1 | 3.3 | 3.7 | 3.3 | 3.7 | 2.7 | 3.6 | 20 | 18 | 8 | 13 | 8 | 13 | 1 | 12 |
| HA08 | 1.87 | 4.2 | 4.1 | 2.7 | 3.3 | 2.7 | 3.3 | 2.3 | 3.2 | 28 | 26 | 10 | 18 | 10 | 18 | 5 | 16 |
| HAO9 | 2.59 | 4.2 | 4.1 | 3.5 | 3.8 | 3.5 | 3.8 | 2.9 | 3.6 | 19 | 18 | 11 | 14 | 11 | 14 | 4 | 12 |
| HA10 | 2.07 | 4.2 | 4.1 | 3.1 | 3.8 | 3.1 | 3.8 | 2.4 | 3.4 | 26 | 24 | 12 | 21 | 12 | 21 | 4 | 16 |
| HA11 | 5.39 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

[^1]

| PRELIMINARY ENGINEER'S OPINION OF PROBABLE COST OF CONSTRUCTION SITE WORK FOR |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HARBOR ACRES DEVELOPMENT - PROPOSED ALTERNATIVE 2 |  |  |  |  |  |  |
| ITEM | DESCRIPTION | ESTIMA | TED QUANTITY | UNIT PRICE |  | MOUNT |
| CONSTRUCTION |  |  |  |  |  |  |
| I. STORMWATER/DRAINAGE |  |  |  |  |  |  |
| 1 | Pipe Grout in Place | 220 | CY | \$ 140.00 | \$ | 30,800.00 |
| 2 | Pipe Culv, RCP, Circular, 18" | 83 | LF | \$ 74.00 | \$ | 6,142.00 |
| 3 | Pipe Culv, RCP, Elliptical, 23" x 14" | 175 | LF | \$ 135.00 | \$ | 23,625.00 |
| 4 | Pipe Culv, RCP, Elliptical, 30" x 19" | 547 | LF | \$ 152.00 | \$ | 83,144.00 |
| 5 | Pipe Culv, RCP, Elliptical, $38{ }^{\prime \prime} \times 24{ }^{\prime \prime}$ | 559 | LF | \$ 170.00 | \$ | 95,030.00 |
| 6 | Pipe Culv, RCP, Elliptical, 45" x 29" | 1,723 | LF | \$ 215.00 | \$ | 370,423.50 |
| 7 | Pipe Culv, RCP, Elliptical, 68" x 43" | 100 | LF | \$ 362.00 | \$ | 36,200.00 |
| 8 | Pipe Culv, RCP, Elliptical, 76" x 48" | 190 | LF | \$ 236.00 | \$ | 44,840.00 |
| 9 | Pipe Culv, RCP, Round, 48" | 150 | LF | \$ 211.00 | \$ | 31,650.00 |
| 13 | FDOT Large Inlet (Estimated with Type H Inlet Cost) | 27 | EA | \$ 4,400.00 | \$ | 118,800.00 |
| 14 | Vertical Weir | 2 | EA | \$ 32,000.00 | \$ | 64,000.00 |
| 15 | Junction Box Drainage | 2 | EA | \$ 3,280.00 | \$ | 6,560.00 |
| STORMWATER/DRAINAGE TOTAL |  |  |  |  | \$ | 911,214.50 |
| II. SITE WORK |  |  |  |  |  |  |
| 1 | Regular Excavation | 22,049 | CY | \$ 6.00 | \$ | 132,294.00 |
| 2 | Fine Grading | 1.3 | AC | \$ 4,800.00 | \$ | 6,240.00 |
| 3 | Onsite Structures Demolition | 15,488 | SF | \$ 10.00 | \$ | 154,880.00 |
| 4 | Clearing and Grubbing | 5.3 | AC | \$ 10,500.00 | \$ | 55,650.00 |
| 5 | Haul Excess Material Export? | 22,049 | CY | \$ 10.00 | \$ | 220,490.00 |
| SITE WORK TOTAL |  |  |  |  | \$ | 569,554.00 |
| III. PAVEMENT COSNTRUCTION |  |  |  |  |  |  |
| 1 | 2" Type SP 12.5 Asphalt | 139 | TN | \$ 115.00 | \$ | 15,985.00 |
| 2 | 8" Limerock Base (Min. LBR 100) | 1,236 | SY | \$ 12.00 | \$ | 14,832.00 |
| 3 | 12" Type B Stabilized Subgrade (Min. LBR 40) | 1,236 | SY | \$ 4.00 | \$ | 4,944.00 |
| 4 | Curb Type Valley Gutter | 840 | LF | \$ 20.00 | \$ | 16,800.00 |
| 5 | Driveway Removal and Restoration, and Mailbox Relocation | 652.0 | SF | \$ 9.00 | \$ | 5,868.00 |
| 6 | Existing Curb Removal |  | LF | \$ 10.00 | \$ | 8,400.00 |
| 7 | Existing Asphalt Pavement Removal | 1,236 |  | \$ 10.00 | \$ | 12,360.00 |
| PAVEMENT CONSTRUCTION TOTAL |  |  |  |  | \$ | 79,189.00 |
| IV. LANDSCAPE |  |  |  |  |  |  |
| 1 | Landscape and Irrigation Repair | 3 | EA | \$ 1,000.00 | \$ | 3,000.00 |
| 2 | Sod | 25,652 | SY | \$ 2.50 | \$ | 64,130.00 |
| LANDSCAPE TOTAL |  |  |  |  | \$ | 67,130.00 |
| V. OTHER |  |  |  |  |  |  |
| 1 | Erosion Control | 1 | LS | \$ 52,229.51 | \$ | 52,229.51 |
| 2 | Maintenance of Traffic | 1 | LS | \$ 34,819.67 | \$ | 34,819.67 |
| 3 | Mobilization/Demobilization | 1 | LS | \$ 87,049.18 | \$ | 87,049.18 |
|  |  |  |  | ER TOTAL COST | \$ | 174,098.36 |
| CONSTRUCTION SUMMARY |  |  |  |  |  |  |
| I. STORMWATER/DRAINAGE |  |  |  |  | \$ | 911,214.50 |
| II. SITE WORK |  |  |  |  | \$ | 569,554.00 |
| III. PAVEMENT COSNTRUCTION |  |  |  |  | \$ | 79,189.00 |
| IV. LANDSCAPE |  |  |  |  | \$ | 67,130.00 |
| V. OTHER |  |  |  |  | \$ | 174,098.36 |
| HARBOR ACRES PROPOSED ALTERNATIVE 2 PROJECT CONSTRUCTION SUBTOTAL |  |  |  |  | \$ | 1,801,185.86 |
| CONTINGENCY (30\% OF CONSTRUCTION SUBTOTAL) |  |  |  |  | \$ | 540,355.76 |
| HARBOR ACRES PROPOSED ALTERNATIVE 2 PROJECT CONSTRUCTION TOTAL |  |  |  |  | \$ | 2,341,541.62 |
|  |  |  |  |  |  |  |
| LAND ACQUISITION |  |  |  |  |  |  |
| 1 | Parcel Account \#2037110019 / HA03 |  | EA | \$ 1,805,800.00 | \$ | 1,805,800.00 |
| 2 Parcel Account \#2037110025 / HA05 |  |  | EA | \$ 2,795,600.00 | \$ | 2,795,600.00 |
|  |  | LAND ACQUISITION TOTAL |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| PROJECT SUMMARY |  |  |  |  |  |  |
| HARBOR ACRES PROPOSED ALTERNATIVE 2 PROJECT CONSTRUCTION TOTAL |  |  |  |  | \$ | 2,341,541.62 |
| ENGINEERING/PERMITTING/CONSTRUCTION MANAGEMENT |  |  |  |  | \$ | 468,308.32 |
| LAND ACQUISITION |  |  |  |  | \$ | 4,601,400.00 |
| HARBOR ACRES PROPOSED ALTERNATIVE 2 PROJECT TOTAL |  |  |  |  | \$ | 7,411,249.95 |
|  |  |  |  |  |  |  |
| NOTES |  |  |  |  |  |  |
| Costs presented above are based on the Florida Departement of Transportation (FDOT) <br> * Estimated cost |  |  |  |  |  |  |
| Disclaimer: The Engineer has no control over the cost of labor, materials, equipment, or over the Contractor's methods of determining prices or over competitive bidding or market conditions. Opinions of probable costs provided herein are based on the information known to Engineer at this time and represent only the Engineer's judgment as a design professional familiar with the construction industry. The Engineer cannot and does not guarantee that proposals, bids, or actual construction costs will not vary from its opinions of probable costs. |  |  |  |  |  |  |



| PRELIMINARY ENGINEER'S OPINION OF PROBABLE COST OF CONSTRUCTION SITE WORK FOR |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HARBOR ACRES DEVELOPMENT - PROPOSED ALTERNATIVE 4 |  |  |  |  |  |  |
| ITEM | DESCRIPTION | ESTIMA | TED QUANTITY | UNIT PRICE |  | MOUNT |
| CONSTRUCTION |  |  |  |  |  |  |
| I. STORMWATER/DRAINAGE |  |  |  |  |  |  |
| 1 | Pipe Grout in Place | 220 | CY | \$ 140.00 | \$ | 30,800.00 |
| 2 | Pipe Culv, RCP, Circular, 18" | 83 | LF | \$ 74.00 | \$ | 6,142.00 |
| 3 | Pipe Culv, RCP, Elliptical, 23" x 14" | 25 | LF | \$ 135.00 | \$ | 3,375.00 |
| 4 | Pipe Culv, RCP, Elliptical, 30" x 19" | 150 | LF | \$ 152.00 | \$ | 22,800.00 |
| 5 | Pipe Culv, RCP, Elliptical, $38{ }^{\prime \prime} \times 24{ }^{\prime \prime}$ | 354 | LF | \$ 170.00 | \$ | 60,180.00 |
| 6 | Pipe Culv, RCP, Elliptical, 45" x 29" | 844 | LF | \$ 215.00 | \$ | 181,460.00 |
| 7 | Pipe Culv, RCP, Elliptical, 53" x 34" | 51 | LF | \$ 230.00 | \$ | 11,707.00 |
| 8 | Pipe Culv, RCP, Elliptical, 68" x 43" | 465 | LF | \$ 362.00 | \$ | 168,330.00 |
| 9 | Pipe Culv, RCP, Elliptical, 76" x 48" | 280 | LF | \$ 236.00 | \$ | 66,080.00 |
| 10 | Pipe Culv, RCP, Elliptical, 83" x 53"* | 380 | LF | \$ 400.00 | \$ | 152,000.00 |
| 11 | Pipe Culv, RCP, Round, 48" | 150 | LF | \$ 211.00 | \$ | 31,650.00 |
| 15 | FDOT Large Inlet (Estimated with Type H Inlet Cost) | 26 | EA | \$ 4,400.00 | \$ | 114,400.00 |
| 16 | Vertical Weir | 2 | EA | \$ 32,000.00 | \$ | 64,000.00 |
| STORMWATER/DRAINAGE TOTAL |  |  |  |  | \$ | 912,924.00 |
| II. SITE WORK |  |  |  |  |  |  |
| 1 | Regular Excavation | 22,049 | CY | \$ 6.00 | \$ | 132,294.00 |
| 2 | Fine Grading | 1.3 | AC | \$ $4,800.00$ | \$ | 6,240.00 |
| 3 | Onsite Structures Demolition | 15,488 | SF | \$ $\quad 10.00$ | \$ | 154,880.00 |
| 4 | Clearing and Grubbing | 4.4 | AC | \$ 10,500.00 | \$ | 46,200.00 |
| 5 | Haul Excess Material Export? | 22,049 | CY | \$ 10.00 | \$ | 220,490.00 |
| ( SITE WORK TOTAL |  |  |  |  | \$ | 560,104.00 |
| III. PAVEMENT COSNTRUCTION |  |  |  |  |  |  |
| 1 | 2" Type SP 12.5 Asphalt | 137 | TN | \$ 115.00 | \$ | 15,783.75 |
| 2 | 8" Limerock Base (Min. LBR 100) | 1,220 | SY | \$ 12.00 | \$ | 14,640.00 |
| 3 | 12" Type B Stabilized Subgrade (Min. LBR 40) | 1,220 | SY | \$ 4.00 | \$ | 4,880.00 |
| 4 | Curb Type Valley Gutter | 840 | LF | \$ 20.00 | \$ | 16,800.00 |
| 5 | Driveway Removal and Restoration, and Mailbox Relocation | 652.0 | SF | \$ 9.00 | \$ | 5,868.00 |
| 6 | Existing Curb Removal | 840 | LF | \$ 10.00 | \$ | 8,400.00 |
| 7 | Existing Asphalt Pavement Removal | 1,220 | SY | \$ 10.00 | \$ | 12,200.00 |
| PAVEMENT CONSTRUCTION TOTAL |  |  |  |  | \$ | 78,571.75 |
| IV. LANDSCAPE |  |  |  |  |  |  |
| 1 | Landscape and Irrigation Repair | 3 | EA | \$ 1,000.00 | \$ | 3,000.00 |
| 2 | Sod | 21,296 | SY | \$ 2.50 | \$ | 53,240.00 |
| LANDSCAPE TOTAL |  |  |  |  | \$ | 56,240.00 |
| V. OTHER |  |  |  |  |  |  |
| 1 | Erosion Control | 1 | LS | \$ 51,611.66 | \$ | 51,611.66 |
| 2 | Maintenance of Traffic | 1 | LS | \$ 34,407.77 | \$ | 34,407.77 |
| 3 | Mobilization/Demobilization | 1 | LS | \$ 86,019.43 | \$ | 86,019.43 |
| CONSTRUCTION SUMMARY |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| I. STORMWATER/DRAINAGE |  |  |  |  | \$ | 912,924.00 |
| II. SITE WORK |  |  |  |  | \$ | 560,104.00 |
| III. PAVEMENT COSNTRUCTION |  |  |  |  | \$ | 78,571.75 |
| IV. LANDSCAPE |  |  |  |  | \$ | 56,240.00 |
| V. OTHER |  |  |  |  | \$ | 172,038.85 |
| HARBOR ACRES PROPOSED ALTERNATIVE 4 PROJECT CONSTRUCTION SUBTOTAL |  |  |  |  | \$ | 1,779,878.60 |
| CONTINGENCY (30\% OF CONSTRUCTION SUBTOTAL) |  |  |  |  | \$ | 533,963.58 |
| HARBOR ACRES PROPOSED ALTERNATIVE 4 PROJECT CONSTRUCTION TOTAL |  |  |  |  | \$ | 2,313,842.18 |
|  |  |  |  |  |  |  |
| LAND ACQUISITION |  |  |  |  |  |  |
| 1 | Parcel Account \#2037110019 / HA03 |  | EA | \$ 1,805,800.00 | \$ | 1,805,800.00 |
| 2 | Parcel Account \#2037110025 / HA05 |  | EA | \$ 2,795,600.00 | \$ | 2,795,600.00 |
| LAND ACQUISITION TOTAL |  |  |  |  | \$ | 4,601,400.00 |
|  |  |  |  |  |  |  |
| PROJECT SUMMARY |  |  |  |  |  |  |
| HARBOR ACRES PROPOSED ALTERNATIVE 4 PROJECT CONSTRUCTION TOTAL |  |  |  |  | \$ | 2,313,842.18 |
| ENGINEERING/PERMITTING/CONSTRUCTION MANAGEMENT |  |  |  |  | \$ | 462,768.44 |
| LAND ACQUISITION |  |  |  |  | \$ | 4,601,400.00 |
| HARBOR ACRES PROPOSED ALTERNATIVE 4 PROJECT TOTAL |  |  |  |  | \$ | 7,378,010.62 |
|  |  |  |  |  |  |  |
| NOTES |  |  |  |  |  |  |
| Costs presented above are based on the Florida Departement of Transportation (FDOT) <br> * Estimated cost |  |  |  |  |  |  |
| Disclaimer: The Engineer has no control over the cost of labor, materials, equipment, or over the Contractor's methods of determining prices or over competitive bidding or market conditions. Opinions of probable costs provided herein are based on the information known to Engineer at this time and represent only the Engineer's judgment as a design professional familiar with the construction industry. The Engineer cannot and does not guarantee that proposals, bids, or actual construction costs will not vary from its opinions of probable costs. |  |  |  |  |  |  |



| PRELIMINARY ENGINEER'S OPINION OF PROBABLE COST OF CONSTRUCTION SITE WORKFOR |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HARBOR ACRES DEVELOPMENT - PROPOSED ALTERNATIVE 6 |  |  |  |  |  |  |
| ITEM | DESCRIPTION | ESTIMA | TED QUANTITY | UNIT PRICE |  | AMOUNT |
| CONSTRUCTION |  |  |  |  |  |  |
| I. STORMWATER/DRAINAGE |  |  |  |  |  |  |
| 1 | Pipe Grout in Place | 250 | CY | 140.00 | \$ | 35,000.00 |
| 2 | Pipe Culv, RCP, Circular, 18" | 214 | LF | 74.00 | \$ | 15,836.00 |
| 3 | Pipe Culv, RCP, Circular, 24" | 141 | LF | 94.00 | \$ | 13,244.60 |
| 4 | Pipe Culv, RCP, Elliptical, 23" x 14" | 30 | LF | 135.00 | \$ | 4,050.00 |
| 5 | Pipe Culv, RCP, Elliptical, 30" x 19" | 210 | LF | 152.00 | \$ | 31,920.00 |
| 6 | Pipe Culv, RCP, Elliptical, 38" $\times 24$ " | 50 | LF | 170.00 | \$ | 8,500.00 |
| 7 | Pipe Culv, RCP, Elliptical, 45" x 29" | 385 | LF | 215.00 | \$ | 82,775.00 |
| 8 | Pipe Culv, RCP, Elliptical, 53" x 34" | 430 | LF | 230.00 | \$ | 98,900.00 |
| 9 | Pipe Culv, RCP, Elliptical, 76" x 48" | 325 | LF | 236.00 | \$ | 76,700.00 |
| 10 | Pipe Culv, RCP, Elliptical, 83" x 53"* | 430 | LF | 400.00 | \$ | 172,000.00 |
| 11 | Pipe Culv, RCP, Elliptical, 91" x 58" | 50 | LF | 1,220.00 | \$ | 61,000.00 |
| 15 | FDOT Large Inlet (Estimated with Type H Inlet Cost) | 29 | EA | 4,400.00 | \$ | 127,600.00 |
| 16 | Vertical Weir | 8 | EA | 32,000.00 | \$ | 256,000.00 |
| 17 | Junction Box Drainage | 2 | EA | 3,280.00 | \$ | 6,560.00 |
| STORMWATER/DRAINAGE TOTAL ${ }^{\text {S }}$ \$ $990,085.60$ |  |  |  |  |  |  |
| II. SITE WORK |  |  |  |  |  |  |
| 1 | Regular Excavation | 92,129 | CY | \$ 6.00 | \$ | 552,774.00 |
| 2 | Fine Grading | 5.3 | AC | 4,800.00 | \$ | 25,440.00 |
| 3 | Onsite Structures Demolition | 78,065 | SF | 10.00 | \$ | 780,650.00 |
| 4 | Clearing and Grubbing | 7.4 | AC | 10,500.00 | \$ | 77,700.00 |
| 5 | Haul Excess Material Export? | 92,129 | CY | 10.00 | \$ | 921,290.00 |
|  |  |  |  | TE WORK TOTAL | \$ | 2,357,854.00 |
| III. PAVEMENT COSNTRUCTION |  |  |  |  |  |  |
| 1 | 2" Type SP 12.5 Asphalt | 156 | TN | 115.00 | \$ | 17,911.25 |
| 2 | 8" Limerock Base (Min. LBR 100) | 1,384 | SY | 12.00 | \$ | 16,608.00 |
| 3 | 12" Type B Stabilized Subgrade (Min. LBR 40) | 1,384 | SY | 4.00 | \$ | 5,536.00 |
| 4 | Curb Type Valley Gutter | 960 | LF | 20.00 | \$ | 19,200.00 |
| 5 | Driveway Removal and Restoration, and Mailbox Relocation | 1,991 | SF | 9.00 | \$ | 17,919.00 |
| 6 | Existing Curb Removal | 960 | LF | 10.00 | \$ | 9,600.00 |
| 7 | Existing Asphalt Pavement Removal | 1,384 | SY | 10.00 | \$ | 13,840.00 |
|  |  |  | PAVEMENT CON | RUCTION TOTAL | \$ | 100,614.25 |
| IV. LANDSCAPE |  |  |  |  |  |  |
| 1 | Landscape and Irrigation Repair | 11 | EA | 1,000.00 | \$ | 11,000.00 |
| 2 | Sod | 35,816 | SY | \$ 2.50 | \$ | 89,540.00 |
|  |  |  |  | NDSCAPE TOTAL | \$ | 100,540.00 |
| V. OTHER |  |  |  |  |  |  |
| 1 | Erosion Control | 1 | LS | \$ 113,925.91 | \$ | 113,925.91 |
| 2 | Maintenance of Traffic | 1 | LS | 75,950.61 | \$ | 75,950.61 |
| 3 | Mobilization/Demobilization | 1 | LS | 189,876.52 | S | 189,876.52 |
|  |  |  |  | HER TOTAL COST | \$ | 379,753.04 |
| CONSTRUCTION SUMMARY |  |  |  |  |  |  |
| I. STORMWATER/DRAINAGE |  |  |  |  | \$ | 990,085.60 |
| II. SITE WORK |  |  |  |  | \$ | 2,357,854.00 |
| III. PAVEMENT COSNTRUCTION |  |  |  |  | \$ | 100,614.25 |
| IV. LANDSCAPE |  |  |  |  | \$ | 100,540.00 |
| V. OTHER |  |  |  |  | \$ | 379,753.04 |
| HARBOR ACRES PROPOSED ALTERNATIVE 6 PROJECT CONSTRUCTION SUBTOTAL |  |  |  |  | \$ | 3,928,846.89 |
| CONTINGENCY ( $\mathbf{3 0 \%}$ OF CONSTRUCTION SUBTOTAL) |  |  |  |  | \$ | 1,178,654.07 |
| HARBOR ACRES PROPOSED ALTERNATIVE 6 PROJECT CONSTRUCTION TOTAL |  |  |  |  | \$ | 5,107,500.96 |
|  |  |  |  |  |  |  |
| LAND ACQUISITION |  |  |  |  |  |  |
| 1 | Parcel Account \#2037130013 / HA01 |  | EA | \$ 7,650,000.00 | \$ | 7,650,000.00 |
| 2 | Parcel Account \#2037110016 / HA02 |  | EA | \$ 3,350,000.00 | \$ | 3,350,000.00 |
| 3 | Parcel Account \#2037110019 / HA03 |  | EA | \$ 1,805,800.00 | \$ | 1,805,800.00 |
| 4 | Parcel Account \#2037110013 / HA04 |  | EA | \$ 87, 8 , ${ }^{\text {d }}$ | \$ | 877,500.00 |
| 5 | Parcel Account \#2037110025 / HA05 |  | EA | \$ 2,795,600.00 | \$ | 2,795,600.00 |
| 6 | Parcel Account \#2037060026 / HA06 |  | EA | \$ 1,111,100.00 | \$ | 1,111,100.00 |
| 7 | Parcel Account \#2037060040 / HA07 |  | EA | \$ 2,674,900.00 | \$ | 2,674,900.00 |
| 8 | Parcel Account \#2037050009 / HA08 |  | EA | \$ 2,921,400.00 | \$ | 2,921,400.00 |
| 9 | Parcel Account \#2037040010 / HA09 |  | EA | \$ 4,578,000.00 | \$ | 4,578,000.00 |
| 10 | Parcel Account \#2037030029 / HA10 |  | EA | \$ 1,309,100.00 | S | 1,309,100.00 |
|  |  |  | LAND | QUISITION TOTAL | \$ | 29,073,400.00 |
| PROJECT SUMMARY |  |  |  |  |  |  |
| HARBOR ACRES PROPOSED ALTERNATIVE 6 PROJECT CONSTRUCTION TOTAL |  |  |  |  | \$ | 5,107,500.96 |
| ENGINEERING/PERMITTING/CONSTRUCTION MANAGEMENT |  |  |  |  | \$ | 1,021,500.19 |
| LAND ACQUISITION |  |  |  |  | \$ | 29,073,400.00 |
| HARBOR ACRES PROPOSED ALTERNATIVE 6 PROJECT TOTAL |  |  |  |  | \$ | 35,202,401.15 |
| HARBORACRES PROPOSED ALTERNATIVE 6 PROJECT TOTAL \$ 35,20,401.15 |  |  |  |  |  |  |
| NOTES |  |  |  |  |  |  |
| Costs presented above are based on the Florida Departement of Transportation (FDOT) |  |  |  |  |  |  |
| * Estimated cost |  |  |  |  |  |  |
| Disclaimer: The Engineer has no control over the cost of labor, materials, equipment, or over the Contractor's methods of determining prices or over competitive bidding or market conditions. Opinions of probable costs provided herein are based on the information known to Engineer at this time and represent only the Engineer's judgment as a design professional familiar with the construction industry. The Engineer cannot and does not guarantee that proposals, bids, or actual construction costs will not vary from its opinions of probable costs. |  |  |  |  |  |  |



Appendix E: Cost Benefit Matrix

| Priority Weighting (Optional) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Alternative 1 | 6 | 6 | 4 | 4 |
| Alternative 2 | 4 | 5 | 4 | 4 |
| Alternative 3 | 3 | 4 | 4 | 4 |
| Alternative 4 | 5 | 5 | 5 | 5 | | Alternative 5 |
| :--- |



## Harbor Acres Cost-Benefit Analysis - Current Conditions

| Expected Damages for 30 - year Project Life $=\$$ | $1,342,000$ |
| ---: | :--- | :---: |
| Anticipated Water Quality Constuction and Design Costs $=\$$ | - |
| Anticipated Flood Control Constuction and Design Costs $=\$$ | - |

Anticipated Construction and Design Cost for Project $=\$$
Cost Benefit Ratio =

Expected Damages by Component

| Component |  | 2 - Year Event |  | 5 - Year Event |  | 10 - Year Event |  | 25 - Year Event |  | 50 - Year Event |  | 100-Year Event |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building Damages | BD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Content Damages | $C D$ | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Automobile Damages | AD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Exterior Property Damages | PD | \$ | 52,000 | \$ | 78,000 | \$ | 98,000 | \$ | 104,000 | \$ | 104,000 | \$ | 106,000 |
| Displacement Costs for Flooded Structures | DISF | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Displacement Costs for Structures in the Horizontal Floodplain | DIS | \$ | 13,000 | \$ | 19,500 | \$ | 24,500 | \$ | 26,000 | \$ | 26,000 | \$ | 26,500 |
| Lost Wages due to Residential Flooding | LW | \$ | 12,337 | \$ | 18,505 | \$ | 23,250 | \$ | 24,673 | \$ | 24,673 | \$ | 25,148 |
| Lost Business Income | LBI | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Lost Wages due to Closed Business | LWB | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Road Detour Costs | RD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Public Works Costs | PW | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Flood Insurance Costs | FI | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Total Expected Damages |  | \$ | 77,337 | \$ | 116,005 | \$ | 145,750 | \$ | 154,673 | \$ | 154,673 | \$ | 157,648 |

## Annualized Damages

| Storm Event | Expected Damages for Storm Event |  | Probability of Occurance During Any Year | Expected Annual Damages For Storm Event |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 - Year Event | \$ | 77,337 | 50.0\% | \$ | 38,668 |
| 5 - Year Event | \$ | 116,005 | 20.0\% | \$ | 23,201 |
| 10-Year Event | \$ | 145,750 | 10.0\% | \$ | 14,575 |
| 25 - Year Event | \$ | 154,673 | 4.0\% | \$ | 6,187 |
| 50 - Year Event | \$ | 154,673 | 2.0\% | \$ | 3,093 |
| 100 - Year Event | \$ | 157,648 | 1.0\% | \$ | 1,576 |
| Total Expected Annual Cost (A) |  |  |  | \$ | 87,301 |


| Present Worth Analysis |  |
| :--- | ---: |
| Total Expected Annual Cost (A) | $\$$ |
| Interest (I) | $\mathrm{P}=\mathrm{A}\left\{\left[(1+I)^{\mathrm{n}}-1\right] /\left[I \times(1+I)^{n}\right]\right\}$ |
| Project Life ( $\mathbf{n}$ ) | 57,301 |
|  | $5.00 \%$ |
| Expected Damages for $\mathbf{3 0}$ - year Project Life (P) | 30 |

## Harbor Acres Cost-Benefit Analysis - Alternative 1

| Avoided Damages for 30 - year Project Life $=$ | $\$$ | $1,033,000$ |
| ---: | :--- | :---: |
| Anticipated Water Quality Constuction and Design Costs $=$ | $\$$ | - |
| Anticipated Flood Control Constuction and Design Costs $=$ | $\$$ | $2,024,624$ |
| Anticipated Construction and Design Cost for Project $=$ | $\$$ | $2,024,624$ |
| Cost Benefit Ratio | $=$ | 0.51 |

Avoided Damages by Component

| Component |  | 2 - Year Event |  | 5 - Year Event |  | 10 - Year Event |  | 25 - Year Event |  | $50-$ Year Event |  | 100 - Year Event |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building Damages | BD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Content Damages | $C D$ | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Automobile Damages | AD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Exterior Property Damages | PD | \$ | 42,000 | \$ | 66,000 | \$ | 86,000 | \$ | 92,000 | \$ | 92,000 | \$ | 82,000 |
| Displacement Costs for Flooded Structures | DISF | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Displacement Costs for Structures in the Horizontal Floodplain | DIS | \$ | 10,500 | \$ | 3,000 | \$ | 3,000 | \$ | 3,000 | \$ | 3,000 | \$ | 6,000 |
| Lost Wages due to Residential Flooding | LW | \$ | 9,964 | \$ | 15,658 | \$ | 20,403 | \$ | 21,826 | \$ | 21,826 | \$ | 19,454 |
| Lost Business Income | LBI | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Lost Wages due to Closed Business | LWB | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Road Detour Costs | RD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Public Works Costs | PW | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Flood Insurance Costs | FI | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Total Avoided Damages |  | \$ | 62,464 | \$ | 84,658 | \$ | 109,403 | \$ | 116,826 | \$ | 116,826 | \$ | 107,454 |

## Annualized Damages

| Storm Event | Avoided Damages for Storm Event |  | Probability of Occurance During Any Year | Avoided Annual Damages For Storm Event |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 - Year Event | \$ | 62,464 | 50.0\% | \$ | 31,232 |
| 5 - Year Event | \$ | 84,658 | 20.0\% | \$ | 16,932 |
| 10-Year Event | \$ | 109,403 | 10.0\% | \$ | 10,940 |
| 25 - Year Event | \$ | 116,826 | 4.0\% | \$ | 4,673 |
| $50-$ Year Event | \$ | 116,826 | 2.0\% | \$ | 2,337 |
| 100 - Year Event | \$ | 107,454 | 1.0\% | \$ | 1,075 |
| Total Avoided Annual Cost (A) |  |  |  | \$ | 67,188 |


|  | Present Worth Analysis |
| :--- | ---: |
| Total Avoided Annual Cost (A) | $\mathrm{P}=\mathrm{A}\left\{\left[(1+I)^{\mathrm{n}}-1\right] /\left[I \times(1+I)^{n}\right]\right\}$ |
| Interest (I) | 67,188 |
| Project Life ( $\mathbf{n}$ ) | $5.00 \%$ |
|  | 30 |
| Avoided Damages for $\mathbf{3 0}$ - year Project Life (P) | $\mathbf{\$}$ |

## Harbor Acres Cost-Benefit Analysis - Alternative 2

| Avoided Damages for 30 - year Project Life $=$ | $\$$ | $1,124,000$ |
| ---: | :--- | ---: |
| Anticipated Water Quality Constuction and Design Costs $=$ | $\$$ | - |
| Anticipated Flood Control Constuction and Design Costs $=$ | $\$$ | $7,411,250$ |
| Anticipated Construction and Design Cost for Project $=$ | $\$$ | $7,411,250$ |
| Cost Benefit Ratio | $=$ | 0.15 |

Avoided Damages by Component

| Component |  | 2 - Year Event |  | 5 - Year Event |  | 10 - Year Event |  | 25 - Year Event |  | $50-\mathrm{Year}$ Event |  | 100 - Year Event |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building Damages | BD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Content Damages | $C D$ | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Automobile Damages | AD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Exterior Property Damages | PD | \$ | 42,000 | \$ | 66,000 | \$ | 86,000 | \$ | 92,000 | \$ | 92,000 | \$ | 86,000 |
| Displacement Costs for Flooded Structures | DISF | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Displacement Costs for Structures in the Horizontal Floodplain | DIS | \$ | 10,500 | \$ | 16,500 | \$ | 21,500 | \$ | 23,000 | \$ | 23,000 | \$ | 21,500 |
| Lost Wages due to Residential Flooding | LW | \$ | 9,964 | \$ | 15,658 | \$ | 20,403 | \$ | 21,826 | \$ | 21,826 | \$ | 20,403 |
| Lost Business Income | LBI | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Lost Wages due to Closed Business | LWB | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Road Detour Costs | RD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Public Works Costs | PW | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Flood Insurance Costs | FI | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Total Avoided Damages |  | \$ | 62,464 | \$ | 98,158 | \$ | 127,903 | \$ | 136,826 | \$ | 136,826 | \$ | 127,903 |

## Annualized Damages

| Storm Event |  | ided ges for Event | Probability of Occurance <br> During Any Year |  | Annual ges <br> m Event |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 - Year Event | \$ | 62,464 | 50.0\% | \$ | 31,232 |
| 5 - Year Event | \$ | 98,158 | 20.0\% | \$ | 19,632 |
| 10 - Year Event | \$ | 127,903 | 10.0\% | \$ | 12,790 |
| 25 - Year Event | \$ | 136,826 | 4.0\% | \$ | 5,473 |
| $50-\mathrm{Year}$ Event | \$ | 136,826 | 2.0\% | \$ | 2,737 |
| 100-Year Event | \$ | 127,903 | 1.0\% | \$ | 1,279 |
| Total Avoided Annual Cost (A) |  |  |  | \$ 73,143 |  |


| Present Worth Analysis |  |  |
| :---: | :---: | :---: |
| Total Avoided Annual Cost (A) | \$ | 73,143 |
| Interest (1) |  | 5.00\% |
| Project Life ( n ) |  | 30 |
| $P=A\left\{\left[(1+I)^{n}-1\right] /\left[1 \times(1+I)^{n}\right]\right\}$ |  |  |
| Avoided Damages for 30 - year Project Life (P) | \$ | 1,124,000 |

## Harbor Acres Cost-Benefit Analysis - Alternative 5

| Avoided Damages for 30 - year Project Life $=$ | $\$$ | $1,223,000$ |
| ---: | :--- | :---: |
| Anticipated Water Quality Constuction and Design Costs $=$ | $\$$ | - |
| Anticipated Flood Control Constuction and Design Costs $=$ | $\$$ | $34,912,199$ |
| Anticipated Construction and Design Cost for Project $=$ | $\$$ | $34,912,199$ |
| Cost Benefit Ratio | $=$ | 0.04 |

Avoided Damages by Component

| Component |  | 2 - Year Event |  | 5 - Year Event |  | 10 - Year Event |  | 25 - Year Event |  | $50-$ Year Event |  | 100 - Year Event |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building Damages | BD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Content Damages | CD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Automobile Damages | AD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Exterior Property Damages | PD | \$ | 46,000 | \$ | 72,000 | \$ | 92,000 | \$ | 98,000 | \$ | 98,000 | \$ | 100,000 |
| Displacement Costs for Flooded Structures | DISF | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Displacement Costs for Structures in the Horizontal Floodplain | DIS | \$ | 11,500 | \$ | 18,000 | \$ | 23,000 | \$ | 24,500 | \$ | 24,500 | \$ | 25,000 |
| Lost Wages due to Residential Flooding | LW | \$ | 10,913 | \$ | 17,081 | \$ | 21,826 | \$ | 23,250 | \$ | 23,250 | \$ | 23,724 |
| Lost Business Income | LBI | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Lost Wages due to Closed Business | LWB | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Road Detour Costs | RD | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Public Works Costs | PW | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Flood Insurance Costs | FI | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - | \$ | - |
| Total Avoided Damages |  | \$ | 68,413 | \$ | 107,081 | \$ | 136,826 | \$ | 145,750 | \$ | 145,750 | \$ | 148,724 |

## Annualized Damages

| Storm Event | Avoided Damages for Storm Event |  |  | Expected Avoided Damages For Storm Event |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 - Year Event | \$ | 68,413 | 50.0\% | \$ | 34,207 |
| 5 - Year Event | \$ | 107,081 | 20.0\% | \$ | 21,416 |
| 10 - Year Event | \$ | 136,826 | 10.0\% | \$ | 13,683 |
| 25 - Year Event | \$ | 145,750 | 4.0\% | \$ | 5,830 |
| $50-\mathrm{Year}$ Event | \$ | 147,000 | 2.0\% | \$ | 2,940 |
| 100 - Year Event | \$ | 148,724 | 1.0\% | \$ | 1,487 |
| Total Avoided Annual Cost (A) |  |  |  | \$ | 79,563 |


| Present Worth Analysis |  |  |
| :---: | :---: | :---: |
| Total Avoided Annual Cost (A) | \$ | 79,563 |
| Interest (I) |  | 5.00\% |
| Project Life ( $\mathbf{n}$ ) |  | 30 |
| $P=A\left\{\left[(1+I)^{n}-1\right] /\left[I x(1+I)^{n}\right]\right\}$ |  |  |
| Avoided Damages for 30 - year Project Life (P) | \$ | 1,223,000 |

## Harbor Acres Cost-Benefit Analysis - Input Summary

| Fixed Input (Update Annually) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value | Unit |  | Value | Unit |
| Builiding Damage Multipyer | 0.12 |  | Displacment Duration | 2 | Days |
| Content Damage Multiplyer | 0.86 |  | Flooded Stucture Displacement Duration | 14 | Days |
| Average Automobile Cost | \$22,000 |  | Average Household Income | \$61,683 | Annual |
| Number of Cars per Household | 2 |  | IRS per Mile Cost | \$0.575 |  |
| Automobile Damage Multiplyer | 0.075 |  | Average Daily Commercial Revenue | \$5,101 | Daily |
| Landscape / Hardscape Cost | \$2,000 |  | Average Employees per Business | 10 |  |
| Per Diem Cost | \$250 | Daily | Average Sarasota County Payroll | \$17.39 | Hourly Rate |


| Current Conditions Project Specific Input - From Data Entry Sheets |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 - Year Event | 5 - Year Event | 10 - Year Event | 25 - Year Event | $50-$ Year Event | 100 - Year Event |
| Assessed Property Value | AV | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 |
| Number of Residential Flooded Structures | FS | 0 | 0 | 0 | 0 | 0 | 0 |
| Number of Residential Structures in the Horizontal Floodplain | HFP | 26 | 39 | 49 | 52 | 52 | 53 |
| Number of Commercial Flooded Structures | CFS | 0 | 0 | 0 | 0 | 0 | 0 |
| Number of Commercial Structures in the Horizontal Floodplain | CHFP | 0 | 0 | 0 | 0 | 0 | 0 |


| Alternative 1 Project Specific Input - From Data Entry Sheets |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 - Year Event | 5-Year Event | 10 - Year Event | 25 - Year Event | 50 - Year Event | 100 - Year Event |
| Assessed Property Value | AV | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 |
| Number of Residential Flooded Structures | FS | 0 | 0 | 0 | 0 | 0 | 0 |
| Number of Residential Structures in the Horizontal Floodplain | HFP | 5 | 6 | 6 | 6 | 6 | 12 |
| Number of Commercial Flooded Structures | CFS | 0 | 0 | 0 | 0 | 0 | 0 |
| Number of Commercial Structures in the Horizontal Floodplain | CHFP | 0 | 0 | 0 | 0 | 0 | 0 |


| Alternative 2 Project Specific Input - From Data Entry Sheets |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 - Year Event | 5 - Year Event | 10 - Year Event | 25 - Year Event | 50-Year Event | 100 - Year Event |
| Assessed Property Value | AV | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 |
| Number of Residential Flooded Structures | FS | 0 | 0 | 0 | 0 | 0 | 0 |
| Number of Residential Structures in the Horizontal Floodplain | HFP | 5 | 6 | 6 | 6 | 6 | 10 |
| Number of Commercial Flooded Structures | CFS | 0 | 0 | 0 | 0 | 0 | 0 |
| Number of Commercial Structures in the Horizontal Floodplain | CHFP | 0 | 0 | 0 | 0 | 0 | 0 |


| Alternative 5 Project Specific Input - From Data Entry Sheets |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 - Year Event | 5 - Year Event | 10 - Year Event | 25 - Year Event | $50-$ Year Event | 100 - Year Event |
| Assessed Property Value | AV | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 |
| Number of Residential Flooded Structures | FS | 0 | 0 | 0 | 0 | 0 | 0 |
| Number of Residential Structures in the Horizontal Floodplain | HFP | 3 | 3 | 3 | 3 | 3 | 3 |
| Number of Commercial Flooded Structures | CFS | 0 | 0 | 0 | 0 | 0 | 0 |
| Number of Commercial Structures in the Horizontal Floodplain | CHFP | 0 | 0 | 0 | 0 | 0 | 0 |






Appendix E
Whitaker Bayou Analysis Report by Stantec Consulting Services Inc., dated 2020.

Appendix F
The Cost Benefit Analysis for Stormwater Projects Report by Stantec Consulting Services Inc., dated 2018.

## Stantec

# A Proposed Cost-Benefit Analysis for Stormwater Projects 

# MANUAL FOR COSTS AND BENETIS FOR FLOOD AND WATER QUALTY PROJ ECTS 

November 9, 2018

Prepared for:
Sarasota County Stomwater Division

Prepared by:
Stantec Consulting Services Inc.

## Sign-off Sheet

This document entitled A Proposed Cost Benefit Analysis for Stormwater Projects was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Sarasota County Stormwater Division (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Sta ntec shall not be responsible for costs or damages of any kind, if a ny, suffered by it or any other third party as a result of decisions made or actions taken based on this document.


## Molly Williams, PE


(signature)

## Scott Mc Kenna, PE

Approved by

(signature)

## Kelly Smith, PE

Table of Contents
EXECUIIVE SUMMARY ..... 1.2
1.0 PROJ ECTING DAMAGES ASSOCIATED WTH FLOODING ..... 1.4
1.1 INTRODUCTION ..... 1.4
1.2 COMPONENTS OF AVOIDED DAMAGE CALCULATIONS ..... 1.4
1.3 EVALUATION OF FLOOD INSURANCE CLAIMS IN SARASOTA COUNTY ..... 1.6
1.3.1 Damage Calculations By Component ..... 1.6
1.3.2 Annualized Damages ..... 1.11
1.3.3 Present Worth Analysis ..... 1.11
1.3.4 Summary of Avoided Damage Analysis ..... 1.11
1.3.5 Acquisitions and Elevations ..... 1.12
1.3.6 Intangible Factors ..... 1.12
2.0 QUANTIFYING WATER QUALTY BENERIS ..... 2.13
2.1 INTRODUCTION TO WATER QUAUTY IMPROVEMENTCOSTEFFECTIVENESS ..... 2.13
2.1.1 The SWFWMD C ost Effec tiveness Matrix ..... 2.13
2.1.2 SWFWMD Cost Effec tiveness Study - The Balmoral Group ..... 2.14
2.1.3 Tangible Benefits Associated with Water Quality Improvements ..... 2.17
2.1.4 Intangible Benefits Associated with Wa ter Quality Improvements ..... 2.18

## USTOF TABLES

Table 1-1: Factors considered on projecting cost calculations.
Table 1-2: Elements of Road Detour Cost (RD).
Table 2-1: Curent (March 2018) SWFWMD High, Medium and Low-ranking criteria for Urban and Suburban Projects.
Table 2-2: Current (March 2018) SWFWMD High, Medium and Low-ranking criteria for Urban and Coastal and LID Projects.
Table 2-3: Balmoral PROPOSED (NOTYETADOPTED) SWFWMD High, Medium and Lowranking criteria for General Projects.
Table 2-4: Balmoral PROPOSED (NOTYETADOPTED) SWFWMD High, Medium and Lowranking criteria for Coastal Projects.

## USTOF APPENDICIES

AppendixA - Interoffice Memorandum dated December 5, 2000
Appendix B - Sarasota County Flood Claims
Appendix C - City of Sarasota Flood Claims
Appendix D - Component Summary Sheet
Appendix E - Numbeo information from https://www.numbeo.com/cost-of-living/in/Sarasota
Appendix F - Data USA information from https://datausa.io/profile/geo/sarasota-county-fl/ Appendix G - Americ an Fact Finder information from
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=CF
Appendix H - Intemal Revenue Service Notice 18-03-2018 Standard Mileage Rates
AppendixI - Email Communication with SWFWMD
AppendixJ - Sarasota County Board Meeting Minutes dated December 5, 2000 - highlighted

## EXEC UIIVE SUMMARY

Based on the Cost Benefit Analysis adopted by the Board of County Commissioners on December 5, 2000, the Sarasota County Stormwater Division a pplies a cost benefit analysis to proposed capital projects to determine if the project will provide stormwater management improvements for a cost-effective investment. The County contracted with Stantec to update the white papertitled Projecting DamagesAssociated with Flooding: A Proposed Cost-Effective Analysis for Stormwater Projects as presented to the Board of County Commissioners in an Interoffice Memorandum dated December 5, 2000.
In certain instances, even if a project's costs exceed the tangible benefits of flood control, the County may determine the project provides public value supported by numerous intangible benefits such as health, sa fety, and community support. These intangibles should be given consideration on a case by case basis when deciding whether to go forward with a project.

To update the Sarasota County specific multipliers for building and content damage, Stantec analyzed nearly 800 FEMA claims (historic flood damage costs) for Sarasota County that were made during rain events. The available claim data ranges from 1978 to 2016 and provide a statistic ally valid sample to a nalyze. The analysis showed that the average Sarasota County building damage claim was $12 \%$ of the building value and the median claim was $6 \%$ of the building value. Analysis of the content da mage claims showed that the average claim was between $82 \%$ and $87 \%$ of the building damage claims.

Revisions included using the most current available data (2015) to update the average automobile cost, number of cars per household, landscape / hardscape cost, perdiem cost for displacement from structures, the average household income, and the published 2018 IRS per mile cost for the detours. These values are fixed costs that will need to be updated asmore current data becomesavailable.

The Lost Business Income and Lost Wages due to Closed Business were separated from the Lost Wages for inc reased accuracy in calculating lost business revenue caused by flooding. Data from the United States Census Bureau - Americ an Fact Finder website was used to derive the average daily commercial revenue for Sarasota County; the a verage number of employees per business in Sarasota County; and the average wages in Sarasota County.

Each project under evaluation will require the following project specific data:

1. AV-assessed property values
2. FS - number of flooded residential structures
3. HFP - number of residential struc tures within the horizo ntal flood pla in
4. CFS- number of flooded commercial structures
5. CHFP - number of commercial structures within the horizontal flood pla in
6. RD-road detour costs
7. PW - public works costs
8. FI-flood insurance costs

In addition to the updates, the cost-benefit a nalysis has been expended to include water quality benefits. The methodology follows the Southwest Florida Water Mana gement District criteria used to evaluate cooperative grant funding projects.

The water quality benefit calculations will require the following project specific data:

1. Total area treated (acres)
2. Total nitrogen (N) removed / year (lbs)
3. Total phosphorus (P) removed / year (lbs)
4. Total suspended solids (TSS) removed / year (lbs)

Intangible benefits including public perception and politic al climate along with benefits such as health, safety, and community support continue to be considered for proposed projects.

### 1.0 PROJ ECTING DAMAGES ASSOCIATED WTH FLOODING

### 1.1 INTRODUCTION

Stantec was contracted to update the white paper titled Projecting Damages Associated with Flooding: A Proposed Cost-Effective Analysis forStormwaterProjectsaspresented in an Interoffice Memorandum dated December 5, 2000 submitted to the Sarasota County Board of County Commissioners for their information. The document is included as Appendix A.

Based on information in the original memo developed in 2000, the Cost Benefit analysis was updated for current costs and conditions. Projecting avoided damages by reducing structure and street flooding will allow the Stomwater Division to detemine if proposed Capital Improvement Program (CIP) projects are cost-effective by comparing the cost of the proposed project to the amount of damages avoided by flood level reductions attributed to the project. The County hascontracted with Stantec to update the Cost Benefit Analysis using available FEMA repetitive loss data, for current economic conditions, and expand the analysis to include Water Quality Benefits.

The County continues to strive towards providing the Level of Service (LOS) for flood protection adopted by the Board of County Commissioners. The Stormwater CIP is predicated on LOScriteria established in the Comprehensive Plan. Primarily, the criteria prohibits the flooding of any habitable structure, residential or commercial. Recognizing that roadways remaining passable during the design rain event is a rea sonable and realistic expectation of the citizens, the LOS also sets allowable roadway flooding depths for various classific ations of roadways. This LOS provides a higher level of security and comfort to the general population and especially those in need of emergency services.

### 1.2 COMPONENIS OF AVOIDED DAMAGE CALCULATIONS

Review of the original cost-effec tive a nalysis, several factors must be considered when projecting costs that are associated with flood events. Table 1-1 shows the components than have been incorporated. Methodologies to determine the tangible damage foreach of these components will be discussed in the following sections.

Table 1-1: Factors considered on projecting cost calculations.

| Abbreviation | Component | Description |
| :---: | :---: | :---: |
| BD | Building Damage | Structural Damage associates with flooded struc tures. |
| CD | Content Damage | Damage associated with contents of flooded struc tures. |
| AD | Automobile Damage | Damage to flooded vehicles. |
| PD | Exterior Property Damage | Damage to landscape / hardscape and flooded lots. |
| DISF | Displacement Costs for Flooded Structures | Perdiem cost associated with uninhabitable struc tures. |
| DIS | Displacement Costs for Struc tures in the Horizontal Flood pla in | Per Diem cost associated with non-accessible struc tures, but structure not flooded. |
| LW | Lost Wages due to Residential Flooding | Costs associated with time off from work due to resid ential flooding. |
| LBI | Lost Business Income | Costs associated with loss of commercial business income due to flooding. |
| LWB | Lost Wages due to Closed Business | Costs associated with employee time off from work due to business flooding. |
| RD | Road Detour Costs | Costs associated with detouring traffic due impassable to street flooding. |
| PW | Public Works Costs | Cost incurred by public entity to ma inta in traffic detours and public safety because of flooding events. |
| FI | Flood Insurance Costs | Avoided flood insurance premiums if a structure is removed from the Special Flood Hazard Area (SFHA). |

### 1.3 EVALUATION OF RLOOD INSURANCE CLAIMS IN SARASOTA COUNTY

FEMA's statistics are based on nation-wide data from flood insurance claims. Nationwide data does not accurately represent flood damagesfor southwest Florida. Evaluation of flood claims in Sarasota County account for one-story homes with no basement or second story and residential properties with ground level storage sheds. Content damage or structure damage incurred by single-story structures would be higher than those with multiple levels.

To evaluate historic flood damage costs in Sarasota County, Stantec analyzed nearly 800 FEMA claims for Sarasota County that were made during rain events. The available claim data ranges from 1978 to 2016 and is a statistic ally valid sample to analyze. Flood claims evaluated for the following:

1. Structural Damage Claim amount as a percentage of the Building Value of the Home.
2. Content Damage Claim a mount as a percentage of the Structural Damage Claim.

The analysis showed that the average Structural Damage Claim was $12 \%$ of the building value of the home and the median claim was $6 \%$.

Analysis of the Content Damage Claims showed that the average claim was between $82 \%$ and $87 \%$ of the Structural Da mage Claim. Summary of the FEMA flood claim data for Sarasota County in included in Appendix B and the summary for the City of Sarasota flood claim data is included in Appendix C.

### 1.3.1 Damage Calculations by Component

A component summary sheet is included as Appendix D. Additional information is included below:

### 1.3.1.1 Building Damages (BD)

$\mathrm{BD}=0.12$ * AV * 1.25
0.12 = Sarasota County specific multiplier for building damage

AV =Assessed value of property (building only)
$1.25=$ Multiplier for assessed value

### 1.3.1.2 Content Damages (CD)

$$
\begin{aligned}
& C D=0.86 * B D \\
& 0.86=\text { Sarasota County specific multiplier for content da mage } \\
& B D=\text { Build ing Damages }
\end{aligned}
$$

### 1.3.1.3 Automobile Damages (AD)

$$
\text { AD }=\$ 25,000 * 2 * 0.075 * \# F S
$$

$$
\$ 25,000=\text { Replacement value of a car }
$$

2 = Number of cars per residence $0.075=$ Average damage expected as a percent of the value of a car. \#FS = Number of flooded structures.

In calculating potential automobile damage, consideration should be given to garage/carport elevation (ratherthan habitable finished floor elevation).

Average cost of a carin Sarasota County was derived from information on the following website:
https://www.numbeo.com/cost-of-living/in/Sarasota

| Transportation |  | Range |  |
| :---: | :---: | :---: | :---: |
| Volkswagen Golf 1.4 90 KW Trendline (Or Equivalent New Car) | 18,525.00 \$ | 15,000.00 | 22,050.00 |
| Toyota Corolla 1.6l 97kW Comfort (Or Equivalent New Car) | 24,050.33 \$ | 18,151.00 | 135,000.00 |

The information from the Numbeo website is included as Appendix E .

### 1.3.1.4 Exterior Property Damages (PD)

PD $=\$ 2,000$ * \# HFPL
$\$ 2,000=$ Expected damage to landscaping / hardscaping or exterior of property
\# HFPL = Number of lots in the horizontal floodplain
All properties within the horizontal limits of the event floodplain are subject to Exterior Property Damages. Exterior Property Damages includescost of restoration of landscaping and hardscape include costs such as debris removal, yard work, possible loss of mature trees, restoration of paver and other impervious surfaces, and improvements to onsite drainage. Costs specifically associated with Exterior Property Damages were not readily available but were estimated at \$2,000 per flooded property.

### 1.3.1.5 Displacement Costs for Fooded Struc tures (DISF)

DISF $=\$ 250 /$ day $*$ \# Fdays * \# FS
$\$ 250=$ Per diem costs to be displaced fromresidence \# Fdays = 14 days for flooded structures to restore residence to habitable state \# FS = Number of flooded structures

The residents of flooded structures are displaced for the duration of standing floodwaters and for a period after the waters recede forcleanup of their homes. A conservative estimate of 14 days at a cost of $\$ 250$ perday was used. It should be noted that displacement costs are for a time period where the structure may not be accessible due to flood waters and time
required for initial clean up. The displacement cost does not reflect the time for full restoration of the structure as the structure may be habitable while reconstruction is in progress.

### 1.3.1.6 Displacement C osts for Struc tures in the Roodpla in (DIS)

$$
\begin{aligned}
& \text { DIS = \$250/day * \#Ddays* \# HFP } \\
& \$ 250=\text { Per diem costs to be displaced from resid ence (inac cessible) } \\
& \text { \# Ddays = } 2 \text { days for displaced residents } \\
& \text { \# HFP =Number of struc tures in horizontal flood pla in }
\end{aligned}
$$

The residents of structures in the horizontal limits of the floodplain are displaced for the duration of standing floodwaters. An estimate of 2 days at a cost of $\$ 250$ per day was used.

### 1.3.1.7 Lost Wages due to Residential Fooding (LW)

$$
\text { LW }=\$ 56,286 * 8 / 2080 *[(\# \text { HFP * \# Ddays })+(\# \text { FS* \#Fdays })]
$$

\$56,286 =Average household income
$8=$ Work hours per day
$2080=$ Work hours per year
\# HFP = Number of structures in the horizontal floodpla in
\# Ddays = 2 days for displaced residents
\# FS = Number of flooded structures
\# Fdays = 14 days for flooded structures to restore residence to habitable state
The Lost Wages calculation is based on the most current Median Household Income (2015) for Sarasota County as reported by DATA USA at the following website:

## https://datausa.io/profile/geo/sarasota-county-fl/

Basic data from the DATA USA website is included as Appendix F. It is understood that there are areas of Sarasota County where salaries may be higher or lowerthan average, but actual salaries are not known without requesting information from individuals in the project area.

Lost wa ges represent the economic impact on residents when they miss work due to flooding.

### 1.3.1.8 Lost Business Inc ome (LBI)

LBI $=\$ 5,104$ *[(\#C HFP * \#Ddays) + (\#C FS* \#Fdays)]
$\$ 5,104=$ Average daily commercial revenue for Sarasota County firms with paid employees
\#C HFP = Number of commercial displaced structures in the horizontal flood pla in
\#Ddays = 2 days lost due to commercial displaced structures
\#CFS = Number of commercial flooded structures
\#Fdays = 14 days lost due to commercial flooded structures

The Lost Business Income calculation is based on the most current Average Annual Revenue (2012) published in 2015 for Sarasota County derived from the data reported by American Fact Finderat the following website:
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml? src =CF


Lost Business Inc ome rep resents lost op portunity for commerc ial business or ind ustrial sites that are flooded. Basic data from the Americ an Fact Finder website is included as Appendix G.

### 1.3.1.9 Lost Wages due to Closed Business (LWB)

```
LWB = 10* 8* $19.35 *[(#C HFP * #Ddays) +(#C FS* #Fdays)]
10 =Average employees per business
8=Work hours perday
$19.35 =Average Sarasota County payroll (hourly rate)
#CHFP = Number of commercial displaced structures in the horizontal floodpla in
#Ddays =2 Days lost due to commercial displaced structures
#CFS = Number of commercial flooded structures
#Fdays=14 Dayslost due to commercial flooded structures
```

The Lost Wagesdue to Closed Businessc a lc ulation is based on the most c urent statistic spublished for Sarasota County. The Average Sarasota County Payroll Hourly Rate wasderived from the data reported by Americ an Fact Finder at the following website:
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml? src =CF


It should be noted that not all residents who work in Sara sota County live in Sarasota County and that income values used forLost Wagesdue to Residential Flooding are based on Sara sota County Average Household Income. Lost Wagesdue to Closed Business representslost opportunity for
employees of commercial business or industrial sites that are flooded. Basic data from the Americ an Fact Finder website is included as Appendix G.

### 1.3.1.10 Road Detour Costs (RD)

$$
\begin{aligned}
& \text { RD = RDI + RDV } \\
& \text { RDI, Inc ome lost due to road detour } \\
& \text { RDI = (Detour Length / Avg. Speed }) * \text { Avg. Hourly Salary *AADT* \# Days } \\
& \text { RDV, Vehicle/Mileage costs due to road detours } \\
& \text { RDV = Detour Length *AADT* \# ofDays*\$/mile }
\end{aligned}
$$

Table 1-2: Eements of Road Detour Cost (RD).

| Value | Description | Source |
| :--- | :--- | :--- |
| Detour Length | Length of Detour in miles | GIS Detour Route |
| Avg. Speed | 20 milesperhour | Assumed Value |
| Avg. Hourly <br> Salary <br> (Household) | $\$ 27.06 /$ hour | Data USA: <br> https://data usa $. i o / p r o f i l e / g e o / s a r a ~ s o t a ~-~$ <br> county-fl// |
| AADT | Annual Average Daily Traffic | Traffic Operations |
| \# Ddays | Number of Days Detour is in <br> Effect | Maximo Data |
| $\$ /$ Mile | $\$ 0.545$ per mile | IRSNotice 18-03 |

Each flooded roadway segment is to be evaluated to determine the most feasible detour route to minimize the traffic affected by the detour. The $\$ 0.545$ permile rate is the IRS standard for 2018. This rate would be adjusted annually as the IRS adjusts the published rate. The IRS Notice 18-03 2018 Standard Mileage Rates is included as Appendix H.

### 1.3.1.11 Public Works Costs (PW)

Public Works Costs include setting the detours, maintenance of the detours, emergency maintenance during the storm event, reconstruction of roadwaysdamaged due to standing flood waters, manpower to answer phones and inspect complaints resulting from the stom event. For a specific project, the cost ranges from $\$ 2,000$ to $\$ 100,000$ depending on the duration of the flooding, the length a nd number of roadway segments, and structures affected by the flooding.

### 1.3.1.12 Food Insurance Costs (R)

Mortgage companies require homeowners in FEMA's Special Flood Hazard Area to carm flood insurance during the life of the mortgage. Rates are dependent on the age of the structure and how farthe finished floorelevation is below the 100-yearflood elevation. If a structure is removed
from the vertical floodplain they receive the benefit of a voiding the mandatory flood insurance costs. The homeowner may decide to keep flood insurance, but the rate will be lower. The average rate of flood insurance fora structure within the floodplain is $1 \%$ of the value of the home annually.

$$
\mathrm{Fl}=\mathrm{Avg} \mathrm{SV} * 0.01 * \# \mathrm{FS}
$$

Avg $\mathrm{SV}=$ Average value of structures in horizontal floodpla in
$0.01=1 \%$ of the value of structures
\#FS = Number of flooded struc tures

### 1.3.2 Annualized Damages

To determine a present worth cost of avoided damages if a project were built today, the estimated damages for each interval rainfall event were calculated and multiplied by the probability that the event will happen in any given year. For example, a 100-year rainfall event has a $1 \%$ (0.01) probability of occuring in a given year; 2\%forthe 50-year rainfall event; 4\%for the 25 -year event; and 10\% for the 10-year rainfall event. The Sto mwater Division's standard scope for Basin Master Plans does not include modeling of the 50-year rain event. Therefore, recognizing that 50-year event would have tangible damages, the cost was estimated by subtracting the 25year damages from the 100-year damages, dividing by 3 and adding to the 25 -year damages. An a nalysis of projects where the 50-year flood event information wasavailable and found this to be an accurate representation of the 50-year da mages.

Avoided Flood Insurance costs are included as an annualized cost, since the expenses are not related to the probability of a rainfall event. Residential structures that would be removed from the 100-year floodplain will be required to pay these annual premiums if they have a mortgage on their home. The sum of the annualized avoided damages is then calculated to determine a present worth value.

### 1.3.3 Present Worth Analysis

The Present Worth of the Total Expected Annual Damages is calc ulated:

$$
\begin{aligned}
& P=A[(1+i) n-1] /\left[i^{*}(1+i) n\right] \text { where } \\
& P=\text { Present worth } \\
& A=\text { Total expected annual damages } \\
& i=\text { Interest rate }=5 \%, \text { the average rate of retum on munic ipal bonds } \\
& n=30 \text {-year Project Life per County Stomwater Ordinance }
\end{aligned}
$$

### 1.3.4 Summary of Avoided Damage Analysis

The present worth value should be considered a guide when evaluating the cost-effectiveness of a project. It should be noted this method is sensitive to assessed value of homes as well as the volume of traffic on flooded roadways. While this value represents an educated guess of the
economic impact resulting from project, there are invariably other intangible benefits associated with a project that may need to be considered, such as quality of life benefits.

### 1.3.5 Acquisitions and Elevations

FEMA has issued a memorandum regarding the Cost Effectiveness Determinations for Acquisitions and Elevations in Special Flood Hazard Areas and has determined that "the acquisition or elevation of a structure located in the 100-year floodplain (as delineated on the Flood Insurance Rate Map or based on best available data) that costs less than or equal to the amount of benefits... is considered cost effec tive." The determined benefit for an acquisition is $\$ 276,000$ and the determined benefit for an elevation project is $\$ 175,000$. In the past, Sarasota County has not considered acquisition as a mitigation strategy for reducing flood risk. With the implementation of the Basin Master Plans and the construction of Flood Control projects throughout the County that have reduced the flood risk due to riverine rainfall events, the County should consider acquisition as an option to reduce future flood risk.

### 1.3.6 Intangible Factors

Currently, a weighting system for intangible benefits has not been developed and has not performed a sensitivity a nalysis of projectsto determine how weights would affect a cost-effective analysis. Due to the high degree of judgement that would be needed, it is reasonable to acknowledge the intangible factors without assigning a dollar figure to be included in any type of economic a nalysis. Some examples of these intangible factors include, but are not limited to:

- Health Factors, such a s a bility to use septic systems
- Safety Factors, such as access by Emergency Vehicles
- Community Support for a Project
- Public Perception of a StormwaterProblem
- Board Policy forAddressing StormwaterNeeds

In certain instances, even if a project's costs exceed the tangible benefits of flood control, it may still be a worthwhile project if it has numerous intangible benefits such as health, safety, and community support. These intangibles should be given consideration on a case by case basis when deciding whether to go forward with a project.

### 2.0 QUANTIFYING WATER QUALTY BENEFIS

### 2.1 INIRODUC TION TO WATER QUALTY IMPROVEMENTCOSTEFFEC TIVENESS

Funding agencies, such as the Southwest Florida Water Management District (SWFWMD), have begun to evaluate water quality improvement projects based on the cost of the project and the expected cost per pound of pollutant removed and/or the cost per acre of implementing the project. The water quality cost-benefit matrix developed by SWFWMD for project evaluation is curently the most relevant such a nalysis for evaluating projects proposed in Sarasota County.

Cost Effectiveness (CE) is calculated as follows:

$$
C E=(\text { Total cost of project*/20 years)/ (pound of pollutant reduced/year) }=\$ / \mathrm{lb} \text { reduction }
$$

*Total project cost includes design costs. SWFWMD water quality benefits a re based on a 20-year project life for the purpose of cooperative funding.

### 2.1.1 The SWFWMD Cost Effectiveness Matrix

The SWFWMD cost effectiveness matrix currently in use to rank water qua lity improvement projects was developed by District staff in a pproximately 2013-2014. A new study to forma lize and update cost benefit c riteria wascontracted by the District with The Balmoral Group, but the results of that study, completed in October 2017, have not yet been adopted by the District and it has not yet been decided if the study will be adopted for use in SWFWMD's Cooperative Funding Initiative (CFI) program. It is also unknown whether the data used by District staff were nomalized for a partic ular years' dollars based on the Consumer Price Index (CPI), or if the current SWFWMDdeveloped matrix values will be updated using the CPI or updated with new project numbers as the years progress. If the Balmoral study is adopted, it is unknown if or how often the dollar values from the study will be updated. A copy of the email communic ation with SWFWMD is provided as Appendix I. Tables $\mathbf{2 . 1}$ and $\mathbf{2 . 2}$ below detail cost effectiveness ranking criteria currently in use for projects proposed for SWFWMD cooperative funding.

Table 2.1 - Current (March 2018) SWFWMD High, Medium and Low-ranking criteria for Urban/Suburban project types.

| Urban/Suburban <br> Projects | High Rank | Medium Rank | Low Rank |
| :--- | :--- | :--- | :--- |
| WaterQuality BMP <br> Implementation <br> (TN target <br> pollutant) | Cost/lb TN $\$ 224$ or <br> less and Cost/acre <br> $\$ 8,050$ or less | High rank forCost/lb and <br> Low rank for Cost/acre or <br> Low rank for Cost/lb and <br> High rank forCost/acre | Cost/lb TN more than <br> $\$ 224$ and Cost/acre <br> more than $\$ 8,050$ |


| Urban/ Suburban <br> Projects | High Rank | Medium Rank | Low Rank |
| :--- | :--- | :--- | :--- |
| Water Quality BMP <br> Implementation <br> (TPtarget <br> pollutant) | Cost/lb TP $\$ 896$ or <br> less and Cost/acre <br> $\$ 8,050$ or less | High rank for Cost/lb and <br> Low rank for Cost/acre or <br> Low rank for Cost/lb and <br> High rank forCost/acre | Cost/lb TP more than <br> $\$ 896$ and Cost/acre <br> more than $\$ 8,050$ |
| WaterQuality BMP <br> Implementation <br> (TSStarget <br> pollutant) | Cost/lb TSS $\$ 12$ or <br> less and Cost/acre <br> $\$ 8,050$ or less | High rank for Cost/lb and <br> Low rank for Cost/acre or <br> Low rank for Cost/lb and <br> High rank forCost/acre | Cost/lb TSS more than <br> $\$ 12$ and Cost/acre <br> more than $\$ 8,050$ |

Table 2-2-Current (March 2018) SWFWMD High, Medium and Low-ranking criteria for Coastal/LD projecttypes.

| Coastal/LD Projects | High Rank | Medium Rank | Low Rank |
| :---: | :---: | :---: | :---: |
| Water Quality BMP Implementation (TN target pollutant) | Cost/lb TN \$646 or less and Cost/acre \$46,947 or less | High rank for Cost/lb and Low rank for Cost/acre or Low rank for Cost/lb and High rank for Cost/acre | Cost/lb TN more than \$646 and Cost/acre more than $\$ 46,947$ |
| Water Quality BMP Implementation (TPtarget pollutant) | Cost/lb TP \$4,715 or less and Cost/acre \$46,947 or less | High rank for Cost/lb and Low rank for Cost/acre or Low rank for Cost/lb and High rank for Cost/acre | Cost/lb TP more than \$4,715 and Cost/acre more than $\$ 46,947$ |
| WaterQuality BMP Implementation (TSS target pollutant) | Cost/lb TSS \$20 or less and Cost/acre \$46,947 or less | High rank for Cost/lb and Low rank for Cost/acre or Low rank for Cost/lb and High rank for Cost/acre | Cost/lb TSS more than $\$ 20$ and Cost/acre more than $\$ 46,947$ |

### 2.1.2 SWFWMD Cost Effectiveness Study - The Balmoral Group

The SWFWMD funded study conducted by The Balmoral Group in 2017 and the factors considered in the development of the water quality cost-benefit matrix developed by the study, which may or may not be adopted by SWFWMD, to rank proposed projects for possible funding will be
discussed. While not yet adopted by SWFWMD, the information is presented here because the Balmoral report findings might be adopted at a ny time and, if adopted, would be used for future projects.

The cost-effectiveness chart developed by The Balmoral Group used the total, a ctual project cost (including design costs) divided by 20 years and compared the estimated load reductions expected for $\mathbb{T N}, \mathbb{T P}$ or $T S S$ in the same calculation shown above. Costs for past projects were adjusted to 2017 dollars, which should be kept in mind as the years progress. It is unknown whether if or how often SWFWMD will update the costs used in this ranking matrix, if it is a dopted for use.

The matrix divides cost effectiveness into Urban/Suburban groupings and the distance from the coast used to distinguish which group a project falls under was detemined to be 1,500 meters ( 4,921 feet), based on how far inland proximity to the coast signific a ntly inc reases property values. However, the report does recommend that site specific infomation be considered before automatic ally a pplying the $1,500-$ meter distance criteria.

The process that The Balmoral Group used in detemining the thresholds for high or low-cost effectiveness was developed by collecting data from projects conducted by SWFWMD aswell as projects conducted by other agencies. To be included in the evaluation, each project needed to have information regarding a load reduction estimate for $\mathbb{T N}, \mathbb{T P}$ or TSS, a total actual project cost, known project location and a description of Best Management Practices (BMPs) implemented forthe project. A total of 67 SWFWMD projects (intemal) and 71 (extemal) projects from otheragencieswere used forthe final economic a nalysis. Ultimately, only SWFWMD (intemal) projects were used to develop the high, medium and low-ranking cost benefit ranges in the Balmoral report because the extemal data showed significantly smaller values for cost effec tiveness than the SWFWMD data.

The ranges developed by The Balmoral Group forranking projects are presented here in Tables 23and 2-4 in case they are adopted by SWFWMD for future use; however, these numbers have not been entered into the cost calculator and SHOULD NOTBE USED ATTHS TIME beca use they have not been offic ially adopted by SWFWMD. Cost effectivenesson a peracre basis was not included in the Balmoral report.

Table 2-3: The Balmoral Group PROPOSED (NOTADOPIED) High, Medium and Low-ranking criteria for water quality improvement projects for General (non-coastal) project types. Based on cost of past projec ts for cost/ lb of pollutant removed for 20 years.

| General (non- <br> coastal) Projects | High Rank | Medium Rank | Low Rank |
| :--- | :--- | :--- | :--- |
| Water Quality BMP <br> Implementation (TN <br> target pollutant) | Cost/lb TN is $<\$ 113$ | Cost/lb TN $\geq \$ 113$ and <br> $\$ 240$ | Cost/lb TN $>\$ 240$ |
| Water Quality BMP <br> Implementation (TP <br> target pollutant) | Cost/lb TP <\$791 | Cost/lb TP $\geq \$ 791$ and <br> $\leq \$ 2,055$ | Cost/lb TP $>\$ 2,055$ |
| Water Quality BMP <br> Implementation (TSS <br> target pollutant) | Cost/lb TSS $<\$ 3$ | Cost/lb TSS $\geq \$ 3$ and <br> $\leq \$ 6$ | Cost/lb TSS $>\$ 6$ |

Table 2-4: The Balmoral Group PROPOSED (NOTADOPIED) High, Medium and Low-ranking criteria for water quality improvement projects for Coastal project types. Based on cost of past projects for cost/ lb of pollutant removed for 20 years.

| Coastal Projects | High Rank | Medium Rank | Low Rank |
| :--- | :--- | :--- | :--- |
| Water Quality BMP <br> Implementation (TN <br> target pollutant) | Cost/lb TN $\$ 547$ | Cost/lb TN $\geq \$ 547$ and <br> $\leq \$ 1,543$ | Cost/lb TN $>\$ 1,543$ |
| Water Quality BMP <br> Implementation (TP <br> target pollutant) | Cost/lb TP $\$ 2,188$ | Cost/lb TP $\geq \$ 2,188$ <br> and $\leq \$ 4,152$ | Cost/lb TP $>\$ 4,152$ |
| Water Quality BMP <br> Implementation (TSS <br> target pollutant) | Cost/lb TSS $<\$ 4$ | Cost/lb TSS $\geq \$ 4$ and <br> $\leq \$ 13$ | Cost/lb TSS $>\$ 13$ |

### 2.1.2.1 Developing the Cost per Pound Removed or Cost per Acre Treated

There are many examples of projects a vailable, both in design and implemented, for which cost per pound of pollutant removed/per acre treated has been estimated for various project types. However, the actual estimate and actual rea lization of benefits will be very site specific and must be developed on a case-by-case basis for each new project, and it is recommended that estimates be very conservative, partially due to SWFWMD CFI contract language, wherein repayment may be required if projected benefits are not achieved.

It is advisable to compare Sarasota County project removal estimates developed for a specific project to similar BMP projects in similar land use areas, soil types and climatological regions in Florida. Comparison to projects outside Florida or in regions with different BMPs, land use, soil, climatological and othercharacteristic smay result in estimatesthat are vastly different than what may be realized in Sarasota County due to these and otherfactors.

Many of the example projects from Brevard County related to the Indian River Lagoon were considered in the Balmoral report, and the extemal (non-SWFWMD) project data was determined to be signific antly different than cost effectiveness data within the SWFWMD largely due to the Brevard County projects. Again, load removal estimatesshould be developed separately foreach project based on site specific data and should be comparable to otherprojectsconducted within the SWFWMD in order to be considered competitive for SWFWMD funding.

### 2.1.3 Tangible Benefits Associated with Water Quality Improvements

There are a number of tangible benefits associated with water quality improvements, including:

- Reducing regulatory costs by reducing pollutant loading in impaired water bodies with assigned Total Maximum Daily Loads (TMDLs)
- Prevention of TMDL establishment through preventative measures, also reducing regulatory costs
- Improving water clarity and therefore supporting water-based tourism
- Ma inta ining healthy fisheries to increase recreational spending in the county
- Averting or reducing health issuesassociated with water-based rec reation, ashigh nutrient levels can lead to algal blooms and promotion of other organismsthat may be harmful to human health
- Reducing maintenance cost of nuisance and exotic plant species, many of which increase in the presence of high nutrients (e.g. cattails)
- Reducing wastewater overflows that occur during flood events


### 2.1.4 Intangible Benefits Assoc iated with Water Quality Improvements

- Improving wild life habitat
- Improving the visual aesthetic s of water resources as water clanity typic al improves when TN, TP, a nd TSS are reduced
- Improving odors associated with water resources, as high levels of nutrients can cause algal blooms, which can lead to significant odor problems (especially with blue-green algae)
- Improved safety for recreational users when water cla rity is improved


## APPENDIX A - INTEROPICE MEMORANDUM DATED DECEMBER 5, 2000

# SARASOTA COUNTY GOVERNMENT PUBLIC WORKS STORMWATER DIVISION 

## INTEROFFICE MEMORANDUM



## BACKGROUND:

During the January 26, 2000 Board Workshop concerning Stormwater Management, staff proposed to utilize a Cost Effective Analysis as a tool in the evaluation of proposed improvement project. On July 31, 2000, a Board report including a white paper on the subject was forwarded to the Board for additional information. Staff indicated that a presentation and discussion of the methodology would be presented at a future Board meeting.

## REPORT:

The most recent version of the white paper is attached for your review. No substantive changes were made to the paper since it was given to the Board in late July. Staff will present the formula and explain the elements of it as a discussion item. Staff will also provide specific applications as examples in the presentation.

When utilized in a basin approach, the numbers give staff an indication of anticiapted damages associated with flood events. With that, staff can formulate capital programs with cost value in mind. The key is to put projects in place that produce the most "bang for the buck."

In addition to more easily measured quantifiable factors, project analyses will continue to consider more intangible benefits such as:

- Water Quality Enhancement
- Health Factors (impact on wells, septic systems, etc.)
- Safety Factors (access for emergency services)
- Community Acceptance

This formula combined with the above intangible benefits, was developed to refine existing project analyses and to help formulate decisions concerning future projects.

## RECOMMENDATION:

Staff recommends the adoption of this benefit analysis as the decision making tool for future projects.
cc: David R. Bullock, Deputy County Administrator

# PROJECTING DAMAGES ASSOCIATED WITH FLOODING A Proposed Cost-Effective Analysis for Stormwater Projects 

## SARASOTA COUNTY STORMWATER ENVIRONMENTAL UTILITY

## Introduction

The Sarasota County Stormwater Division has developed a method of projecting damages associated with flood events consistent with methodologies used by other agencies such as the Army Corps of Engineers (ACOE) and the Federal Emergency Management Agency (FEMA). Projecting avoided damages by reducing structure and street flooding will allow Stormwater staff to determine if proposed CIP projects are cost-effective by comparing the cost of the proposed project to the amount of damages avoided by flood level reductions. This methodology has been utilized by staff and presented to the ACOE for the Whitaker Bayou Basin. The ACOE has reviewed and preliminarily approved this methodology.

The County continues to strive towards providing the Level of Service (LOS) for flood protection adopted by the Board of County Commissioners. The Stormwater Capital Improvement Program is predicated on LOS criteria established in the Comprehensive Plan. Primarily, the criteria prohibits the flooding of any habitable structure, residential or commercial. Recognizing that roadways remaining passable during the design rain event is a reasonable and realistic expectation of the citizens, the LOS also sets allowable roadway flooding depths for various classifications of roadways. This LOS provides a higher level of security and comfort to the general population and especially those in need of emergency services.

## Components of Avoided Damage Calculations

Several factors must be considered when projecting costs that are associated with flood events. Based on formulas from ACOE and FEMA, the following components have been incorporated:

| Connotation | Component | Description |
| :--- | :--- | :--- |
| BD | Building Damage | Structural damage associated with flooded residences. |
| CD | Content Damage | Damage associated with contents of flooded residences. |
| AD | Automobile Damage | Damage to floded automobiles. |
| PD | Exterior Property Damage | Damage to landscaping of flooded lots. |
| DISF | Displacement Costs for <br> Flooded Structures | Per diem cost associated with uninhabitable residences. |
| DIS | Displacement Costs for <br> Structures in the <br> Horizontal Floodplain | Per diem costs associated with non-accessible homes, <br> but structure does not flood. |
| LBI | Lost Wages or Business <br> Income | Costs associated with time off from work and/or lost of <br> commercial business due to flooding. |
| RD | Road Detour Costs | Costs associated with detouring due to street flooding. |
| PW | Public Works Cost | Costs incurred by Public Works Department as a result <br> of flooding events. |
| FI | Flood Insurance Costs | Flood insurance premiums that would be avoided if a <br> structure is removed from the floodplain. |

Methodologies to determine the tangible damage for each of these components will be discussed in the following sections.

## Evaluation of Flood Insurance Claims in Sarasota County

Both FEMA and ACOE use actuarial tables to determine building damage and content damage based on depth of flooding in the structure. The FEMA method uses a stair-step scale to calculate building damages based on depth of flooding. Their scale starts at $7 \%$ of the appraised value of a home for one foot of flooding. ACOE uses a complex computer program that includes formulas for integration of the area under a logarithmic curve based on data developed by ACOE to calculate damages. The statistics used to develop FEMA's and ACOE's formulas are most likely based on nation-wide statistics from flood insurance claims. Staff wanted to be sure that nationwide data accurately represented flood damages for southwest Florida for several reasons including the fact that most homes are one-story homes with no basement or second story. Intuitively it seems that content damage or structure damage incurred by single-story structures would be higher than those with multiple levels.

To verify flood damages in Sarasota County, staff analyzed over 300 FEMA claims for Sarasota County that were made during the extreme rain events of 1992, 1995 and 1997. At some point, all FEMA claims made in Sarasota County can be included in the analysis. But this data provides a starting point, and also a statistically valid sample to analyze. Although there were several more claims made to FEMA during the three referenced rainfall events, 333 claims contained the data needed for inclusion in the analysis. Staff evaluated flood claims for the following:

1. Structural Damage Claim amount as a percentage of the Appraised Value of the Home.
2. Content Damage Claim amount as a percentage of the Structural Damage Claim.

The analysis showed that the average Structural Damage Claim was $16 \%$ of the appraised value of the home and the median claim was $9 \%$. The population distribution of the claims showed that the majority of the claims made were between 0 and $10 \%$.

Analysis of the Content Damage Claims showed that the average claim was $86 \%$ of the Structural Damage Claim, but the standard deviation of the data set was high. The population distribution showed that there was a normal distribution of the data around the average. Therefore, Stormwater staff computed a $95 \%$ Confidence Interval to check the validity of the data and found based on statistics, $95 \%$ of the time, the average content claim will range between 71 and 100 percent of the structural damage claim. This is a relatively small confidence interval and staff feels confident that the $86 \%$ figure is a reliable indicator of Content Damage as compared to Structural Damage.

## Damage Calculations by Component

Building Damages (BD)

$$
\mathrm{BD}=d f * \mathrm{AV} * 1.25
$$

```
Detour Length \(=\) Length of Detour in miles
Avg Speed \(=20\) miles per hour (assumed)
Avg Hourly Salary = \(\$ 20 /\) hour (assumed)
AADT \(\quad=\) Annual Average Daily Traffic
\# of Days \(\quad=\) Number of Days Detour is in Effect - assume 2 days
\(\$ /\) Mile \(\quad=\$ 0.30\) per mile
```

Staff evaluates each segment of flooded roadway to determine the most feasible detour route and what traffic will be affected by the detour. Because of the low traffic counts on local roadways, this formula will not favor projects to address local roadway level of service.

## Public Works Costs (PW)

Public Works Costs include setting the detours, maintenance of the detours, emergency maintenance during the storm event, manpower to answer phones and inspect complaints resulting form the storm event. Typically this cost ranges from $\$ 2,000$ to $\$ 100,000$ depending on the number of roadway segments and structures affected by the flooding. More research into this value is warranted.

## Flood Insurance Costs (FI)

Mortgage companies require homeowners in the vertical floodplain (the finished floor elevation is lower than the 100 -year flood elevation) to carry flood insurance during the life of the mortgage. If a structure is removed from the vertical floodplain they receive the benefit of avoiding the mandatory flood insurance costs. The homeowner may decide to keep flood insurance but the rate will be lower. Initial research shows the rate of flood insurance for a structure within the floodplain is $1 \%$ of the value of the home annually. Further research into this number is warranted for verification of accuracy.

$$
\text { FI } \quad=\text { Avg Value of Structure in Floodplain * 0.01* \# of Flooded Structures }
$$

## Annualized Damages

To determine a present worth cost of avoided damages if a project were built today, the estimated damages for each interval rainfall event were calculated and multiplied by the probability that the event will happen in any given year. For example, a 100 -year rainfall event has a $1 \%(0.01)$ probability of occurring in a given year, $2 \%$ for the 50 -year rainfall event; $4 \%$ for the 25 year event; and $10 \%$ for the 10 -year rainfall event. The Stormwater Division's standard scope for Basin Master Plans does not include modeling of the 50 -year rain event. Therefore, recognizing that 50 -year event would have tangible damages, the cost was estimated by subtracting the 25 year damages from the 100 -year damages, dividing by 3 and adding to the 25 -year damages. Staff did an analysis of projects where the 50 -year flood event information was available and found this to be an accurate representation of the 50-year damages.

Avoided Flood Insurance costs are included as an annualized cost, since the expenses are not related to the probability of a rainfall event. Residential structures that would be removed from the 100 -year floodplain will be required to pay these annual premiums if they have a mortgage on their home. The sum of the annualized avoided damages is then calculated to determine a present worth value.

## Present Worth Analysis

The Present Worth of the Total Expected Annual Damages is calculated:
$\mathrm{P}=\mathrm{A}\left\{\left[(1+\mathrm{I})^{\mathrm{n}}-1\right] /\left[\mathrm{I} \times(1+\mathrm{I})^{\mathrm{n}}\right]\right\}$ where
P, Present Worth
A, Total Expected Annual Damages
I, Interest Rate $=5 \%$, the average rate of return on municipal bonds
N , Project Life in years $=50$ years, same as ACOE

## Summary of Avoided Damage Analysis

Stormwater staff cautions that this present worth value should be considered a guide when evaluating the cost-effectiveness of a project. It should be noted this method is sensitive to assessed value of homes as well as the volume of traffic on flooded roadways. While this value represents an educated guess of the economic impact resulting from a project, there are invariably other intangible benefits associated with a project that may need to be considered, such as water quality and quality of life benefits. Staff proposes to present results of the Cost Effective Analysis by presenting the Estimated Avoided Damages from a Project in comparison to the Estimated Cost.

## Intangible Factors

Currently staff does not have a weighting system for intangible benefits and has not performed a sensitivity analysis of projects to determine how weights would affect a cost-effective analysis. Due to the high degree of judgement that would be needed, it is reasonable to acknowledge the intangible factors without assigning a dollar figure to be included in any type of economic analysis. Some examples of these intangible factors include, but are not limited to:

- Water Quality Benefits
- Health Factors, such as ability to use septic systems
- Safety Factors, such as access by Emergency Vehicles
- Community Support for a Project
- Public Perception of a Stormwater Problem
- Board Policy for Addressing Stormwater Needs

Staff feels that in certain instances even if a project's costs exceed the tangible benefits of flood control, it may still be a worthwhile project if it has numerous intangible benefits such as improving water quality, health and safety, and community support. These intangibles should be given consideration on a case by case basis when deciding whether to go forward with a project.

```
df = Depth Factor:
    9% for up to 1 foot of flooding (used for the 10, 25, 50 year Events)
    16% for 1 to 2 feet of flooding (used for the 100-year Event)
    see FEMA tables for above two feet of flooding.
AV = Assessed Value of Property (including building and lot)
1.25 = Multiplier for Appraised Value
```

Staff completed a detailed analysis of damages due to structure flooding in the Whitaker Bayou for the 25,50 and 100 -year return storm event based on depth of flooding in the structure. Then staff completed a general analysis multiplying the value of all structures by 0.16 for the 100 -year event when significant flooding is expected and 0.09 for the 25 and 50 -year events when flood levels would be lower. The two analyses were within $10 \%$ of each other. Stormwater staff considers the general analysis to be indicative of expected damages. Engineers evaluating damages can use their judgement if a detailed analysis or general analysis should be completed.

## Content Damages (CD)

$$
\begin{aligned}
& \mathrm{CD}=0.86 \text { * BD } \\
& 0.86=\text { Sarasota County specific multiplier } \\
& \mathrm{BD} \quad=\text { Building Damages }
\end{aligned}
$$

## Automobile Damages (AD)

$$
\begin{aligned}
& \mathrm{AD}=\$ 10,000 * 1.5 * 0.075 * \text { FFS } \\
& 10,000=\text { Assumed Replacement Value of a Car } \\
& 1.5 \quad \text { = Number of Cars per Residence } \\
& 0.075 \text { = Average damage expected as a percent of the value of a car. } \\
& \text { \#FS } \quad \text { = Number of Flooded Structures. }
\end{aligned}
$$

This formula is consistent with the ACOE method. In calculating potential automobile damage, consideration should be given to garage/carport elevation (rather than habitable finished floor elevation).

## Exterior Property Damages (PD)

$$
\begin{aligned}
& \text { PD }=\$ 1,000 * \# H F P \\
& 1,000=\text { Expected Damage to Landscaping or Exterior of Property } \\
& \text { \#HFP }=\text { Number of Lots in the Horizontal Floodplain }
\end{aligned}
$$

All properties within the horizontal limits of the event floodplain are subject to Exterior Property Damages. The Exterior Property Damages were estimated at $\$ 1000$ per flooded property consistent with the FEMA methodology.

Cost-Effective Analysis of Stormwater Projects

Displacement Costs for Flooded Structures (DISF)

$$
\text { DISF }=\$ 100 / \text { day } * 14 \text { days } * \text { \#FS }
$$

$\$ 100=$ Per Diem costs to be displaced from residence
14 days $=$ Number of days to restore residence to habitable state.
\#FS = Number of Flooded structures.
The residents of flooded structures are displaced for the duration of standing floodwaters and for a period after the waters recede for clean up of their homes. A conservative estimate of 14 days at a cost of $\$ 100$ per day was used and reflects FEMA methodology.

## Displacement Costs for Structures in the Floodplain (DIS)

DIS = \$100/day * 2 days * \#HFP
$\$ 100=$ Per Diem costs to be displaced from residence (inaccessible)
2 = Number of days residence is inaccessible
\#HFP = Number of structures in Horizontal Floodplain.
The residents of structures in the horizontal limits of the floodplain are displaced for the duration of standing floodwaters. An estimate of 2 days at a cost of $\$ 100$ per day was used.

## Lost Wages or Business Income (LBI)

Lost wages represent the economic impact on residents when they miss work due to flooding.

$$
\begin{array}{ll}
\text { LW } & =\$ 40,000 * 1.5 * 8 / 2080 \text { *( \#HSF * \#Days + \#FS * \#Days) } \\
\$ 40,000 & =\text { Average Annual Income } \\
& =\text { Number of Employed Residents per Home } \\
1.5 & \text { \#Days }
\end{array}=\text { Number of Work Days Lost due to Flooding; }
$$

Lost Business Income represents lost opportunity for commercial business or industrial sites that are flooded. Staff is currently working through this scenario in the Catfish Creek Basin by contacting the businesses to determine how flooding impacts them.

## Road Detour Costs (RD)

> RDI $=$ Income lost due to Road Detour RDI $=$ Detour Length * Avg Speed * Avg Hourly Salary * AADT * \# of Days  RDV $=$ Vehicle/Milage Costs due to Road Detours RDV $=$ Detour Length * \$/mile * AADT * \# of Days

| Detour Length | $=$ Length of Detour in miles |
| :--- | :--- |
| Avg Speed | $=20$ miles per hour (assumed) |
| Avg Hourly Salary $=\$ 20 /$ hour (assumed) |  |
| AADT | $=$ Annual Average Daily Traffic |
| \# of Days | $=$ Number of Days Detour is in Effect - assume 2 days |
| $\$$ Mile | $=\$ 0.30$ per mile |

Staff evaluates each segment of flooded roadway to determine the most feasible detour route and what traffic will be affected by the detour. Because of the low traffic counts on local roadways, this formula will not favor projects to address local roadway level of service.

## Public Works Costs (PW)

Public Works Costs include setting the detours, maintenance of the detours, emergency maintenance during the storm event, manpower to answer phones and inspect complaints resulting form the storm event. Typically this cost ranges from $\$ 2,000$ to $\$ 100,000$ depending on the number of roadway segments and structures affected by the flooding. More research into this value is warranted.

## Flood Insurance Costs (FI)

Mortgage companies require homeowners in the vertical floodplain (the finished floor elevation is lower than the 100 -year flood elevation) to carry flood insurance during the life of the mortgage. If a structure is removed from the vertical floodplain they receive the benefit of avoiding the mandatory flood insurance costs. The homeowner may decide to keep flood insurance but the rate will be lower. Initial research shows the rate of flood insurance for a structure within the floodplain is $1 \%$ of the value of the home annually. Further research into this number is warranted for verification of accuracy.

$$
\text { FI } \quad=\text { Avg Value of Structure in Floodplain * 0.01* \# of Flooded Structures }
$$

## Annualized Damages

To determine a present worth cost of avoided damages if a project were built today, the estimated damages for each interval rainfall event were calculated and multiplied by the probability that the event will happen in any given year. For example, a 100 -year rainfall event has a $1 \%(0.01)$ probability of occurring in a given year, $2 \%$ for the 50 -year rainfall event; $4 \%$ for the 25 year event; and $10 \%$ for the 10 -year rainfall event. The Stormwater Division's standard scope for Basin Master Plans does not include modeling of the 50 -year rain event. Therefore, recognizing that 50 -year event would have tangible damages, the cost was estimated by subtracting the 25 year damages from the 100 -year damages, dividing by 3 and adding to the 25 -year damages. Staff did an analysis of projects where the 50 -year flood event information was available and found this to be an accurate representation of the 50-year damages.

Avoided Flood Insurance costs are included as an annualized cost, since the expenses are not related to the probability of a rainfall event. Residential structures that would be removed from the 100-year floodplain will be required to pay these annual premiums if they have a mortgage on their home. The sum of the annualized avoided damages is then calculated to determine a present worth value.

Cost-Effective Analysis of Stormwater Projects

## Present Worth Analysis

The Present Worth of the Total Expected Annual Damages is calculated:
$\mathrm{P}=\mathrm{A}\left\{\left[(1+\mathrm{I})^{\mathrm{n}}-1\right] /\left[\mathrm{I} \times(1+\mathrm{I})^{\mathrm{n}}\right]\right\}$ where
P, Present Worth
A, Total Expected Annual Damages
I, Interest Rate $=5 \%$, the average rate of return on municipal bonds
N , Project Life in years $=50$ years, same as ACOE

## Summary of Avoided Damage Analysis

Stormwater staff cautions that this present worth value should be considered a guide when evaluating the cost-effectiveness of a project. It should be noted this method is sensitive to assessed value of homes as well as the volume of traffic on flooded roadways. While this value represents an educated guess of the economic impact resulting from a project, there are invariably other intangible benefits associated with a project that may need to be considered, such as water quality and quality of life benefits. Staff proposes to present results of the Cost Effective Analysis by presenting the Estimated Avoided Damages from a Project in comparison to the Estimated Cost.

## Intangible Factors

Currently staff does not have a weighting system for intangible benefits and has not performed a sensitivity analysis of projects to determine how weights would affect a cost-effective analysis. Due to the high degree of judgement that would be needed, it is reasonable to acknowledge the intangible factors without assigning a dollar figure to be included in any type of economic analysis. Some examples of these intangible factors include, but are not limited to:

- Water Quality Benefits
- Health Factors, such as ability to use septic systems
- Safety Factors, such as access by Emergency Vehicles
- Community Support for a Project
- Public Perception of a Stormwater Problem
- Board Policy for Addressing Stormwater Needs

Staff feels that in certain instances even if a project's costs exceed the tangible benefits of flood control, it may still be a worthwhile project if it has numerous intangible benefits such as improving water quality, health and safety, and community support. These intangibles should be given consideration on a case by case basis when deciding whether to go forward with a project.

## APPENDIX B - SARASOTA COUNTY RLOOD CLAIMS




$\begin{array}{ll}\text { 82.3\% } & \text { Average Content Damage / Building Damage } \\ \text { 42.7\% } & \text { Median Content Damage / Building Damage }\end{array}$

○ Stoz
ㅇ tioz
$\underset{\rightarrow}{7}$ - हIOZ
in N 2loz
ㅇ LIOZ
ㅇ 0toz
ㅇ 6002
$\underset{\neg}{\boldsymbol{-}}$ - 8002
ㅇ LOOZ
ㅇ 9002
$\infty \quad \sim$ n


- Building Damage (765) ■ Content Damage (493)


## APPENDIX C - CITY OF SARASOTA RLOOD CLAIMS





## APPENDIX D - COMPONENTSUMMARY SHEET

|  |  | Component Summary Sheet |
| :---: | :---: | :---: |
| Abbreviation | Component | Description |
| BD | Building Damage | Structural Damage assoc iates with flooded structures. |
| Equation | ```BD =0.12 * AV * 1.25 =Sarasota County specific multiplier for building damage =Assessed Value of Property (building only) =MultiplierforAppraised Value``` |  |
| CD | Content Damage | Damage associated with contents of flooded structures. |
| Equatio | ```CD =0.86 *BD =Sarasota County specific multiplier for content damage =Building Damages``` |  |
| AD | Automobile Damage | Damage to flooded vehicles. |
| Equatio <br> \$25,000 <br> 0.07 <br> \#F | $\begin{aligned} & \text { AD }=\$ 25,000 * 2 * 0.075 * \# \mathrm{FS} \\ & =\text { Replacement value of a car } \\ & =\text { Number of carsper residence } \\ & =\text { Average damage expected as a percent of the value of a } \\ & =\text { Number of flooded structures } \end{aligned}$ |  |
| PD | Exterior Property Damage | Damage to landscape / hardscape and flooded lots. |
| $\begin{array}{r} \text { Equation } \\ \$ 2,000 \\ \text { \# HFP } \end{array}$ | $\begin{aligned} & \text { PD }=\$ 2,000 * \text { \# HFPL } \\ & =\text { Expected damage to landsc a ping / hardsc aping or exterio } \\ & =\text { Number of Lots in the Horizontal Floodpla in } \end{aligned}$ | erty |
| DISF | Displacement Costs for Flooded Structures | Perdiem cost associated with uninhabitable structures. |
| Equatio $\$ 25$ <br> \# Fda | ```DISF =$250/day * # Fdays*# FS =Per diem costs to be displaced from residence =14 days for flooded structures to restore residence to habita =Number of flooded structures``` |  |
| DIS | Displa cement Costs for Struc tures in the Horizontal Floodpla in | Per Diem cost assoc iated with non-accessible structures, but structure not flooded. |
| Equatio \$25 \# Dda \# H | ```DIS = $250/day * #Ddays* # HFP =Per diem costs to be displaced from residence (inaccessibl =2 days fordisplaced residents =Number of struc tures in horizo ntal flood plain``` |  |
| LW | Lost Wages due to Residential Flooding | Costs assoc iated with time off from work due to residential flooding. |
| Equatio <br> \$56,28 <br> 2080 <br> \# H <br> \# Dda <br> \# Fda | ```LW =\$56,286 * 8 / 2080 *[(\# HFP * \# Ddays) + (\# FS* \#Fdays)] =Average Household Income (2015) =Work hours perday =Work hours peryear =Number of structures in the horizontal floodpla in \(=2\) daysfordisplaced residents =Number of flooded structures \(=14\) days for flooded structures to restore residence to habita``` |  |


|  |  | Component Summary Sheet | Appendix D |
| :---: | :---: | :---: | :---: |
| Abbreviation | Component | Description |  |
| LBI | Lost Business Inc ome | Costs associated with loss of commercial business income due to flooding. |  |
| ```Equation: LBI =$5,104 *[(#CHFP * #Ddays) + (#CFS* #Fdays)] $5,104 =Average daily commercial revenue for Sarasota County fimswith paid employees #CHFP =Number of commercial displaced structures in the horizontal floodpla in #Ddays =2 days Lost due to commercial displaced structures #CFS =Number of commercial flooded structures #Fdays =14 Days Lost due to commercial flooded structures``` |  |  |  |
| LWB | Lost Wages due to Closed Business | Costs associated with employee time off from work due to business flooding. |  |
| ```Equation: LWB =10* 8* $19.35 *[(#CHFP * #Ddays) +(#CFS* #Fdays)] 10 =Average employees per business 8 =Work hours perday $19.35 =Average Sarasota County payroll (hourly rate) #CHFP =Number of commercial displaced structures in the horizontal flood pla in #Ddays =2 days Lost due to commercial displaced structures #CFS =Number of commercial flooded structures #Fdays =14 Days Lost due to commercial flooded structures``` |  |  |  |
| RD | Road Detour Costs | Costs associated with detouring traffic due impassable to street flooding. |  |
| Equatio RD <br> RD | $\begin{aligned} & \text { RD = RDI + RDV } \\ & =\text { Income lost due to road detour } \\ & =\text { Detour Length*Avg. Speed*Avg. Hourly Salary*AAD } \\ & =\text { Vehicle / Mileage costs due to road detours } \\ & =\text { Detour Length *AADT* \# of Ddays* \$/mile } \end{aligned}$ |  |  |
| PW | Public Works Costs | Cost incurred by public entity to mainta in traffic detours and public safety because of flooding events. |  |
| Cost ranges from \$2,000 to \$50,000 depending on the duration of the flooding, the number of roadway segments, and structures affected by the flooding. |  |  |  |
| FI | Flood Insurance Costs | Avoided flood insurance premiums if a structure is removed from the Special Flood Hazard Area (SFHA). |  |
| Equatio <br> Avg <br> 0.0 <br> \# F | $\begin{aligned} & \mathrm{FI}=\mathrm{Avg} \mathrm{SV} * 0.01 * \# \mathrm{FS} \\ & =\text { Average value of structures in horizontal flood pla in } \\ & =1 \% \text { of the value of structures } \\ & =\text { Number of flooded structures } \end{aligned}$ |  |  |

## APPENDIX E - NUMBEO INFORMATION

Cost Of Living Property Prices Crime Health Care Pollution Traffic Quality Of Life Travel

C Cost of Living > United States > Sarasota, FL
Cost of Living in Sarasota
Like Tweet $\quad$ G+
Compare Sarasota, FL with: Type and Pick City

Do you live in Sarasota? Add data for Sarasota, FL!
Currency: USD $\vee$ Sticky Currency Switch to metric measurement units

| Restaurants | [ Edit] | Range |  |
| :---: | :---: | :---: | :---: |
| Meal, Inexpensive Restaurant | 12.00 \$ | 9.00 | 15.00 |
| Meal for 2 People, Mid-range Restaurant, Three-course | 40.00 \$ | 30.00 | - 45.00 |
| McMeal at McDonalds (or Equivalent Combo Meal) | 6.50 \$ | 4.00 | 8.00 |
| Domestic Beer (1 pint draught) | 4.50 \$ | 4.00 | 5.00 |
| Imported Beer (11.2 oz small bottle) | 6.00 \$ | 5.00 | . 6.00 |
| Cappuccino (regular) | 3.79 \$ | 2.50 | 5.00 |
| Coke/Pepsi (11.2 oz small bottle) | 1.43 \$ | 1.00 | 2.50 |
| Water (11.2 oz small bottle) | 1.15 \$ | 1.00 | 1.50 |
| Markets | [ Edit] |  |  |
| Milk (regular), (1 gallon) | 3.79 \$ | 3.59 | 4.00 |
| Loaf of Fresh White Bread (1 lb) | 2.63 \$ | 2.00 | - 3.00 |
| Rice (white), (1 lb) | 3.50 \$ | 2.00 | - 4.00 |
| Eggs (regular) (12) | 1.81 \$ | 1.50 | 2.50 |
| Local Cheese (1 lb) | 10.50 \$ | 5.00 | 14.00 |
| Chicken Breasts (Boneless, Skinless), (1 lb) | 5.37 \$ | 3.50 | 6.00 |
| Beef Round (1 lb) (or Equivalent Back Leg Red Meat) | 6.98 \$ | 5.00 | 8.00 |
| Apples (1 lb) | 3.00 \$ | 2.00 | 4.00 |
| Banana (1 lb) | 1.40 \$ | 0.55 | 2.00 |
| Oranges (1 lb) | 3.00 \$ | 2.00 | -3.00 |
| Tomato (1 lb) | 2.00 \$ | 1.50 | 3.00 |
| Potato (1 lb) | 1.50 \$ | 1.00 | 2.00 |
| Onion (1 lb) | 2.00 \$ | 1.50 | -2.00 |
| Lettuce (1 head) | 2.50 \$ | 1.50 | 3.00 |
| Water (1.5 liter bottle) | 1.33 \$ | 0.50 | 2.00 |
| Bottle of Wine (Mid-Range) | 19.50 \$ | 15.00 | - 24.00 |
| Domestic Beer (0.5 liter bottle) | 3.00 \$ | 2.00 | 4.00 |
| Imported Beer (11.2 oz small bottle) | 4.50 \$ | 3.00 | 6.00 |
| Pack of Cigarettes (Marlboro) | 6.89 \$ | 6.79 | . 7.00 |
| Transportation | [ Edit] |  |  |
| One-way Ticket (Local Transport) | 1.25 \$ | 1.25 | . 1.25 |
| Monthly Pass (Regular Price) | 40.00 \$ | 30.00 | 50.00 |
| Taxi Start (Normal Tariff) | 3.00 \$ |  |  |
| Taxi 1 mile (Normal Tariff) | 2.50 \$ | 2.00 | 3.00 |
| Taxi 1 hour Waiting (Normal Tariff) | ? |  |  |
| Gasoline (1 gallon) | 2.35 \$ | 2.16 | - 2.59 |
| Volkswagen Golf 1.490 KW Trendline (Or Equivalent New Car) | 18,525.00 \$ | 15,000.00 | 22,050.00 |
| Toyota Corolla 1.6l 97kW Comfort (Or Equivalent New Car) | 24,050.33 \$ | 18,151.00 | 35,000.00 |
| Utilities (Monthly) | [ Edit] |  |  |
| Basic (Electricity, Heating, Cooling, Water, Garbage) for 915 sq ft Apartment | 152.85 \$ | 101.66 | 228.73 |
| 1 min. of Prepaid Mobile Tariff Local (No Discounts or Plans) | 0.10 \$ | 0.10 | 0.10 |
| Internet (60 Mbps or More, Unlimited Data, Cable/ADSL) | 63.33 \$ | 40.00 | 85.00 |
| Sports And Leisure | [ Edit] |  |  |
| Fitness Club, Monthly Fee for 1 Adult | 28.43 \$ | 10.00 | 60.00 |
| Tennis Court Rent (1 Hour on Weekend) | 21.50 \$ | 15.00 | - 30.00 |


Sign up for our newsletter:
Your email address:
Submit

| Nearby cities: |  |
| :--- | ---: |
| Cost of Living in Bradenton, Florida | 13.20 miles |
| Cost of Living in Venice, Florida | 18.96 miles |
| Cost of Living in Saint Petersburg, Florida | 37.69 miles |
| Cost of Living in Clearwater, Florida | 55.60 miles |
| Cost of Living in Tampa, Florida | 61.08 miles |
| Cost of Living in New Port Richey, Florida | 73.66 miles |
| Cost of Living in Fort Myers, Florida | 75.95 miles |
| Cost of Living in Zephyrhills, Florida | 79.31 miles |
| Cost of Living in Spring Hill, Florida | 93.86 miles |
| Cost of Living in Naples, Florida | 116.61 miles |

Leave a comment:
Your name: $\square$ Sign In
Your email address (optional): $\square$
Your comment (no HTML):


## APPENDIX F- DATA USA INFORMATION


$\pm$ ADD COMPARISON

POPULATION
405,549
$\mathbf{2 . 1 6 \%}$ GROWTH

MEDIAN AGE
 NUMBER OF EMPLOYEES 158,795
$-122 \%$ DECLINE
 $8.02 \%$ GROWTH


ABOUT

( $\downarrow$ )
READ MORE
https://datausa.io/profile/geo/sarasota-county-fl/\#category wages

## Household Income

Please note that the buckets used in this visualization were not evenly distributed by ACS when publishing the data.

## \$56,286 <br> MEDIAN HOUSEHOLD INCOME $\pm \$ 2.523$

In 2015, the median household income of the 177,807 households in Sarasota County, FL grew to $\$ 56,286$ from the previous year's value of $\$ 52,109$.

The following chart displays the households in Sarasota County, FL distributed between a series of income buckets compared to the national averages for each bucket. The largest share of households have an income in the \$75-S100k range.

## Dyacet ACS -year Etimmete

Sourcacicraur Bupedu

## Car Ownership

## 2 cars

## AVERAGE NUMBER

The following chart displays the households in Sarasota County, FL distributed between a series of car ownership buckets compared to the national averages for each bucket The largest share of households in Sarasota County, FL have 2 cars, followed by 1 car.

## Datiget ACS 1 -year Estimate

Sounc Cencar Rureal

## APPENDIX G - AMERICAN FACTRNDER INFORMATION



## APPENDIX H - INTERNALREVENUE SERVICE NOTICE 2018 STANDARD MILEAGE RATES

Notice 2018-03

## SECTION 1. PURPOSE

This notice provides the optional 2018 standard mileage rates for taxpayers to use in computing the deductible costs of operating an automobile for business, charitable, medical, or moving expense purposes. This notice also provides the amount taxpayers must use in calculating reductions to basis for depreciation taken under the business standard mileage rate, and the maximum standard automobile cost that may be used in computing the allowance under a fixed and variable rate (FAVR) plan.

## SECTION 2. BACKGROUND

Rev. Proc. 2010-51, 2010-51 I.R.B. 883, provides rules for computing the deductible costs of operating an automobile for business, charitable, medical, or moving expense purposes, and for substantiating, under $\S 274(\mathrm{~d})$ of the Internal Revenue Code and § 1.274-5 of the Income Tax Regulations, the amount of ordinary and necessary business expenses of local transportation or travel away from home. Taxpayers using the standard mileage rates must comply with Rev. Proc. 2010-51. However, a taxpayer is not required to use the substantiation methods described in Rev. Proc. 2010-51, but
instead may substantiate using actual allowable expense amounts if the taxpayer maintains adequate records or other sufficient evidence.

An independent contractor conducts an annual study for the Internal Revenue Service of the fixed and variable costs of operating an automobile to determine the standard mileage rates for business, medical, and moving use reflected in this notice. The standard mileage rate for charitable use is set by § 170(i).

## SECTION 3. STANDARD MILEAGE RATES

The standard mileage rate for transportation or travel expenses is 54.5 cents per mile for all miles of business use (business standard mileage rate). See section 4 of Rev. Proc. 2010-51.

The standard mileage rate is 14 cents per mile for use of an automobile in rendering gratuitous services to a charitable organization under § 170. See section 5 of Rev. Proc. 2010-51.

The standard mileage rate is 18 cents per mile for use of an automobile (1) for medical care described in $\S 213$, or (2) as part of a move for which the expenses are deductible under § 217. See section 5 of Rev. Proc. 2010-51.

## SECTION 4. BASIS REDUCTION AMOUNT

For automobiles a taxpayer uses for business purposes, the portion of the business standard mileage rate treated as depreciation is 22 cents per mile for 2014,24 cents per mile for 2015 , 24 cents per mile for 2016 , 25 cents per mile for 2017 , and 25 cents per mile for 2018. See section 4.04 of Rev. Proc. 2010-51.

For purposes of computing the allowance under a FAVR plan, the standard automobile cost may not exceed $\$ 27,300$ for automobiles (excluding trucks and vans) or $\$ 31,000$ for trucks and vans. See section 6.02(6) of Rev. Proc. 2010-51.

SECTION 6. EFFECTIVE DATE
This notice is effective for (1) deductible transportation expenses paid or incurred on or after January 1, 2018, and (2) mileage allowances or reimbursements paid to an employee or to a charitable volunteer (a) on or after January 1, 2018, and (b) for transportation expenses the employee or charitable volunteer pays or incurs on or after January 1, 2018.

## SECTION 7. EFFECT ON OTHER DOCUMENTS

Notice 2016-79 is superseded.

## DRAFTING INFORMATION

The principal author of this notice is Bernard P. Harvey of the Office of Associate Chief Counsel (Income Tax and Accounting). For further information on this notice contact Bernard P. Harvey on (202) 317-7005 (not a toll-free call).

## APPENDIX I - EMAILCOMMUNICATION WITH SWFWMD

From: Nicole R. Mytyk [nicole.mytyk@swfwmd.state.fl.us](mailto:nicole.mytyk@swfwmd.state.fl.us)
Sent: Thursday, February 22, 2018 2:49 PM
Subject: RE: Cost Effective Analysis - sample reports
To: Brunty, Jennifer [jennifer.brunty@stantec.com](mailto:jennifer.brunty@stantec.com)

Pounds per year but the cost effectiveness is calculated for 20 years (considered the life of the project).

Nicole Mytyk - SWIM Program, SWFWMD

From: Brunty, Jennifer [mailto:Jennifer.Brunty@stantec.com]
Sent: Thursday, February 22, 2018 2:36 PM
To: Nicole R. Mytyk < Nicole.Mytyk@swfwmd.state.fl.us>
Subject: RE: Cost Effective Analysis - sample reports

Me again with one more question - is the pollutant removal rate pounds per year or pounds per life of the project?

## Jennifer L Brunty, PhD, PMP

Senior Environmental Scientist
Direct: (941) 907-6900
Mobile: (941) 779-5925
Stantec Consulting Services Inc. 6900 Professional Parkway East Sarasota FL 34240-8414 US

## (1) Stantec

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Nicole R. Mytyk [mailto:Nicole.Mytyk@swfwmd.state.fl.us]
Sent: Thursday, February 22, 2018 9:37 AM
To: Brunty, Jennifer [Jennifer.Brunty@stantec.com](mailto:Jennifer.Brunty@stantec.com)
Subject: RE: Cost Effective Analysis - sample reports

Decisions on both questions are unknown at this time.
The metrics were based on past District projects and the Balmoral study was to look at all available info (explained in various reports) to verify the numbers and provide suggestions. At this time none have been adopted. That may or may not change in the future, so for now our metrics have stayed the same. The report was finished around October of last year.

Nicole Mytyk - SWIM Program, SWFWMD

From: Brunty, Jennifer [mailto:Jennifer.Brunty@stantec.com]
Sent: Thursday, February 22, 2018 9:34 AM
To: Nicole R. Mytyk [Nicole.Mytyk@swfwmd.state.fl.us](mailto:Nicole.Mytyk@swfwmd.state.fl.us)
Subject: RE: Cost Effective Analysis - sample reports

Thanks - I was using the chart you had pasted into the Janaury $25^{\text {th }}$ email and thought it came out of the Balmoral report but I see it's a little different. I'm trying to write a paragraph for the county so they can understand where the numbers SWFWMD is using came from.

Where did the numbers in the chart used in the past come from? Was it based on District staff doing calculations on past District projects? That's what I vaguely remember but I was never involved in that. What year was the chart created (seems like 2013-14 if I remember right)? I ask because the Balmoral report looks like it was normalized for 2017 dollars and I don't know what dollars or any normalization was done for the chart currently in use. Overall, I'm trying to determine if the dollars will be updated as the years progress, or if that is unknown l'll just say it's unknown right now and leave it at that. The years the dollars came fro would be something for the county to keep in mind as they do budgets.

Are there plans to use the Balmoral report in the future?
Thanks again for your help!

## Jennifer L Brunty, PhD, PMP <br> Senior Environmental Scientist

Direct: (941) 907-6900
Mobile: (941) 779-5925
Stantec Consulting Services Inc. 6900 Professional Parkway East
Sarasota FL 34240-8414 US

## (D) Stantec

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Nicole R. Mytyk [mailto:Nicole.Mytyk@swfwmd.state.fl.us]
Sent: Thursday, February 22, 2018 9:23 AM
To: Brunty, Jennifer [Jennifer.Brunty@stantec.com](mailto:Jennifer.Brunty@stantec.com)
Subject: RE: Cost Effective Analysis - sample reports

Hi Jennifer! We are not adopting any of the Balmoral study at this time. I provided it to show our current metrics listed in Table 6. This may change in the future, but as of 2018 that was how we evaluated projects for FY2019.

See the note in my first email: "The WQ Metrics is an evaluation we completed on our metrics this past year. Table 6 (furthest right column) has our current metrics."

## Nicole Mytyk - SWIM Program, SWFWMD

From: Brunty, Jennifer [mailto:Jennifer.Brunty@stantec.com]
Sent: Thursday, February 22, 2018 8:55 AM
To: Nicole R. Mytyk [Nicole.Mytyk@swfwmd.state.fl.us](mailto:Nicole.Mytyk@swfwmd.state.fl.us)
Subject: RE: Cost Effective Analysis - sample reports

Good morning - A question about the Balmoral study. The costs were adjusted to 2017 dollars. Do you know if there are plans to update the costs periodically using the consumer price index? I just want to make a note about that in the report for Sarasota County.

Thanks!

## APPENDIXJ -SARASOTA COUNTY BOARD MEEIING MINUIES DATED DEC EMBER 5, 2000-HIGLGHIED

| MINUTES | Bock 68 |
| :---: | :--- |
| BOARD OF COUNTY COMMISSIONERS | Page 519 |
| SARASOTA COUNTY ADMINISTRATION CENTER | $9: 00$ a.m. |
| 165O RINGLING BOULEYARD |  |
| COUNTY COMMISSION CHAMBERS |  |
| SARASOTA, FLORIDA |  |

Nora Patterson, Chair, District 4
David R. Mills, Vice Chaiman, District 2
Paul Mercier, District 1
Shannan Staub, District 3
Jon Thaxton, District 5
Also present were:
James Ley, County Administrator
David Bullock, Deputy County Administrator
Jorge L. Femandez, County Attomey
Stephen DeMarsh, Assistant County Altorney
Peter Ramsden, Clerk of the Circuit Court Finance Director
Tricia Granger, Deputy Clerk
INVOCATION
Johnnie Mae Reid
PLEDGE OF Allegiance
Commissioner Staub
PROCLAMATIONS
Circus Sarasota Season - December 26, 2000 - January 27, 2001
Civil Air Patrol Week - December 1-7, 2000
PERFORMANCE RECOGNIZED AS OUTSTANDING (PRO) AWARDS
Gary Krauss, Community Sevices - Individual Accomplishment
Diane M. Thibodeau and Dianne M. Shipley, Health \& Human Services - Team Merit
RECOGNITION OF RETIREMENTS
John H. Albritton. Emergency Services - 31 years
Les McKinney, Public Works - 37 years

## PRESENTATION

Commr. Mills presented Sarasota Herald Tribune Staff Writer Chad Binette an editorial cartoon commemorating the current Presidential election campaign ballot recounts.

PRESENTATION OF CERTIFICATES
Citizens Academy Class Graduation (1-0961)

## 26. COMMISSION REPORTS

A. ADVISORY COUNCILSIORGANIZATIONS

Commr. Staub introduced STAR (Students Taking Active Role in Govemment) members observing the meeting.
(1-1060)

## ELEGTION OF BOARD OF COUNTY COMMISSION 2001 OFFICERS AND BOARD COMMITTEE APPOHNTMENTS

Commr. Staub moved to elect Commr. Mills as Chairman for calendar year 2001. The motion, seconded by Commr. Thaxton, carried without objection.

Chairman. Mills moved to elect Commr. Patterson as Vice Chairman for calendar year 2001. The motion, secorded by Commr. Staub, carried without objection.

Chairman Mills moved to elect Commr. Staub as Chairman Pro-Tern for calendar year 2001. The motion, seconded by Commr. Thaxton, camied without objection.

## RECESS: 9:40 a.m. - 9:45 a.m. (1-1147)

Interim Chair Patterson passed the gavel and Chaiman Mills noted consideration of the Boand Committee Appointments, and subsequent to comments and discussion, the annual appointments of individual Commissioners as representatives for 2001 were confimed, as follows:

## Organizations/Agencies/Boards:

Southwest Florida Regional Planning Counci] (SWFRPC)

Two members:
One alternate:
Tourist Development Council (TDC)
One member:
One alternate:
Peace River/Manasota Regional Water Supply Authority
One member:
One alternate:
Value Adjustment Board
Commr. Stanb
Commr. Thaxton

## Three members:

Commr. Staub
Commr. Mercier
Commr. Thaxton
Economic Development Board
One member.
One alternate:
Commr. Mills
Commr. Mercier
National Estuary Program Policy Committee
One member:
Commr. Thaxton
One alternate:
Commr. Patterson

## West Coast Inland Navigation District (WCIND)

One member.
One altemate:

Commr. Patterson
Commr. Staub

## Organizations/Agencies/Boards:

Metropolitan Plamning Organization

Three members:

Two alternates:

Transportation Disadvantaged Board
One member.
One alternate:
Juvenile Justice
One member:
One alternate:
Public Safety Council
One member:
One altemate:
Utirities Acquisition
One member.

## Charlotte Harbor National Estuary Program

One member:
One altemate:

## Trail Corridor Committee

Ore member.
Community Action Agency Board
One member:
One alternate:
Council of Governments
One member:
One alternate:
School Readiness Coalition
One member:
One altemate:
Sarasota County Community Alliance (SCCA)
Department of Children and Families (DCF)
One member:
One alternate:
G. Pierce Wood's Closure Committee

One member:
One alternate:

Commr. Patterson

Commr. Thaxton
Commr. Mercier
Commr. Staub
Commr. Milis
Commr. Patterson
Commr. Mercier
Commr. Thaxton

Commr. Mercier
Commr. Milis

Commr. Mercier
Commr. Patterson

Commr. Mercier
Commr. Thaxton

Commr. Mills

Commr. Mercier
Commr, Mills

Commr. Mills
Commr. Patterson

Commr. Staub
Commr. Mercier

Commr. Mercier
Commr, Mills

Commr. Staub
Commr. Mills

## CONSENT MOTION

A motion was made by Commr. Stawh, seconded by Commr. Thaxton, and carried by a 5-0 vote to approve ltems 1-11 as follows, with the exception of liems 2 and 3, considered later this meeting.

## 1. RESOLUTIONSIGRANTS

A. Adopted Resolution No. 2000-278 authorizing the approval for grant application submissions to the Florida Department of Community Affairs (FDCA) for the Emergency Management Preparedness and Assistance Competitive Grant Program:
B. Authorized execution and submissions of the grant applications by the County Administrator or his designee.
2. ENVIRONMENTAL SERVICES

See consideration of the Certification of Financial Responsibility for the Venice Gardens Water Treatment Plant deep injection well, later this meeting.
3. ENVIRÖNMENTAL SERVICES

See consideration of the recommended prionity list for County projects to be submitted for Southwest Florida Water Management District Manasota Basin Board Cooperative Funding, later this meeting.
4. CONTRACTS

Approved Contract No. 2001-061, Change Order No. 2 to Contract No. 2000-214, with Stately Contractors, Inc., for the construction of the Newtown Water Distribution and Wastewater Collection System, Phase 3, in an amount not to exceed \$188,686.01; and to reduce the Contract retainage to 2.5 percent (\%).
5. PUBLIC WORKS
A. Approved a Non-Exclusive Permanent Utility Easement to Florida Power and Light Company for the purpose of relocating existing facilities to accommodate the Caltlemen Road Project - Phase I;
B. Approved a Non-Exclusive Access Easement to Florida Power and Eight Company for the purpose of relocating existing facibities to accommodate the Cattemen Road Project Phase 1.
6. CONTRACTS

Approved Contract No. 2001-062, Supplemental Agreement No. 4 to Contract No. 97-358, with Hote, Montes \& Associates, Inc., to provide additional engineering services for the Clark Road Stomwater Improvement Project, in the amount of $\mathbf{\$ 2 1 , 4 7 0 . 0 0}$.
7. ORDINANCES

Authorized advertising of a public hearing to consider a proposed Ordinance to establish the Boleyn Road Nor-Maintained Secondary Road Improvement District.
8. RESOLUTIONS
A. Adopted Resolution No. 2000-279 authorizing the execution and submital of Contract No. 2000-331, a Joint Participation Agreement (JPA), with the Florida Department of Transportation (FDOT), for a Federal Transportation Administration (FTA) Section 5310 Capital Equipment Grant, in the amount of $\$ 136,800.00$, and $\$ 17,100.00$ of FDOT matching funds; authorizing the execution and filing of the Application for Federal Assistance for the Grant Program; and rescinding Resolution No. 2000-186, approved by the Board on September 12, 2000.
8. RESOLUTIONS - Continued
B. Adopted Resolution No. 2000-280, authorzing the execution and submittal of Contract No. 2000-330, a Joint Participation Agreement (JPA), with the Florida Department of Transportation (FDOT), for a Federal Transportation Administration (FTA) Section 5311 Non-Urbanized Grant, in the amount of \$54,100.00; authorizing execution and fring of the Application for Federal Assistance for the Grant Program; authorizing the execrtion and filing of the FY2000 Federal Transit Administration's certifications and Assurances, and rescinding Resoiftion No. 2000-185, approved by the Board on Septernber 12, 2000.
9. RESOLUTIONS

Adopted Resolution No. 2000-281 authorizing the execution and submittal of Contract No. 99-358, a Joint Participation Agreement with the Florida Department of Transportation (FDOT) permitting FDOT to provide up to $\$ 715.277 .00$ in transit operating assistance to the SCAT (Sarasata County Area Transit) bus system, and rescinding Resolution No. 2000-220, approved by the Board on September 26, 2000.
10. WARRANTS

Approved the warrants dated November 27 through December 1, 2000, in the amount of $\$ 5,801,910.76$, as detailed in the voucher packages filed in the Finance Department.
11. MINUTES

Approved the Minutes of meetings dated September 28 and October 11, 2000.
(1-1913)

## 2. ENVIRONHENTAL SERVIGES - Continued

Following clarification of Staff's report by County Administrator James Ley pertaining to funding requirements, Chairman Mills moved to authorize execution of the Certification of Financial Responsibility for the Venice Gardens Water Treatment Plant deep injection well, for submission to the Florida Department of Environmental Protection (FDEP). The motion, seconded by Commr. Staub, carried without objection.
3. ENVIRONMENTAL SERVICES - Continued

Following inquiry, Environmental Services Utilities Planning Section Supervisor John Knowles reviewed the process for the development of the priority listing for County projects to be submitted for Southwest Fiorida Water Management District (SWFWMD) Manasota Basin Board Cooperative Funding.

Subsequent to discussion on the development process, the Catfish Creek Stormwater Improvement Project, and anticipated funding. Chairman Mills moved to approve the priority listing for County projects to be submitted. The motion, seconded by Commr. Patterson, carried without objection.
26. COMMISSION REPORTS - Continued
B. ORGANIZATIONS

Chairman Mills noted the attendance of Ms. Cathy Layton and congratulated her on her recent appointrnent to the Charter Review Board by Govemor Jeb Bush.

## 12. CONTRACTSIRESOLUTIONS

Following comments from Chaiman Mills on consideration of the requests for tax exemption status for historical property, Commurity Services Historical Resources Specialist Lorie Muldowney provided background information on Ordinance requirements and an overview of criteria for consideration and approval of the requests.

Ms. Muldowney presented the proposed Resolution to grant tax exemption status for property known as the Crisp Building located at 1970 Main Street, Sarasota, and Contract, a Historic Preservation Property Tax Exemption Covenant, with the Kauffman Family Partnership I (Owner) for the purpose of qualifying the Owner for an ad valorem tax exemption for qualified improvements made to the property for a ten-year period commencing January 1, 2001 through December 31, 2011.

Commr. Staub moved to adopt Resolution No. 2000-282, approving the tax exemption status for the Crisp Building. The motion, seconded by Commr. Mercier, carried by a 5-0 vote.

Commr. Staub moved to approve Contract No. 2001-063, a Historic Preservation Property Tax Exemption Covenant, with the Kauffman Family Partnership I, for the Crisp Building. The motion, seconded by Commr. Mercier, carried by a 5-0 yote.

Ms. Muldowney presented an overview of the proposed Resolution to grant tax exemption status for property known as the Leonard Reid House located at $14357^{7 \text { h }}$ Street, Sarasota, and Contract, a Historic Preservation Property Tax Exemption Covenant, with Donald Wailace (Owner) for the purpose of qualifying the Owner for an ad valorem tax exemption for qualified improvements made to the property for a ten-year period commencing January 1, 2001 through December 31, 2011.

Commr. Thaxton declared a conflict and filed the appropriate documentation.
Commr. Patterson moved to adopt Resolution No. 2000-283, approving the tax exemption status for the Leonard Reid House. The motion, seconded by Commr. Mercier, carried by a $4-0$ vote, with Commr. Thaxton abstaining.

Commr. Patterson moved to approve Contract No. 2001-064, a Historic Preservation Property Tax Exemption Covenant, with David Wallace for the Leonard Reid House. The motion, seconded by Commr. Mercier, carried by a 4-0 vote, with Commr. Thaxton abstaining.

Ms. Muldowney presented an overview of the proposed Resolution to grant tax exemption status for property known as the Hood Building located at 1373-1385 $5^{\text {h }}$ Street, Sarasota, and Contract, a Historic Preservation Property Tax Exemption Covenant, with Daniel P. and Judith C. Ball (Owners) for the purpose of qualifying the Owner for an ad valorem tax exemption for qualified improvements made to the property for a ten-year period commencing January 1, 2001 through December 31, 2011.

Commr. Thaxton moved to adopt Resolution No. 2000-284, approving the tax exemption status for the Hood Building. The motion, seconded by Commr. Staub, carried by a 5-0 vote.
12. CONTRACTSRESOLUTIONS - Continued

Cormmr. Thaxton moved to approve Contract No. 2001-065, a Historic Preservation Property Tax Exemption Covenant, with Daniel P. and Judith C. Ball for the Hood Building. The motion, seconded by Commr. Staub, carried by a 50 vote. (1-2795)

Ms. Muldowney presented an overview of the proposed Resolution to grant tax exemption status for property known as the Kicklighter House located at 1205 Cocoanut Avenue, Sarasota, and Contract, a Historic Preservation Properly Tax Exemption Covenant, with Katherine Kelly (Owner) for the purpose of qualifying the Owner for an ad valorem tax exemption for qualified improvements made to the property for a ten-year period commencing January 1, 2001 through December 31, 2011.

Commr. Mercier moved to adopt Resolution No. 2000-285, approving the tax exemption status for the Kicklighter House. The motion, seconded by Commr. Staub, carried by a 5-0 vote.

Commr. Mercier moved to approve Contract No. 2001-066, a Historic Preservation Property Tax Exemption Covenant, with Katherine Kelly for the Kicklighter House. The motion, seconded by Commr. Staub, carried by a $5-0$ vote.

Ms. Muldowney presented an overview of the proposed Resolution to grant tax exemption status for property known as the Alice Watters Beebe House located at 1265 Tree Bay Lane, Sarasota, and a Contract, a Historic Preservation Property Tax Exemption Covenant, with Harold and Mary Michaels (Owners) for the purpose of qualifying the Owner for an ad valorem tax exemption for qualified improvements made to the property for a ten-year period commencing January 1, 2001 through December 31, 2011.

Commr. Staub moved to adopt Resolution No. 2000-286, approving the tax exemption status for the Alice Watters Beebe House. The motion, seconded by Commr. Patterson, carried by a $5-0$ vote.

Commr. Staub moved to approve Contract No. 2001-067, a Historic Preservation Property Tax Exemption Covenant, with Harold and Mary Michaels for the Alice Watters Beebe House. The motion, seconded by Commr. Patterson, carried by a $5-0$ vote.

## 13. RESOLUTIONS

Following comments, Ms. Mikki Hartig, Agent for Geraldine and Walter Schwab, Owner/Petitioner, presented an overview of Historic Designation Petition No. O0-CoD-04, for the Alvah Jordan Home and Guest House located at 218 E. Pocono Trail, Nokomis, discussed the improvements to the property, and reviewed the criteria for consideration of the petition.

Community Services Historical Resources Specialist Lorrie Muldowney presented an overview of the Petition and noted the recommendation for approval by the Historic Preservation Board, pursuant to Ordinance No. 97-133.

Subsequent to comments, Commr. Staub moved to adopt Resolution No. 2000-287, approving Historic Designation Petition No. OO-COD-04. The motion, seconded by Commr. Mercier, carried by a $5-0$ vote.

## 14. RESOLUTIONS

Ms. Ginger Daniel, Agent for Lisa S. Jones, Owner/Petitioner, presented an overview of Historic Designation Petition No. 00-CoD-03, a petition, for the George A. and Ethel Freeman House located at 4010 Roberts Point Road, Sarnsota, reviewed the improvements to the property. and supported approval.

Community Services Historical Resources Specialist Loriee Muldowney presented an overview of the Petition and seviewed the historic designation process. Discussion ensued on the criteria for application for tax exemptions.

Chairman Mills requested and County Administrator James Ley confirmed that the historic designation process will be clarified in future reports.

Subsequent to comments, Commr. Patterson moved to adopt Resofution No. 2000-288, approving Historic Designation Petition No. 00-CoD-04. The motion, seconded by Commr: Staub, carried by a $5-0$ vote.

RECESS: 10:52 a.m.-11:00 a.m.
(2-0355)
15. PUBLIC WORKS

Following comments from Chairman Mills on a request to speak, Public Works Project Development and Environment (PD\&E) Section Supervisor Robert Fakhri, presented an overview of the design concepts and alignment recommendations for Mcintosh Road from Sawyer Loop Road to Hicks Street, and advised of Staff's recommendation for proposed Alignment No. 5 Discussions were held with Mr. Fakhri and Pukile Works Construction Services General Manager Tom Wilcox on the following:

- modifications to traffic signal locations
- Wikinson Road intersection
- proposed stormwater pond locations
- anticipated speed limit on the roadway
- ingress/egress to OXd Mcintosh Road.

Following comments, Commr. Staub moved to approve the design concepts and Alignment Recommendation No. 5 outlined in Staff's report. The motion, seconded by Commr. Thaxton, carried by a 5-0 vote.
(2-1323)
16. ADVISORY COUNCILS

The Board considered the appointment of seven (7) individuals to serve two-year terms on the Water and Sewer Advisory Committee, effective through December 2003.

Commr. Thaxton moved to reappoint Patrick Abolino, Robert Fedel, John Finnimore, Michael Pender, and Leonard Smally. The motion, seconded by Commr. Staub, carried by a 5-0 vote.

Commr. Staub nominated Judith Johnson. Commr. Thaxton seconded the nomination. Commr. Staub nominated William Taft. Commr. Patterson nominated Harold Simon. Commr. Mercier seconded the nomination.

## 16. ADVISORY COUNCILS - Continued

Following discussion on the nominations, Chairnan Mills noted the unanimous appointments of Judith Johnson and Willian Taft to senve twro-year terms on the Water and Sewer Advisory Committee effective through December 2003.
(2-1480)
17. ADVISORY COUNCILS

The Board considered the appointments of four (4) individuals to the Keep Sarasota Beautiful Advisory Board as follows:
One (1) individual to fill an unexpired three-year term effective through March 2001; One (1) individual to fill an unexpired three-year term effective through November 2001; Two (2) individuals to fill three-year term effective through November 2003.

Commr. Staub moved to reappoint Donald Fleming and Tommy Meyer to three-year terms effective through November 2003. The motion, seconded by Commr. Thaxton, carried by a 5-0 vote.

Commr. Staub nominated John Johnston to fill an unexpired three-year term effective through March 2001 and Mark Royall to fill an unexpired three-year term effective through November 2001.

Chairman Mills closed the nominations without objection, and noted the unanimous appointments of John Johnston to fill an unexpired three-year year term effective through March 2001, and Mark Royall to fill an unexpired three-year term effective through November 2001, on the Keep Sarasota Beautiful Advisory Board.
18. BUDGETS

Administrative Services Fiscal Planning and Budget Coordinator Juanita Still presented an overview and slide presentation on the Capital Improvement Program (CIP) FY2000, Fourth Quarter Status Report and noted the distribution of revised copies for Section E.

Discussions were held with County Administrator James Ley and Emergency Services Fire Chief Brian Gorski on the Waterworks/10 Street project included on Page E-2 of Staff's report.

Ms. Still responded to inquiries on the following projects:

- Englewood Sports Complex - Page E-6
- Van Wezel Remodeling - Page A-1
- Jacaranda Library - Page D-2.

Chairman Mills inquired and Ms. Still commented on allocations for the acquisition of properties for the North Library and noted that the information is the final report for FY1999-2000.

## 19. HOUSINGIRESOLUTIONS

Following comments on the remaining agenda items to be considered, Growth Management Office of Housing and Community Development Director Donald Hadsell presented an overview of the revised Housing Credit Guidelines and a proposed Resolution to authorize conceptual site plan review for specified affordable housing projects.
19. HOUSINGRESOLUTIONS - Continued

Subsequent to comments, Commr. Staub moved to approve the revised Housing Credit Guidelines and to adopt Resolution No. 2000-289, authorizing conceptual site plan review for specified affordable housing projects. The motion, seconded by Commr. Thaxton, carfied by a $5-0$ vote.

RECESS: 11:55 a.m. - 1:30 p.m.
(2-2281)
26. COMMISSION REPORTS - Continued
C. BCC

Chaiman Mills reviewed revisions to the Open to the Public portion of Board meetings and noted the aftemoon schedule.
29. OPEN TO THE PUBLIC
A. ENYIRONBENTAL SERVICES

Mr. Edward Harding commented on the disposal of solid waste through composting methods and options for wastewater/septic systems maintenance.
B. ELECTIONSIPOLICIES AND PROCEDURES

Mr. John Flaherty commented on campaign contributions, speaker time limits, and compliance with County ordinances and State Statutes.
C. COMMUNITY SERVICESIORGANIZATIONS

Mr. Robert Friedman commented on the Little League Baseball program and existing lease with the County.
D. COMMUNITY SERVICESIORGANIZATIONS

Mr. Kurt Rohde commented on the history of Little League program and the existing lease with the County.

Following discussion, County Attorney Jorge Femandez commented on Staffs review of the lease. Upon inquiry, Deputy County Administrator David Bullock commented on Staff options for resolution of the issue.

Discussion ensued with Mr. Rohde on the efforts of the Little League organization to resolve the issues.
E. COMMMUNITY SERVICESJORGANIZATIONS

Ms. Toneen Slimick commented on the Litlle League Baseball program and existing lease with the County.

Following comments, County Attorney Jorge Fernandez commented on the legal rights of the parties, advised that the courts have the final authority to determine individual rights, and discussed the terms of the lease. Individual comments followed.

## 20. ENVIRONMENTAL SERYKCES

Environmental Services General Manager Warren Wagner presented a status report on potable water and public supply water management. Discussions were held on the following:

- supply versus demand
- daily production and costs
- planning activities.

Envifonmental Services Administration and Finance Manager David Cook presented a status report on current and future conservation efforts. Discussions were held on the following:

- irrigation customers and large users
- code enforcement reporting hotline

Mr. Cook reviewed Staff's recommendation to amend Ordinance No. 2000-015 and requested authorization to advertise proposed amendments to the Ordinance. Mr. Cook noted the time frame for planning activities with County business centers and commented on variances granted by the Southwest Florida Water Management District (SWFWMD).

Environmental Services Public Communications and Outreach Coordinator Amie Haer commented on watering days/restrictions included in the Ordinance No. 2000-015 versus current SWFWMD restrictions.

Following comments from County Administrator James Ley on the enforcement process, Commr. Staub moved to authorize advertising of a public hearing to consider proposed Ordinance No. 2000-082, amending Ordinance No. 2000-015. The motion was seconded by Commr. Patterson. Subsequent to individual comments, the motion carried by a 5-0 vote.
26. COMRISSION REPORTS - Continued
D. BCC

Following comments, Commr. Mercier moved to proceed with the public hearing on Coastal Setback Variance Petition No. 79-03-00-290, at this time. The motion, seconded by Commr. Staub, carried by a $5-0$ vote.

## 30. RESOLUTIONS

Public hearing continued from November 8, 2000, to consider a proposed Resolution, Coastal Setback Variance Petition No. 79-03-00-290, a petition by Edward C. and Elizabeth J. Bavaria, represented by Ms. Kristina V. Tignor, P.E., for the construction of a 75 -foot long, shore-parallel vinyl bulkhead adjacent to and landward of a proposed 6 -foot wide and 75 -foot long rock revetment structure with two 40 -foot long, shore-perpendicular, vinyl bulkhead retums at each end of the proposed revemment/bulkhead structure, and for the placement of beach compatible sand fill behind the bulkhead. All proposed construction is to be located a maximum of 55 feet waterward of the Barrier Island Pass Twenty-Year Hazard Line at property fronting the waters of Blg Sarasota Pass at 4083 Shell Road, Siesta Key.

Book 68
30. RESOLUTIONS - Continued

Following comments from Chaiman Milits on the public hearing on November 8, 2000, Commr. Patterson inquired, and County Attorney Jorge Femandez opined that no conflict exists for Commr. Patterson to consider the petition.

Having been duly swom, Development Services Resource Protection Services Senior Engineer Rob LaDue commented on previous Board review of the petition, noted that the Petitioner has submitted a draft plan for review, and discussed the proposed public access. Mr. LaDue submitted a copy of an interoffice memorandum for the Office of the County Aitomey dated December 4, 2000, and discussion ensued with Mr. LaDue and County Attomey Femandez on the requirements of the County Code pertaining to public access.

Mr. LaDue's presentation continued with review of existing shore protection structures on neighboring properties, the proposed conceptual plan, and existing revetments. Mr. LaDue submitted a document entited "Comparison Report of Prior and Pending Coastal Setback Variance Petitions" and a letter of support from Attomey Wiliam Merrill.
(4-0088)
Attomey Brenda Patten, representing Edward and Erzabeth Bavaria and duly swom, commented on property owned by the petitioners, reviewed previous and existing property conditions, and discussed previous Board direction noting support of neighboring property owners.

Upon inquiry, County Attomey Fernandez noted that the Board is limited to act on only the current peitition and action taken will not "bind" the Boand to future approvals for surrounding properties.

Agent Kristina Tignor, duly swom, commented on the time frame for the petition, the intent of the surrounding property owners, the proposed conceptual plan, and a code enforcement case on neighboring property, and reviewed the comparison report submitted by Staff.

Attorney Patten commented on the requested variance and pedestrian easements/public access.
(4-1050)
Upon inquiry, County Attorney Femandez noted that the County will not incur any liability exposure for the proposed public access.

The following individuals, duly swom, commented on the proposed variance petition:
Mr. Steven King
Attomey William Merrill
During speaker presentations, Mr. LaDue responded to inquiries pertaining to additional variance requests pending for neighboring properties and the time frame for Board consideration.
30. RESOLUTIONS - Continued

Upon inguiry, Mr. LaDue discussed erosion issues pertaining to a "straight fine versus bowed line" revetment, the time frame for construction of the structure, and previous variances constructed in the area.

Commr. Staub moved to close the public hearing. The motion, seconded by Commr. Patterson, carried without objection.
(4-1720)
Following discussion on the proposed revetment line, Commr. Thaxton moved to adopt Resolution No. 2000-290, approving Coastal Setback Variance Petition No. 79-03-00-290, The motion was seconded by Commr. Staub. Subsequent to discussion on future variance requests, Commr. Staub moved to reopen the public hearing. The motion, seconded by Commr. Patterson, carried without objection.

Upon inquiry, Ms. Tignor noted agreement with Board discussion pertaining to variance petitions for neighboring property. Commr. Staub moved to close the public hearing. The motion, seconded by Commr. Thaxton, carried without objection.

Following individual comments, the motion to adopt Resolution No. 2000-290 carried by a 5-0 vate.

Discussion ensued on the time frame for consideration of variance petitions for neighboring properties. (See item fater this meeting.)
(4-2302)
31. PUBLIC WORKS

Chairman Mills noted that consideration of the Metropolitan Planning Organization (MPO) discussion of the coordination and project priorities will be continued to the meeting scheduled for December 6, 2000.
30. RESOLUTIONS - Continued

Upon inquiry by Attorney William Merrill, Assistant County Attomey Stephen DeMarsh commented on Board options for documenting action taken this date and consideration of future petitions.
(4-2375)
21. PUBLIC WORKS

Public Works Stormwater Planning Section Supervisor Theresa Connor presented the Cost Effective Analysis for Stormwater Projects report and noted Staff's recommendation for adoption of the Benefit Analysis as outlined in the report Ms. Connor discussed expenses incurred by private utilities for damages during a storm event, stormwater fees, and level of service, and reviewed the proposed use of the analysis seport.

Commr. Thaxton moved to adopt the Benefit Analysis as outlined in Staffs report. The motion, seconded by Commr. Patterson, carried by a 5-0 vote.

Commr. Patterson inquired, and Ms. Connor noted the status of the Hatchett Creek Stormwater project.
(4-3375)

## 22. CLERK'S REPORT

## A. CLERK OF CIRCUIT COURT

The Filed for Record List was noted.
23. COUNTY ADMINISTRATOR'S REPORT
A. BCC

County Administrator James Ley noted distribution of literature for the Board Retreat scheduled for December 7, 2000, and for the Convocation of Govermments meeting scheduled for December 14, 2000. Discussion ensued on the format for the December $7^{7 n}$ meeting.

## 24. COUNTY ATTORNEY'S REPORT

A. PLATS

County Attomey Jorge Fernandez presented, and Commr. Staub moved to approve the Final Plat of Venice Palms, Phase il. The motion, seconded by Commr. Thaxton, carried by a 5-0 vote.
(5-0069)
25. COMMITTEE REPORTS

## A. ORGANIZATIONS

- Commr. Mercier noted that he will be serving on the canvassing board for Holiday Park and thanked Staff for their assistance to date.
- Commr. Staub discussed issues reviewed at the West Coast Inland Navigation Bistrict (WCIND) meeting pertaining to project funding.

Commr. Patterson moved to authorize correspondence to Congressman Milier requesting support for Federal funds for the Midnight Pass Study and Lemon Bay project. The motion, seconded by Commr. Staub, carried by a $5-0$ vole.

- Chairman Milis noted attendance at the anniversary celebration of the Pinellas Trail Program, and noted an upcoming meeting of the Metropolitan Planning Organization.
(5-0386)

26. COMMISSION REPORTS - Continued
D. BCC

Commr. Thaxton commended Staff for their efforts in providing information to the new commissioners and their service to the County.
E. GROWTH MANAGEMENT

Commr. Patterson commented on the Dearborn Community Redevelopment Area and funding alternatives. Following comments, Commr. Patterson moved to direct Staff to review options for lighting and financing options for the area. The motion, seconded by Commr. Staub, carried without objection.
26. COMMISSION REPORTS - Continued

## F. ADMINISTRATION

Commr. Patterson commented on available non-emergency numbers, and following comments, County Administrator James Ley noted that Staff will review the issue to provide public information for non-emergencies.
(5-066)
G. BCC

Commr. Staub commented on the installation of Constitutional Officers on January 2. 2000, and County Administrator James Ley noted that he will review options for holding the ceremonies at the Administration building.
H. ORDINANCESIPOLICIES AND PROCEDURES

Commr. Staub noted receipt of a request for Mr. William. King for additional speaking time at the public hearing scheduled for December 6. 2000, pertaining to connection to available central wastewater utility. Individual comments followed.
I. STATE AGENCIES

Subsequent to comments, Commr. Staub requested that Staff contact the Florida Department of Transportation (FDOD) and request the removal of a directional sign on State Road 70 directing traffic to Fruitville Road.
J. ORGANIZATIONS

Commr. Staub commented on the presentation to Mr. Chad Binette earlier this meeting and commended Englewood Sun Herald Warren Richardson on itis service.
(5-0839)

## K. ORGANIZATIONS

Chairman Mills noted receipt of the "Best Small City Award" and invited Board members to attend the presentation on December 12, 2000 to be held at the Van Wezel Auditorium.
L. PUBLIC WORKS

Following inquiry from Chairman Mills, Commr. Staub provided a status report on the Jacaranda lighting project.
M. LEGISLATION

Following comments from Chairman Mills, Administration Intergovemmental Relations Policy Coordinator William Broughton noted the distribution of an interoffice memorandum outlining legisiative priorities to be presented at the Legislative Delegation on December 8 , 2000.
27. BCC

The Board reviewed the County Commission "Board Assignments Report" dated November 30, 2000.
28. BCC

The Board reviewed the County Commissioners Meeting Schedule and 2001 Board calendar. Chairman Mills requested Board review of the 2001 calendar.
29. OPEN TO THE PUBLIC - No one appeared at this time.

MEETING ADJOURNED: $5: 35$ pm.
(5-0978)
MINUTES APPROVED: $12 / 19 / 0000$.


Appendix G
The Future Conditions Floodplain Analysis Report by Jones Edmunds, dated 2019.

## JonesEdmunds)

## SarasotaCounty



## SARASOTA COUNTY

FUTURE CONDI TI ONS FLOODPLAI N ANALYSES
Sarasota County | January 2019

# SARASOTA COUNTY FUTURE CONDITIONS FLOODPLAI N ANALYSES 

Prepared for:<br>Sarasota County<br>1001 Sarasota Center Boulevard<br>Sarasota, Florida 34240

## Prepared by:

Jones Edmunds \& Associates, Inc.
7230 Kyle Ct
Sarasota, FL 34240

Jones Edmunds Project No.: 19006-058-01

J anuary 2019

## TABLE OF CONTENTS

1 I NTRODUCTION ..... 1-1
1.1 Purpose ..... 1-1
2 EXISTING CONDITIONS ..... 2-1
2.1 Lemon Bay ..... 2-1
2.2 Roberts Bay ..... 2-1
2.3 Dona Bay ..... 2-2
2.4 Little Sarasota Bay ..... 2-2
2.5 Sarasota Bay ..... 2-3
3 FUTURE CONDITIONS ..... 3-1
3.1 Background ..... 3-1
3.1.1 Future Development in the Watershed ..... 3-1
3.1.2 Climate Change and Sea Level Rise ..... 3-3
3.2 Methodologies ..... 3-3
LIST OF FIGURES
Figure 1-1 Sarasota County Watersheds ..... 1-2
Figure 3-1 Sarasota County Future Land Uses ..... 3-2
Figure 3-2 Relative Sea Level Change Projections - Gauge: 8726520, St. Petersburg, FL ..... 3-3
Figure 3-3 Future Conditions Inundation - Lemon Bay ..... 3-5
Figure 3-4 Future Conditions Inundation - Roberts Bay ..... 3-6
Figure 3-5 Future Conditions Inundation - Dona Bay ..... 3-7
Figure 3-6 Future Conditions Inundation - Little Sarasota Bay ..... 3-8
Figure 3-7 Future Conditions Inundation - Sarasota Bay ..... 3-9

## APPENDI X

## Appendix A Full-Size Watershed Figures

## 1 INTRODUCTION

### 1.1 Purpose

The National Oceanic and Atmospheric Administration (NOAA) estimates that sea-level rise (SLR) will impact coastal communities in the next 25 years. Planning for SLR impacts and future development conditions will aid communities in becoming more resilient to climate changes. The purpose of this analysis is to produce mapping information to depict the changes regarding the extent of flood hazards in response to changes in future hydrologic conditions and projected SLR scenarios of 2, 4, 6.17, 8, and 10 feet in five watersheds in Sarasota County. The watersheds include recently updated models for Phillippi Creek, Lemon Bay, Dona Bay, Roberts Bay, and Little Sarasota Bay (Figure 1-1). The 6.17 feet represents the NOAA 2017 projection that corresponds to the intermediate-high relative sea-level change for 2100.

For the watershed models to be effectively used to evaluate future conditions and SLR, the five watersheds were merged with the adjacent coastal models. The combined models allow for determination of coastal tailwater effects on inland portions.

Figure 1-1
Sarasota County Watersheds
Sarasota County Future Conditions Floodplain Analyses
Sarasota County


For Informational Purposes Only J:\project_Data\19006_Sarasota\058_01_FutureConditionsITEMP\JS\1-1.mxd tdo 1/22/2019

## 2 EXISTING CONDITIONS

To effectively model the coastal influences due to SLR and future hydrologic changes, the geographic information systems (GIS) data for the five watersheds were merged with their respective coastal models. These coastal models included:

- Coastal Fringe Phase I - Robert Bay.
- Coastal Fringe Phase II - Lemon Bay.
- Coastal Fringe Phase III - Sarasota Bay, Little Sarasota Bay, and Dona Bay.
- Coastal Fringe Lyons Bay.
- Island of Venice.
- Whitaker Bayou.
- Hudson Bayou.


### 2.1 Lemon Bay

The Lemon Bay watershed boundaries were revised to be consistent with Roberts Bay and Coastal Fringe Phase II boundaries. Hydraulic connections between the watersheds were updated accordingly. Basin areas, stage areas, weir inverts, and cross-sections were revised where necessary due to the boundary changes. The two geodatabases were then merged. The combined geodatabase was used to export the model information to Interconnected Pond Routing Version 3 (ICPR3) and to simulate the 100 -year/24-hour design storm. The results from the combined model were compared to the results from the individual models. Differences in node stages were observed in areas along the boundary between the previous watershed models. These differences were expected since the models are hydraulically connected and node elevations are now dynamically calculated between the watersheds.

### 2.2 Roberts Bay

The Island of Venice watershed drains to Roberts Bay and the Gulf of Mexico. The model was developed in 2009, and elevation data were based on the National Geodetic Vertical Datum of 1929 (NGVD 29). Before merging the model with the Roberts Bay watershed, the Island of Venice data were converted to the County's current Geographic Watershed Information Systems (GWIS) format to be consistent with the Roberts Bay watershed data format. In additional, elevation data in the Island of Venice watershed were converted to the North American Vertical Datum of 1988 (NAVD 88). The two model geodatabases were combined and exported to ICPR3 to simulate the 100-year/24-hour design storm. The results were compared with the previous individual model results to ensure that the conversion was reasonable.

Additional boundaries along the Roberts Bay watershed were revised to be consistent with the Lemon Bay, Dona Bay, and Coastal Fringe Phase III watersheds. Hydraulic connections between the watersheds were updated accordingly. Basin areas, stage areas, weir inverts, and cross-sections were revised where necessary.

Once the boundaries were revised to be consistent, the Island of Venice/Roberts Bay watershed was combined with the Dona Bay portion of Coastal Fringe Phase III to form a single Roberts Bay watershed. The combined geodatabase was exported to ICPR3 and the 100 -year/24-hour design storm was simulated. Due to its large size, the combined Roberts

Bay model took approximately 1 week to run. To optimize the run time of the model, several adjustments were made, such as thinning the cross-section and stage area data. However, the data thinning did not improve the run-time significantly. Unlike other watershed models for Sarasota County, the Roberts Bay model contains areas as small as 0.00001 acre-foot (ac-ft) in the stage-storage data. This may lead to some instabilities in the model or make the model take longer to converge on a solution and increase the run time. By changing the minimum storage values to 0.01 ac - ft (consistent with other models for this area), the model run-time improved significantly. The results from the combined model were compared against the results from the individual models and, as expected, the differences in node stages were observed in areas where the model is now dynamic between the watersheds.

### 2.3 Dona Bay

The Dona Bay watershed shares its boundary with the Little Sarasota Bay, Phillippi Creek, Roberts Bay, and Coastal Fringe Lyons Bay watersheds.

The Coastal Fringe Lyons Bay watershed was originally developed using elevations referenced to the NGVD 29 datum. The watershed geodatabase was also recently converted to GWIS. Reviewing the data revealed discrepancies between the model and geodatabase. Therefore, the geodatabase was rectified to match the ICPR3 model inputs. Elevation data were also converted to NAVD 88 to be consistent with the County's other watershed models.

Several issues were identified in the Coastal Fringe Lyons Bay watershed model, and the County recognizes that the model will require additional work (not included in this scope) to accurately represent existing conditions in that watershed. For this study, many basins were aggregated and hydraulic parameters were revised based on Light Detection and Ranging (LiDAR) information to reasonably represent the main channel system that drains into Lyons Bay. Since the basins were changed for the purpose of this study, the hydrologic parameters (i.e., Curve Number [CN] and Time-of-Concentration [TC]) were also revised using the Natural Resource Conservation Service CN and Technical Release-55 methodologies.

The Dona Bay watershed boundaries were revised to be consistent with Little Sarasota Bay, Phillippi Creek, Roberts Bay, and the new Coastal Fringe Lyons Bay geodatabases. Hydraulic connections between the watersheds were revised. Basin areas, stage areas, weir inverts, and cross-sections were updated as necessary.

The Coastal Fringe Lyons Bay geodatabase was then merged with the Dona Bay geodatabase. The combined geodatabase was exported to ICPR3 and the 100-year/24-hour design storm was simulated. The results from the combined model were checked against the results of the individual watershed models and, as expected, the differences in node stages were observed in areas where the model is now dynamic between the watersheds.

### 2.4 Little Sarasota Bay

The Little Sarasota Bay watershed boundaries were revised to be consistent with Dona Bay, Phillippi Creek, Coastal Fringe Phase I, and Coastal Fringe Phase III watersheds. Hydraulic connections between the watersheds were revised accordingly. Basin areas, stage areas, weir inverts, and cross-sections were updated where appropriate. The Coastal Fringe

Phase III watershed was then merged with the Little Sarasota Bay watershed. The combined geodatabase was then exported to ICPR3 and the 100-year/24-hour design storm was simulated. The results from the combined model were checked against the individual models and, as expected, the differences in node stages were observed in areas where the model is now dynamic between the watersheds.

### 2.5 SARASOTA BAY

The Sarasota Bay watershed combined model includes Phillippi Creek, Hudson Bayou, Whitaker Bayou, Coastal Fringe Phase III, and the majority of Coastal Fringe Phase I. Before merging with the Sarasota Bay watershed, the Hudson Bayou and Whitaker Bayou models were converted to NAVD 88. Boundaries and hydraulic connections between the watersheds were revised to be consistent with each other. Basin areas, stage areas, weir inverts, and cross-sections were updated as necessary. The combined geodatabase was then exported to ICPR3 and the 100 -year/24-hour design storm was simulated. The results from the combined model were checked against the individual models and, as expected, the differences in node stages were observed in areas where the model is now dynamic between the watersheds.

## 3 FUTURE CONDITIONS

### 3.1 BACKGROUND

Two factors used for developing the future conditions floodplain map for this Study are future development in the watershed and SLR.

### 3.1.1 FuTURE DEVELOPMENT IN THE WATERSHED

As Sarasota County recovers from the recent economic downturn, the next 5 years indicate an increased growth rate with almost 24,000 new residents projected from 2015 to 2020, at an average annual increase of approximately 1.2 percent per year. Long-term projections indicate that the County could reach nearly a half-million residents by 2040.

Changes in future development will influence the peak discharge of floods by modifying how rainfall is stored on and/or run off the land into tributaries. In undeveloped areas such as forests and grasslands, rainfall is collected and stored on vegetation, in the soil column, and in surface depressions. When this storage capacity is filled, runoff flows slowly over land or as subsurface flow. In contrast, urban areas have less capacity to store rainfall, since much of the urban land surface is covered by roads and buildings. Construction of these roads and buildings often involves removing vegetation, soil, and depressions from the land surface. The permeable soil is replaced by impermeable surfaces such as roads, roofs, parking lots, and sidewalks that store little water, reduce infiltration of water into the ground, and accelerate runoff to ditches and streams. In suburban areas, where lawns and other permeable landscaping may be common, rainfall can saturate thin, compressed soils and produce overland flow that runs off quickly. Dense networks of ditches and culverts in cities reduce the distance that runoff must travel over land or through subsurface flow-paths to reach streams and rivers.

Since land use can greatly affect the runoff potential, mapping of future floodplains must consider future land uses. Figure 3-1 illustrates the future land use designations for Sarasota County.

Figure 3-1
Sarasota County Future Land Use
Sarasota County Future Conditions Floodplain Analyses


Sarāsota County


JonesEdmunds)

### 3.1.2 Climate Change and Sea Level Rise

Global sea level has been rising over the past century, and the rate has increased in recent decades. The two major causes of global sea level rise (SLR) are thermal expansion caused by warming of the ocean and the increased melting of land-based ice, such as glaciers and ice sheets.

As sea level rises, low-lying coastal areas will be increasingly prone to coastal and inland flooding. Storm surge and wave heights during hurricanes will increase as coastal water depths increase with sea level rise, amplifying the damage potential of hurricanes. Because stormwater drainage systems rely mainly on gravity, sea level rise may reduce their effectiveness and potentially exacerbated inland flooding during rain events, especially in low-lying interior floodplains. Climate change can potentially increase the impact and frequency of flooding events.

Error! Reference source not found. illustrates the Relative Sea Level Change (RSLC) S cenarios for St. Petersburg, Florida, as calculated using the NOAA projections and regional corrections (NOAA, 2017).

Figure 3-2 Relative Sea Level Change Projections - Gauge: 8726520, St. Petersburg, FL


### 3.2 Methodologies

The future land use layers for Sarasota County, Manatee County, and City of Sarasota were combined into a single layer. Several future land use categories were revised to match existing land use categories to develop composite CNs for each watershed. In some cases, existing CN values may be higher than values calculated for future conditions. Several reasons may account for this, including that some CN values may have been manually adjusted in the individual watershed to better calibrate the model. Therefore, in cases where the existing CN is higher than the calculated CN based on future conditions, the existing CN was retained for use in the future floodplain analyses.

The Community Rating System encourages communities to model, at a minimum, the projected intermediate-high RSLC for 2100. According to the recent NOAA 2017 projections, this value is currently 6.17 feet. Since these values are subject to change and vary by planning horizon, the model evaluated variable RSLC values of $2,4,6.17,8$, and 10 feet. In the model, the RSLC is the new tailwater condition on which the analysis is based. In each of the tailwater scenarios, the initial conditions were revised for all nodes that were affected by the tailwater including all hydraulically connected nodes. Each scenario was modeled using the 100-year/24-hour design storm for the watersheds. Level-pool inundation areas were developed for each of the modeled RSLC scenarios. The inundation areas were mapped using GIS by assigning flood elevations to the basins and comparing those elevations to the County's LiDAR. Figure 3-2, Figure 3-3, Figure 3-4, Figure 3-5, and Figure 3-6 show the inundation areas for each watershed resulting from these scenarios. Appendix A contains large-size figures for these watersheds.



Figure 3-4
Future Conditions Inundation - Roberts Bay Watershed
Sarasota County Future Conditions Floodplain Analyses


Figure 3-5
Future Conditions Inundation - Dona Bay Watershed
Sarasota County Future Conditions Floodplain Analyses


Figure 3-6
Future Conditions Inundation - Little Sarasota Bay Watershed
Sarasota County Future Conditions Floodplain Analyses


Figure 3-7
Future Conditions Inundation - Sarasota Bay Watershed
Sarasota County Future Conditions Floodplain Analyses


## Appendix A

Full-Size Watershed Figures


[^0]:    1) Conceptual Plan Cost Estimate does not include O\&M costs
    2) Methodology provided in the Sarasota County document "A Proposed Cost-Benefit Analysis for Stormwater Projects: Manual For Costs and Benefit for Flood and Water Quality Project"
    3) SWFWMD FY2023 CFF applications
    
[^1]:    1. Minimum Edge of Pavement was determined using the minimum weir elevation (at inlets) reported for each basin (in Current Conditions Model).
    2. Minimum Edge of Pavement Elevations reported at Basins HAO2 and HAO8 (in Current Conditions Model) are lower than the Boundary Condition Stage (1.95').
