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• Abstract The world's population is concentrated in urban areas. This change in 
demography has brought landscape transformations that have a number of documented 
effects on stream ecosystems. The most consistent and pervasive effect is an increase 
in impervious surface cover within urban catchments, which alters the hydrology and 
geomorphology of streams. This results in predictable changes in stream habitat. In 
addition to imperviousness, runoff from urbanized surfaces as well as municipal and in­
dust:J.ial discharges result in increased loading of nut:J.ients, metals, pesticides, and other 
contaminants to streams. These changes result in consistent declines in the richness 
of algal, invertebrate, and fish communities in urban st:J.·eams. Although understud­
ied in urban streams, ecosystem processes are also affected by urbanization. Urban 
streams represent opportunities for ecologists interested in studying disturbance and 
cont:J.ibuting to more effective landscape management. 

INTRODUCTION 

Urbanization is a pervasive and rapidly growing form of land use change. More 
than 75% of the U. S. population lives in urban areas, and it is expected that more 
than 60% of the world's population will live in urban areas by the year 2030, much 
of this growth occurring in developing nations (UN Population Division 1997, US 
Census Bureau 2001). Whereas the overall land area covered by urban growth 
remains small (2% of earth's land surface), its ecological footprint can be large 
(Folke et al. 1997). For example, it is estimated that urban centers produce more 
than 78% of global greenhouse gases (Grimm et al. 2000) and that some cities 
in the Baltic region claim ecosystem support areas 500 to 1000 times their size 
(Boland & Hanharnmer 1999). 

This extensive and ever-increasing urbanization represents a threat to st:J.·eam 
ecosystems. Over 130,000 km of streams and rivers in the United States are im-

1Pt·esent address: Tet:J.·a Tech, Inc., 10045 Red Run Blvd., Suite 110, Owings Mills, Maryland 
21117. 
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paired by urbanization (USEPA 2000). This makes urbanization second only to 
agriculture as· the major cause of stream impairment, even though the total area 
covered by urban land in the United States is minor in comparison to aglicul­
tural area. Urbanization has had similarly devastating effects on stream quality in 
Europe (House et al. 1993). 

Despite the dramatic threat urbanization poses to stream ecosystems, there has 
not been a thorough synthesis of the ecological effects of urbanization on streams. 
There are reviews discussing the impacts of a few aspects of urbanization [biology 
of pollution (Hynes 1960), physical factors associated with drainage (Butler & 
Davies 2000), urban stream management (Baer & Plingle 2000)] and a few general 
reviews aimed at engineers and invertebrate biologists (House et al. 1993, Ellis & 
Marsalek 1996, Suren 2000), but the ecological effects of urban growth on stream 
ecosystems have received less attention (Duda et al. 1982, Porcella & Sorenson 
1980). 

An absolute definition of urban is elusive. Webster's New Collegiate Dictionary 
defines urban as "of, relating to, characteristic of, or constituting a city," where the 
definition of city is anything greater than a village or town. In human population 
terms, the U.S. Census Bureau defines urban as "comprising all territory, popula­
tion, and housing units in urbanized areas and in places of 2,500 or more persons 
outside urbanized areas," where urbanized areas are defined as places with at least 
50,000 people and a periurban or suburban fringe with at least 600 people per 
square mile. The field of urban studies, within sociology, has a variety of def­
initions, which all include elements of concentrated populations, living in large 
settlements and involving some specialization of labor, alteration of family struc­
ture, and change in political attitudes (Danielson & Keles 1985). In this review, we 
rely on the census-based definition, as it includes suburban areas surrounding cities, 
which are an integral part of many urban ecological studies and represent, in many 
cases, areas that will develop into more densely populated centers. However, many 
industrial/commerciaVt:ransportation areas that are integral parts of urban and ur­
banizing areas have low resident population densities, but are cettainly contained 
within our view of urban areas. 

Ecological studies of urban ecosystems are growing (McDonnell & Pickett 
1990, USGS 1999, Gdmm et al. 2000). A valuable distinction has been drawn 
between ecology in cities versus ecology of cities (Grimm et al. 2000). The 
former refers to the application of ecological techniques to study ecological sys­
tems within cities, whereas the latter explores the interaction of human and eco­
logical systems as a single ecosystem. Although our review focuses on stream 
ecology in cities, it is our hope that it will provide information of value to the 
development of an ecology of cities. The goal of this review is to provide a 
synthesis of the diverse array of studies from many different fields related to 
the ecology of urban streams, to stimulate incorporation of urban streams in 
ecological studies, and to explore ecological findings relevant to future policy 
development. This review is a companion to the review of teiTestrial urban 
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ecosystems by Pickett et al. (2001). The review is stmctured in three parts that fo­
cus on the physical, chemical, and biological/ecological effects of urbanization on 
streams. 

PHYSICAL EFFECTS OF URBANIZATION 

Hydrology 

A dominant feature of urbanization is a decrease in the perviousness of the catch­
ment to precipitation, leading to a decrease in infiltration and an increase in sur­
face mnoff (Dunne & Leopold 1978). As the percent catchment impervious surface 
cover (ISC) increases to 10-20%, mnoffincreases twofold; 35-50% ISC increases 
mnoff threefold; and 75-100% ISC increases surface mnoff more than fivefold 
over forested catchments (Figure 1) (Arnold & Gibbons 1996). Imperviousness 
has become an accurate predictor of urbanization and urban impacts on streams 
(McMahon & Cuffney 2000), and many thresholds of degradation in streams are 
associated with an ISC of 10-20% (Table 1) [hydrologic and geomorphic (Booth 
& Jackson 1997), biological (Klein 1979, Yoder et al. 1999)]. 

Various characteristics of stream hydrography are altered by a change in ISC. 
Lag time, the time difference between the center of precipitation volume to the 
center of runoff volume, is shortened in urban catchments, resulting in floods that 
peak more rapidly (Espey et al. 1965, Hirsch et al. 1990). Decreases in flood 
peak widths from 28-38% over forested catchments are also observed, mean­
ing floods are of shorter duration (Seabum 1969). However, peak discharges are 
higher in urban catchments (Leopold 1968). Flood discharges increase in pro­
portion to ISC and were at least 250% higher in urban catchments than forested 
catchments in Texas and New York after similar storms (Espey et al. 1965, Seabum 
1969). Flood discharges with long-term recurrence intervals are less affected by 
urbanization than more frequent floods, primarily because elevated soil mois­
ture associated with large storms results in greater surface mnoff in forested 
catchments (Espey et al. 1965, Hirsch et al. 1990). Some exceptions to these 
observations have been noticed, largely depending on the location of urbaniza­
tion within a catchment. If the ISC occurs lower in a catchment, flooding from 
that portion can drain faster than stormflow from forested areas higher in the 
catchment, leading to lower overall peak flood discharge and increased flood 
duration (Hirsch et al. 1990). In addition, blocked culverts and drains, swales, 
etc. may also detain water and lower peak flood discharges (Hirsch et al. 
1990). 

A further result of increased mnoff is a reduction in the unit water yield: a greater 
proportion of precipitation leaves urban catchments as surface mnoff (Figure 1) 
(Espey et al. 1965, Seabum 1969). This reduces groundwater recharge and re­
sults in a reduction ofbaseflow discharge in urban streams (Klein 1979, Barringer 
et al. 1994). However, this phenomenon has been less intensively studied than 
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Figure 1 Changes in hydrologic flows with increasing impervious surface cover in 
urbanizing catchments (after Arnold & Gibbons 1996). 

flooding, and the effects of irrigation, septic drainage, and interbasin transfers 
may mitigate the effects of reduced groundwater recharge on baseflow (Hirsch 
et al. 1990). Baseflow may also be augmented by wastewater treatment plant 
(WWTP) effluent. The Acheres (Seine Aval) treatment plant, which serves 
8.1 million people, discharges 75 km west of Paris and releases 25,000 liters/s 
dming low flow periods (Horowitz et al. 1999), increasing baseflow discharge 
in the Seine by up to 40% during low flow periods. More strikingly, wastewater 
effluent constitutes 69% annually and at times 100% of discharge in the South 
Platte River below Denver, Colorado (Dennehy et al. 1998). In our experience, 
high percentage contributions of wastewater discharge to urban rivers are not 
uncommon. 
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TABLE 1 Effects of impervious surface cover (IS C) resulting from urbanization on various 
physical and biological stream vmiables• 

Study subject 

Physical responses: hydrology 
Streams in Texas 

Streams in Pennsylvania 

Review 

Streams in Washington 

Physical responses: geomorphology 
Streams in Pennsylvania 

Streams in New York 

Streams in New Mexico 

Streams in Washington 

Physical responses: temperature 
Streams in Washington, DC 

Biological responses: fish 
Streams in Maryland 

Streams in Ontario, 
Canada 

Streams in New York 

Findings 

Peak dischm·ge increases and 
lag time decreases with ISC. 

Bankfull discharge increases 
and lag time decreases with 
catchment ISC. 

Surface runoff increases and 
lag time decreases with 
increasing ISC (see Figure 1). 

Increase in bankfull discharge 
with increasing ISC. At 10%, 
2 y urban flood equals a 10 y 
forested flood. 

Channel enlargement increases 
with increasing ISC. 

Channel enlargement begins 
at2% ISC. 

Dramatic changes in channel 
dimensions at 4% ISC 

Channels begin widening at 6% 
ISC; channels universally 
unstable above 10% ISC 

Stream temperatures increase 
with increasing ISC. 

Fish diversity decreased 
dramatically above 12-15% 
ISC and fish were absent 
above 30-50% ISC. 

Fish IBI decreased shm-ply 
above 10% ISC, but streams 
with high dparian forest cover 
were less affected. 

Resident and anadromous fish 
eggs and lm·vae densities 
decreased to 10% urban land 
use and then were essentially 
absent. 

Reference 

Espey et al. 1965 

Leopold 1968 

Arnold & Gibbons 
1996 

Booth & Jackson 
1997 

Hammer 1972 

Morisawa & LaFlure 
1979 

Dunne & Leopold 
1978 

Booth & Jackson 
1997 

Galli 1991 

Klein 1979 

Steedman 1988 

Limburg & Schmidt 
1990 

(Continued) 
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TABLE 1 (Continued) 

Study subject 

Streams in Maryland 

Streams in Wisconsin 

Streams in Ohio 

Biological responses: invertebrates 
Streams in Maryland 

Streams in Northern 
Virginia 

Streams in Maryland 

Streams in Washington 

Streams in Ohio 

•rnr, index of biotic integrity. 

Geomorphology 

Findings 

Fish diversity decreased 
dramatically above 
10-12% ISC. 

Fish IBI decreased rapidly 
at 10% ISC. 

Fish IBI decreased rapidly 
between 8% and 33% urban 
land use. 

Invertebrate diversity decreased 
sharply from 1% to 17% ISC. 

Insect diversity decreased 
between 15% and 25% ISC. 

Insect diversity metrics moved 
from good to poor at 15% ISC. 

Insect IBI decreased sharply 
between 1% and 6% ISC, 
except where streams had 
intact riparian zones. 

Reference 

Schueler & Galli 
1992 

Wang et al. 1997 

Yoder et al. 1999 

Klein 1979 

Jones & Clark 
1987 

Schueler & Galli 
1992 

Horner et al. 1997 

Insect diversity, biotic integrity Yoder et al. 1999 
decreased between 8% and 33% ISC. 

The major impact of urbanization on basin morphometry is an alteration of drainage 
density, which is a measure of stream length per catchment area (kmlkm2). Natural 
channel densities decrease dramatically in urban catchments as small streams are 
filled in, paved over, or placed in culve1ts (Dunne & Leopold 1978, Hirsch et al. 
1990, Meyer & Wallace 2001). However, artificial channels (including road cul­
veits) may actually increase overall drainage densities, leading to greater intemal 
links or nodes that contribute to increased flood velocity (Graf 1977, Meyer & 
Wallace 2001). 

A dominant paradigm in fluvial geomorphology holds that streams adjust their 
channel dimensions (width and depth) in response to long-term changes in sed­
iment supply and bankfull discharge (recurrence interval average= 1.5 years) 
(Dunne & Leopold 1978, Roberts 1989). Urbanization affects both sediment sup­
ply and bankfull discharge. During the constmction phase erosion of exposed soils 
increases catchment sediment yields by 102-104 over forested catchments and can 
be more exaggerated in steeply sloped catchments (Wolman 1967, Leopold 1968, 
Fusillo et al. 1977). Most of this export occurs during a few large, episodic floods 
(Wolman 1967). This increased sediment supply leads to an aggradation phase 



channel incision/widening 

ECOLOGY OF URBAN STREAMS 339 

Pre-development 

overbank deposition 

Aggradation Phase 
-hillslope erosion is largest sediment 

source 
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- cross-sectional area increasing 

Erosional Phase 
-channel erosion is largest sediment 

source 
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Figure 2 Channel changes associated with urbanization. Dming the constmction phase 
of urbanization, hillslope erosion increases sediment supply leading to bed aggradation and 
overbank deposition. After constmction ceases hillslope sediment supply is reduced, but 
bankfull flows are increased owing to increases in imperviousness. This leads to increased 
channel erosion as channel incision and widening occur to accommodate increased bankfull 
discharge. 

as sediments fill urban channels (Figure 2). Dming this phase stream depths may 
decrease as sediment fills the channel, and the decreased channel capacity leads to 
greater flooding and overbank sediment deposition, raising bank heights (Wolman 
1967). Therefore, overall channel cross-sections stay the same or even decrease 
slightly (Robinson 1976). Ironically, the flooding associated with aggradation may 
help attenuate increased flows resulting from increased imperviousness by stor­
ing water in the floodplain, temporarily mitigating urban effects on hydrography 
(Hirsch et al. 1990). 

After the aggradation phase sediment supply is reduced and geomorphic re­
adjustment initiates a second, erosional phase (Figure 2). High ISC associated 
with urbanization increases the frequency of bankfull floods, frequently by an order 
of magnitude or, conversely, increases the volume of the bankfull flood (Leopold 
1973, Dunne & Leopold 1978, Arnold et al. 1982, Booth & Jackson 1997). As 
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a result, increased flows begin eroding the channel and a general deepening and 
widening of the channel (channel incision) occurs to accommodate the increased 
bankfull discharge (Hammer 1972, Douglas 1974, Roberts 1989, Booth 1990). 
Increased channel water velocities exceed minimum entrainment velocities for 
transporting bed materials, and readily moveable sediment is lost first as channels 
generally deepen (Leopold 1973, Morisawa & LaFlure 1979). Channels may ac­
tually nru.Tow during this phase as entrained sediment from incision is deposited 
laterally in the channel (Dunne & Leopold 1978). After incision channels begin 
to migrate laterally, bank erosion begins, which leads to general channel widening 
(Booth 1990, Booth & Jackson 1997, T1imble 1997). 

During the erosional phase channel enlru·gement can occur gradually if increases 
in width and depth keep pace with increases in discharge associated with increasing 
ISC. In this case the channel enlru·gement may be barely noticeable (Booth 1990). 
However, erosion more commonly occurs dispropmtionately to discharge changes, 
often leading to bank failure and catastrophic erosion in urban streams (Neller 1988, 
Booth 1990). In developed urban catchments, as a result of this erosional readjust­
ment phase, the majority of sediment leaving the catchment comes from within­
channel erosion as opposed to hillslope erosion (Trimble 1997). The magnitude of 
this generalized geomorphic response will vary longitudinally along a stream net­
work as well as with the age of development, catchment slope, geology, sediment 
characteristics, type of urbanization, and land use history (Gregory et al. 1992). 

Urban streams differ in other geomorphic chru·acteristics from forested catch­
ments as well. The spacing between pool-riffle sequences (distance between riffles) 
is generally constant at 5-7 times channel width in forested catchments (Gregory 
et al. 1994). Generally, this ratio stays constant in urban channels as they widen, 
which means the absolute distance between pool-riffle units increases, although 
there is some evidence that this spacing may decrease to 3-5 times channel width 
(Gregory et al. 1994). 

Changes in sediment supply may also alter channel pattern. Increased sediment 
supply during construction has converted some meandering streams to braided 
patterns or to straighter, more channelized patterns (Arnold et al. 1982). In the 
latter case, channelizing leads to increased slope and therefore higher in-stream 
velocities, especially where artificial channel alteration is cru.Tied out to increase 
the efficiency of the channel in transporting flows (Pizzuto et al. 2000). 

Urbanization can also alter sediment texture. Less fine sediment, increased 
coarse sand fractions, and decreased gravel classes have been observed in ur­
ban channels as a result of alteration of sediment supply and altered velocities 
(Finkenbine et al. 2000, Pizzuto et al. 2000). In addition to sediment changes, 
large woody debris is also reduced in urban channels. Catchments in Vancouver, 
British Columbia with greater than 20% ISC generally have very little large woody 
debris, a structural element important in both the geomorphology and ecology of 
Pacific Northwest stream ecosystems (Finkenbine et al. 2000). 

Other geomorphic changes of note in urban channels include erosion around 
bridges, which ru·e generally more abundant as a result of increased road densities 
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in urban channels (Douglas 1974). Bridges have both upstream and downstream 
effects, including plunge pools created below bridge culverts that may serve as bar­
riers to fish movement. Knickpoints are another common feature of urban chan­
nels. These readily erodeable points of sudden change in depth are created by 
channel erosion, dredging, or bridge constmction and are transmitted throughout 
the catchment, causing channel destabilization (Neller 1988). Other features in­
clude increased tree collapse, hanging tributary junctions as a result of variable 
incision rates, and erosion around artificial stmctures (e.g., utility suppmt pilings) 
(Robe1ts 1989). 

Changes in the hydrology and geomorphology of streams likely affect the hy­
draulic environment of streams, altering, among other things, the velocity profiles 
and hyporheic/parafluvial dynamics of channels. Such changes would affect many 
ecological processes, from filter-feeding organisms (Hart & Finelli 1999) to carbon 
processing and nutrient cycling (Jones & Mulholland 2000). 

Temperature 

Stream temperature is an important variable affecting many stream processes such 
as leaf decomposition (Webster & Benfield 1986) and invertebrate life history 
(Sweeney 1984). Urbanization affects many elements of importance to stream 
heat budgets. Removal of riparian vegetation, decreased groundwater recharge, 
and the "heat island" effect associated with urbanization, covered more fully in a 
companion review (Pickett et al. 2001), all affect stream temperature (Pluhowski 
1970), yet very little published data exists on temperature responses of streams 
to urbanization. In one study on Long Island urban streams had mean summer 
temperatures 5-8°C wanner and winter temperatures 1.5-3°C cooler than forested 
streams. Seasonal diurnal fluctuations were also greater in urban streams, and 
summertime storms resulted in increased temperature pulses 10-15°C warmer 
than forested streams, a result of mnoff from heated impervious surface (Pluhowski 
1970). Similar effects on summer temperatures and daily fluctuations have also 
been observed elsewhere (Table 1) (Galli 1991, Leblanc et al. 1997). 

CHEMICAL EFFECTS OF URBANIZATION 

Chemical effects of urbanization are far more variable than hydrologic or geomor­
phic effects and depend on the extent and type of urbanization (residential versus 
commercial/industrial), presence of wastewater treatment plant (WWTP) effluent 
and/or combined sewer overflows (CSOs), and the extent of stormwater drainage. 
Overall, there are more data on water and sediment chemistry in urban streams 
than any other aspect of their ecology. This is aided by several very large national 
datasets of stream chemistry that focus in whole or in part on urbanization [e.g., 
National Urban Runoff Program (United States), National Water Quality Assess­
ment Program (USGS 2001 ), Land-Ocean Interaction Study (UK) (Neal & Robson 
2000)]. 
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In general, there is an increase in almost all constituents, but consistently in 
oxygen demand, conductivity, suspended solids, ammonium, hydrocarbons, and 
metals, in urban streams (Porcella & Sorenson 1980, Lenat & Crawford 1994, 
Latimer & Quinn 1998, USGS 1999). These increases can be attributed to both 
WWTP effluent and non-point source (NPS) runoff. Many countries have ac­
complished significant reductions in chemical constituents as a result of adopting 
better WWTP technologies (e.g., Krug 1993, Litke 1999). However, treatment 
cannot remove all constituents from wastewater, treatment systems fail, and per­
mitted discharge limits are exceeded. There are more than 200,000 discharges 
subject to permitting in the United States (USEPA 2001), and of 248 urban cen­
ters studied, 84% discharge into rivers ( 40% of those into rivers with mean an­
nual discharges less than 28 m3/s) (Heaney & Huber 1984). In addition, CSO 
systems are still common, in which stormwater and untreated sewage are com­
bined and dive1ted to streams and rivers during storms. At least 28% of the 
urban centers mentioned above contained CSOs, and in the United Kingdom 
35% of the annual pollutant discharge comes from CSOs and storm drains dur­
ing less than 3% of the time (Heaney & Huber 1984, Faulkner et al. 2000). In 
addition, illicit discharge connections, leaking sewer systems, and failing sep­
tic systems are a large and persistent contributor of pollutants to urban streams 
(Faulkner et al. 2000). In the Rouge River catchment in Detroit, Michigan, the fo­
cus of an intense federal NPS management program, septic failure rates between 
17% and 55% were reported from different subcatchments, and it was estimated 
that illicit untreated sewage discharge volume at more than 193,000 m3 /yr (Johnson 
et al. 1999). The ubiquitous nature of small, NPS problems in urban catchments 
has led some to suggest that the cumulative effect of these small problems may be 
the dominant source of biological degradation in urban catchments (Duda et al. 
1982). 

Nutrients and Other Ions 

Urbanization generally leads to higher phosphorus concentrations in urban catch­
ments (Omernik 1976, Meybeck 1998, USGS 1999, Winter & Duthie 2000). An 
urban effect is most often seen in total phosphorus as a result of increased particle­
associated phosphorus, but dissolved phosphorus levels are also increased (Smart 
et al. 1985). In some cases increases in phosphorus can even rival those seen in 
agricultural catchments both in terms of concentration and yield (Omernik 1976). 
Even an attempt to understand the agricultural contribution to catchment phos­
phorus dynamics in a midwestern catchment discovered that urbanization was a 
dominant factor (Osborne & Wiley 1988). Even though urban areas constituted 
only 5% of the catchment area and cont:Iibut:ed only a small part to the total annual 
yield of dissolved phosphorus, urban land use controlled dissolved phosphorus 
concentration throughout the year. 

Sources of phosphorus in urban catchments include wastewater and fertilizers 
(La Valle 1975). Lawns and streets were the primary source of phosphorus to urban 
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streams in Madison, Wisconsin as a result of fertilizer application (Waschbusch 
et al. 1999). Soils are impmtant in phosphorus dynamics, and the retention of 
groundwater phosphorus from septic fields affects stream phosphorus concentra­
tions (Hoare 1984, Gerritse et al. 1995). Phosphorus stored in soils as a result of 
fertilization, however, can be mobilized by soil erosion and contribute to eutroph­
ication of receiving waters. This effect has been called the "chemical time bomb" 
and is of particular concern when previously agricultural land is cleared for urban 
growth (Bennett et al. 1999). 

Although phosphorus concentrations are elevated in urban streams, the effective 
increase is not as great as that observed for nitrogen. Urban centers have been 
shown to increase the nitrogen concentration in rivers for hundreds of kilometers 
(Meybeck 1998, USGS 1999). Increases have been observed for ammonium as well 
as nitrate (McConnell 1980, Hoare 1984, Zampella 1994, Wernick et al. 1998). 
The extent of the increase depends on wastewater treatment technology, degree 
of illicit discharge and leaky sewer lines, and fertilizer use. As with phosphorus, 
nitrogen concentrations in streams draining agricultural catchments are usually 
much higher (USGS 1999), but some have noticed similar or even greater levels 
of nitrogen loading from urbanization (Omernik 1976, Nagumo & Hatano 2000). 
Soil characteristics also affect the degree of nitrogen retention, of importance when 
on-site septic systems are prevalent (Hoare 1984, Gerritse et al. 1995). 

Other ions are also generally elevated in urban streams, including calcium, 
sodium, potassium, and magnesium (McConnell 1980, Smart et al. 1985, 
Zampella 1994, Ometo et al. 2000). Chloride ions are elevated in urban streams, 
especially where sodium chlolide is still used as the principal road deicing salt. 
A significant portion of the more than 100,000 tons of sodium chloride applied in 
metropolitan Toronto annually for deicing enters long-turnover groundwater pools 
and is released slowly, raising stream chloride concentrations throughout the year 
(Howard & Haynes 1993). The combined effect of heightened ion concentrations 
in streams is the elevated conductivity observed in most urban streams. The effect is 
so common that some have suggested using chloride concentration or conductivity 
as general urban impact indicators (Wang & Yin 1997, Herlihy et al. 1998). 

Metals 

Another common feature of urban streams is elevated water column and sedi­
ment metal concentrations (Bryan 1974, Wilber & Hunter 1977, Neal et al. 1997, 
Horowitz et al. 1999, Neal & Robson 2000). The most common metals found 
include lead, zinc, chromium, copper, manganese, nickel, and cadmium (Wilber 
& Hunter 1979), although lead has declined in some urban liver systems since its 
elimination as a gas additive (Frick et al. 1998). Mercury is also elevated in some 
urban streams, and particle-bound methyl-mercury can be high during stormflow 
(Mason & Sullivan 1998, Horowitz et al. 1999). In addition to industlial discharges, 
there are many NPSs of these metals in urban catchments: brake linings contain 
nickel, chromium, lead, and copper; tires contain zinc, lead, chromium, copper, 
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and nickel; and metal alloys used for engine parts contain nickel, chromium, cop­
per, and manganese among others (Muschak 1990, Mielke et al. 2000). All of 
these metals accumulate on roads and parking lots (Sartor et al. 1974, Forman & 
Alexander 1998). Many other metals have been found in elevated concentrations 
in urban stream sediments including arsenic, iron, boron, cobalt, silver, strontium, 
rubidium, antimony, scandium, molybdenum, lithium, and tin (Khamer et al. 2000, 
Neal & Robson 2000). Not surprisingly, it appears that NPSs of metals are more 
important than point sources in urban streams (Wilber & Hunter 1977, Mason & 
Sullivan 1998). 

The concentration, storage, and transport of metals in urban streams is connected 
to particulate organic matter content and sediment characteristics (Tada & Suzuki 
1982, Rhoads & Cahill 1999). Organic matter has a high binding capacity for 
metals, and both bed and suspended sediments with high organic matter content 
frequently exhibit 50-7500 times higher concentrations of zinc, lead, chromium, 
copper, mercury, and cadmium than sediments with lower organic matter content 
(WaiTen & Zimmerman 1994, Mason & Sullivan 1998, Gonzales et al. 2000). 
Sediment texture is also important, and metal concentration in sediments was 
inversely coiTelated to sediment pru.ticle size in several urban New Jersey streams 
(Wilber & Hunter 1979). In addition, geomorphic features have been shown to 
influence metal accumulations. Higher sediment metal concentrations were found 
in areas of low velocity (stagnant zones, bars, etc.) where fine sediments and 
organic particles accumulate, whereas areas of intennediate velocities promoted 
the accumulation of sand-sized metal particles, which can also be common in 
urban streams (Rhoads & Cahi111999). 

Several organisms (including algae, mollusks, arthropods, and annelids) have 
exhibited elevated metal concentrations in urban streams (Davis & George 1987, 
Rauch & Morrison 1999, Gundacker 2000), and ecological responses to metals 
include reduced abundances and altered community structure (Rauch & MmTison 
1999).1t is impmtant to note that the route of entry appears to be both direct expo­
sure to dissolved metals and ingestion of metals associated with fine sediments and 
organic matter. This has led a few researchers to suggest that metal toxicity is most 
strongly exerted through the riverbed rather than the overlying water (Medeiros 
et al. 1983, House et al. 1993), although only dissolved metal concentrations in 
the water column are regulated in the United States. 

Pesticides 

Pesticide detection frequency is high in urban streams and at concentrations fre­
quently exceeding guidelines for the protection of aquatic biota (USGS 1999, 
Hoffman et al. 2000). These pesticides include insecticides, herbicides, and fungi­
cides (Daniels et al. 2000). In addition, the frequent detection of banned substances 
such as DDT and other organochlorine pesticides (chlordane and dieldrin) in urban 
streams remains a concern (USGS 1999). Most surprising is that many organochlo­
rine pesticide concentrations in urban sediments and biota frequently exceed those 
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observed in intensive agricultural areas in the United States (USGS 1999), a phe­
nomenon observed in France as well (Chevreuiel et al. 1999). Additionally, it is 
estimated that the mass of insecticides contributed by urban areas is similar to that 
from agricultural areas in the United States (Hoffman et al. 2000). 

There are many sources of pesticides in urban catchments. Urban use accounts 
for more than 136,000 kg, which is a third of U.S. pesticide use (LeVeen & Willey 
1983). They are frequently applied around homes (70-97% of U.S. homes use pes­
ticides) and commercial/indust:J.ial buildings and are intensively used in lawn and 
golf course management (LeVeen & Willey 1983, USGS 1999). Areal application 
rates in urban environments frequently exceed those in agricultural applications 
by nearly an order of magnitude (Schueler 1994b). For example, pesticide appli­
cation rates on golf courses (including herbicides, insecticides, and fungicides) 
exceed 35 pounds/acre/year, whereas com/soybean rotations receive less than 
6 pounds/acre/year (Schueler 1994b ). However, unlike agricultural use, urban pes­
ticide application rates are generally not well documented (Le Veen & Willey 1983, 
Coupe et al. 2000). 

As with metals, the main vector of transport of pesticides into urban st:J.·eams 
appears to be through NPS mnoff rather than WWTP effluent (Foster et al. 2000). 
A st:J.·ong conelation between particle concentration and pesticide concent:J.·ation 
was found in the Anacostia River basin in Maryland and the San Joaquin River in 
Califomia, suggesting NPS inputs are most important (Pereira et al. 1996, Foster 
et al. 2000). Volatilization and aerosol formation contributed to higher pesti­
cide concentrations, including atrazine, diazinon, chlorpyrifos, p,p'-DDE (a DDT 
metabolite), and other organochlorines, in precipitation in urban areas and may 
contribute directly to greater pesticide concentrations and yields in urban areas 
(Weibel et al. 1966, Coupe et al. 2000). 

Other Organic Contaminants 

A whole suite of other organic contaminants are frequently detected in urban 
streams, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydro­
carbons (PAHs), and pet:J.·oleum-based aliphatic hydrocarbons (Whipple & Hunter 
1979, Moring & Rose 1997, Frick et al. 1998). PCBs are still frequently detected in 
urban areas of the United States, even though their use in manufacturing was out­
lawed because of their carcinogenic effects. These compounds are very stable and 
are still found in fish at concentrations exceeding consumption-level guidelines 
in urban rivers such as the Chattahoochee River below Atlanta, Georgia (Flick 
et al. 1998). PCB concentrations were highly conelated with mban land use in 
the Willamette Basin in Oregon as well (Black et al. 2000). As with metals and 
pesticides, PCBs are primruily particle associated, and in the absence of indust:J.·ial 
point sources, it is assumed that stormwater mnoff is the major route of ent:J.y 
(Foster et al. 2000). 

PAHs ru·e a large class of organic compounds that include natural aromatic 
hydrocru·bons but also many synthetic hydl·ocru·bons including organic solvents 
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with different industtial uses (Yamamoto et al. 1997). For this reason, the unnat­
ural PAHs are probably derived from industrial effluent or episodic spills. Very 
little is known about these compounds in urban streams. In Dallas-Fmt Wmth, 
Texas streams, 24 different industtial PAHs were detected, including 4 of the 
top 10 U. S. Environmental Protection Agency (EPA) most hazardous substances, 
and at concentrations exceeding human health cliteria (Moring & Rose 1997). 
In Osaka, Japan streams, 55 PAHs were detected, including 40 EPA target com­
pounds. Organic solvents (e.g., toluene, tJ.ichloroethane, and dichlorethane) were 
most common (Yamamoto et al. 1997). 

It is difficult to find automobile parking spaces without oil stains in any city. 
The result of these leaky crankcases is a comucopia of different petroleum­
based aliphatic hydrocarbons in storm runoff associated primarily with particles 
(Whipple & Hunter 1979). Although there are natural aliphatic hydrocarbons in 
sn·eams, these are generally overwhelmed by petroleum-based compounds in ur­
ban stream bed and water-column sediments (Hunter et al. 1979, Mackenzie & 
Hunter 1979, Eganhouse et al. 1981). Evidence suggests that these are frequently 
at concentrations that are stressful to sensitive stJ.·eam organisms (Latimer & Quinn 
1998). Most stJ.iking is the yield of these compounds from urban catchments. An 
estimated 485,000 liters of oil enters the Narragansett Bay each year, a volume 
equal to nearly 50% of the disastrous 1989 World Prodigy oil spill in that same 
bay (Hoffman et al. 1982, Latimer & Quinn 1998). Similarly, it is estimated that 
the Los Angeles River alone contJ.·ibutes about 1% of the annual world petroleum 
hydrocarbon input to the ocean (Eganhouse et al. 1981). 

Lastly, recent data suggest pharmaceutical substances from hospital effluent 
may contJ.·ibute an array of different chemical compounds into streams. Detectable 
levels of antiobiotics, genotoxic chemotherapeutic chugs, analgesics, narcotics, and 
psychotherapeutic chugs have been reported from effluent and/or surface waters 
(Hailing-Sorensen et al. 1998). Although there is some information on the toxicity 
of these different compounds from laboratory studies, there are insufficient data 
on the nature or extent of the threat they pose to urban stream biota. 

BIOLOGICAL AND ECOWGICAL EFFECTS 
OF URBANIZATION 

The ecological implications of urbanization are far less studied than the chemical 
effects, an absence noted in several studies (Porcella & Sorenson 1980, Duda et al. 
1982, Medeiros et al. 1983). Neve1theless, much is known about the response of 
stream organisms, especially invertebrates, to urbanization; far less is known about 
urban effects on fish (Mulholland & Lenat 1992). Of even greater concem is the 
lack of mechanistic studies; few studies analyze whether physical habitat, water 
quality, or food web disturbances (either resource effects or altered community 
interactions) are the cause of biological degradation in urban streams (Suren 
2000). Grossly undelTepresented are studies of population dynamics, community 
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interactions, and ecosystem ecology of urban streams, which is surprising given 
the level of knowledge within the field (Allan 1995). Lastly, very little information 
has been gathered on biological monitoring of restoration or best management 
practice implementation in urban catchments (Riley 1998). Most studies assess 
pe1formance based on stream channel condition or pollutant reduction; few, if any, 
monitor biological response (Benke et al. 1981, Center for Watershed Protection 
2000). In this section, we discuss the effects of urbanization on microbes, algae, 
macrophytes, invertebrates, and fish. 

Microbes 

Bacterial densities are usually higher in urban streams, especially after storms 
(Porcella & Sorenson 1980, Duda et al. 1982). Much of this is atttibutable to 
increased coliform bacteria, especially in catchments with wastewater treatment 
plant (WWTP) and combined sewer overflow (CSO) effluent (Gibson et al. 1998, 
Young & Thackston 1999). In Saw Mill Run, an urban stream near Pittsburgh, 
Pennsylvania, fecal coliform colony-forming units (CFU) increased from 170-
13,300 CFU/100 m1 during dry weather to 6,100-127,000 CFU/100 mlduring wet 
weather (Gibson et al. 1998). CSOs conttibuted 3,000-85,000 CFU/100 m1 during 
wet weather. These data indicate that non-point sources (NPSs) as well as point 
sources contribute to fecal colifmm loads in urban streams. High values duting dry 
weather are not uncommon in urban streams and may indicate chronic sewer leak­
age or illicit discharges. Storm sewers were also a significant source of coliform 
bacteria in Vancouver, British Columbia; stmmwater there contained both human 
and nonhuman fecal colifmm bacteria (Nix et al. 1994). Other pathogens, includ­
ing Cryptosporidum and Giardia, have also been associated with CSOs (Gibson 
et al. 1998). 

Increased antibiotic resistance has been seen in some urban bacterial popula­
tions (Goni-UITiza et al. 2000). Increased resistance to several antiobiotics, in­
cluding nalidixic acid, tetracycline, beta-lactam, and co-ttimoxazole, has been 
observed from several entetic as well as native stream species isolated from a 
liver downstream of a WWTP discharge in Spain. It may be that resistant bacte­
ria are passing through the treatment process and conferring resistance to native 
bacteria. Recent evidence suggests that metal toxicity may also be indirectly in­
volved in increasing antibiotic resistance in stream bacteria. Bacterial resistance 
to streptomycin and kanamycin were positively con·elated with sediment mercury 
concentration in streams below nuclear reactors and industrial facilities, a result 
of indirect selection for metal tolerance (McArthur & Tuckfield 2000). Metals 
may also affect bacterial enzyme activity in urban streams. Enzyme levels were 
inversely colTelated to sediment metal concentration in an urban stream, and this 
was especially pronounced below an industrial effluent (Wei & MolTison 1992). 

Nitrifying bactetia, responsible for the oxidation of reduced nitrogen, are also 
influenced by urbanization. WWTP effluent can represent a significant source of 
nitrifying bacteria to urban streams (Brion & Billen 2000). These bactetia are 
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used to oxidize ammonium during the treatment process, but escape into streams 
in effluent and contribute to the high nitrifier activity observed below some WWTP 
discharges (Jancarkova et al. 1997). Nitrification rates were as much as six times 
higher in treated effluent entering the Seine than in receiving river water upstream 
(Brion & Billen 2000). Ironically, because so many nitrifiers entered the Seine River 
in France via untreated sewage histmically, the reduction in untreated sewage via 
improved sewage design contributed to a reduction in ammonium oxidation rates in 
the liver from 1.5 J.imol/liter/h in 1976 to 1.0 J.imol/liter/h in 1993 (Brion & Billen 
2000). In addition to nitrifiers, iron-oxidizing bacteria are often abundant in urban 
streams, especially where reduced metals emerge from anoxic urban groundwater 
or storm sewers (Dickman & Rygiel1998). 

Algae 

The use of algae to indicate water quality in Europe and the United States has a long 
history (Kolkwitz & Mars son 1908, Patrick 1973 ). As a result, information exists on 
algal species and community responses to organic pollution; however, the response 
of algae to all aspects of urbanization is far less studied. The increasing proportion 
of urban land use in a catchment generally decreases algal species diversity, and this 
change has been attributed to many factors including water chemistry (Chessman 
et al. 1999). Elevated nutrients and light levels typically favor greater algal biomass, 
which has been observed in many urban streams, where algae do not appear to 
be nut:J.ient limited (Chessman et al. 1992, Richards & Host 1994). However, the 
shifting nature of bed sediment in urban streams, frequent bed disturbance, and 
high turbidity may limit algal accumulation (Bw·kholder 1996, Dodds & Welch 
2000). In addition, several algal species are sensitive to metals, and stream sediment 
metal accumulation can result in reduced algal biomass (Olguin et al. 2000). Lastly, 
the frequent detection of herbicides in streams, some with known effects on algae 
(Davies et al. 1994), will undoubtedly affect stream algal communities 

Macrophytes 

Little has been written on macrophyte response to urbanization. Most of the work 
has been done in New Zealand and Australia, where bed sediment changes, nutrient 
enrichment, and turbidity all cont:J.ibute to reduced diversity of stream macrophytes 
(Suren 2000). Exotic species introductions in urban st:J.·eams have also resulted 
in highly reduced native macrophyte diversity (Arthington 1985, Suren 2000). 
Excessive macrophyte growth as a result of urbanization has not been observed in 
New Zealand, even though nutrient and light levels are higher (Suren 2000). 

Invertebrates 

Literature searches revealed more studies of urban effects on aquatic invertebrates 
than on any other group, and the available data are being expanded by groups 
biomonitoring urban systems (e.g., USGS National Water Quality Assessment, 
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U.S. EPA, state agencies, and others). All aspects of aquatic invertebrate habitat 
are altered by urbanization. One of the historically well-studied aspects has been 
the effects of organic pollutants (especially WWTP effluent) on invertebrates. Or­
ganic pollution generally reduces invertebrate diversity dramatically, resulting in 
a community dominated by Chironornidae (Diptera) and oligochaetes (Campbell 
1978, Seager & Abrahams 1990, Wright et al. 1995). However, general effects 
of urbanization on stream invertebrates have also been studied and general in­
vertebrate responses can be summarized as follows: decreased diversity in re­
sponse to toxins, temperature change, siltation, and organic nutrients; decreased 
abundances in response to toxins and siltation; and increased abundances in re­
sponse to inorganic and organic nutlients (Resh & Grodhaus 1983, Wiederholm 
1984). 

Studies of the effects of urban land use on invertebrates can be divided into three 
types: those looking along a gradient of increasing urbanization in one catchment, 
those looking at an urbanized versus a reference catchment, and large studies 
consideling urban gradients and invertebrate response in several catchments. All 
single catchment gradient studies find a decrease in invertebrate diversity as ur­
ban land use increases, regardless of the size of the catchment (Pratt et al. 1981, 
Whiting & Clifford 1983, Shutes 1984, Hachmoller et al. 1991, Thome et al. 
2000). Decreases were especially evident in the sensitive orders-Ephemeroptera, 
Plecoptera, and Tlichoptera (Pratt et al. 1981, Hachmoller et al. 1991). Most of 
these studies observed decreases in overall invertebrate abundance, whereas the 
relative abundance of Chironornidae, oligochaetes, and even tolerant gastropods 
increased (Pratt et al. 1981, Thome et al. 2000). Comparative catchment studies 
show the same trends with increasing urbanization as those observed in single 
catchment studies: decreased diversity and overall abundance and increased rela­
tive abundance of tolerant Chironornidae and oligochaetes (Medeiros et al. 1983, 
Garie & Mcintosh 1986, Pederson & Perkins 1986, Lenat & Crawford 1994). 

The multi-catchment studies attempt to relate diffeling amounts of urbanization 
in many catchments to particular invertebrate community responses, often using a 
gradient analysis approach. As discussed above, all find decreases in diversity and 
overall invertebrate abundance with increased urbanization. This response is cor­
related with impervious smface cover, housing density, human population density, 
and total effluent discharge (Klein 1979, Benke et al. 1981, Jones & Clark 1987, 
Tate & Heiny 1995, Kennen 1999). Klein (1979) studied 27 small catchments on 
the Maryland Piedmont and was among the first to identify impervious smface 
cover (ISC) as an important indicator of degradation. Invertebrate measures de­
clined significantly with increasing ISC until they indicated maximum degradation 
at 17% ISC (Table 1). Degradation thresholds at ISC between 10 and 20% have 
been supported by numerous other studies for many different response variables 
(see Schueler 1994a). Residential urbanization in Atlanta, Georgia had dramatic 
effects on inve1tebrate diversity, but there were very few clues as to the mecha­
nisms responsible, although leaky sewers were implicated in these and other urban 
residential catchments (Benke et al. 1981, Johnson et al. 1999). 
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Few studies have considered specific mechanisms leading to the observed ef­
fects of urbanization. This is a difficult task because of the multivruiate nature of 
w·ban disturbance. Increased turbidity has been associated with higher drift densi­
ties of insects (Doeg & Milledge 1991), but more work has focused on the instability 
of smaller and more mobile bed sediments associated with urban sedimentation. In 
general, the change in bed sediments favors species adapted to unstable habitats, 
such as the chironornid dipterans and oligochaete annelids (Pedersen & Perkins 
1986, Collier 1995). Where slopes are steeper, and smaller sediments ru·e removed 
by increased water velocities, localized ru·eas of higher invertebrate diversity ru·e 
observed within the coarser sediments (Collier 1995). Pools ru·e particularly af­
fected by sediment accumulation in urban streams, and inve1iebrate communities 
within these habitats are degraded (Hogg & Norriss 1991). Lastly, sedimentation 
associated with mban streams reduces available refugial space, and invertebrates 
are more susceptible to ddft when refugial space is limited dming the frequent 
floods characteristic of urban environments (Borchardt & Statzner 1990). Stonn­
flows in w·ban streams introduce the majodty of pollutants and also move the bed 
sediment frequently. The mortality of Pteronarcys dorsata (Plecoptera) in cages in 
urban streams was attributed to sedimentation associated with storms (Pesacreta 
1997). 

Sediment toxicity has also been explored. As mentioned above, benthic organic 
matter binds many toxins and is also a major food resomce for many stream 
invertebrates (Benke & Wallace 1997). Mmiality of aquatic invertebrates remains 
high in many urban streams even during low flow periods, suggesting that toxicity 
associated with either exposure in the bed or ingestion of toxins associated with 
organic matter contributes to invertebrate loss (Pratt et al. 1981, Medeiros et al. 
1983). 

Riparian deforestation associated with urbanization reduces food availability, 
affects stream temperature, and disrupts sediment, nutrient, and toxin uptake from 
surface runoff. Invertebrate bioassessment metrics decreased shru-ply in Puget 
Sound, Washington tlibutaries with increasing ISC (Homer et al. 1997). However, 
streams that had higher benthic index of biotic integrity scores for a given level of 
ISC were always associated with greater riparian forest cover in their catchment, 
suggesting that ripru·ian zones in some mban catchments may buffer streams from 
urban impacts. Above 45% ISC, all streams were degraded, regru·dless of ripru·ian 
status. The value of dparian forests is also reduced if the stonnwater system is 
designed to bypass them and dischru·ge directly into the stream. 

Road construction associated with urbanization impacts stream invertebrates. 
Long-term reductions (>6 y) in invertebrate diversity and abundances were ob­
served in association with a road construction project in Ontru·io (Taylor & Roff 
1986). General effects of roads on streams has been reviewed recently (Forman & 
Alexander 1998). 

Very little ecological data beyond presence/absence or abundance data have 
been repmied for mban stream inve11ebrates. Aquatic insect colonization potential 
was repmied to be high in some urban streams, suggesting restoration efforts would 
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not be limited in this regard (Pedersen & Perkins 1986), but little is known about 
colonization or adult aquatic insect ecology in urban streams. Urban stream restora­
tion work focuses largely on channel geomorphological stability, with relatively 
little attention given to biological restoration (Riley 1998), although restoration 
of Strawberry Creek on the campus of the University of California at Berkeley 
has resulted in detectable increases in invertebrate diversity and abundance 
(Charbonneau & Resh 1992). Drift of aquatic invettebrates is a well studied phe­
nomenon in streams, but with one exception (Borchardt & Statzner 1990), little 
has been published on insect drift in urban streams. We found no published work 
regarding life cycle ecology (e.g., voltinism or emergence timing), population 
dynamics, behavioral ecology, community interactions, or production of aquatic 
invettebrates in urban streams. 

Less is known about fish responses to urbanization than about invertebrates, and 
a general response model does not exist. However, the Ohio Environmental Pro­
tection Agency has a very large database of land use and fish abundance from 
around their state and has suggested three levels of general fish response to in­
creasing urbanization: from 0 to 5% urban land use, sensitive species are lost; from 
5 to 15%, habitat degradation occurs and functional feeding groups (e.g., benthic 
invettivores) are lost; and above 15% urban land use, toxicity and organic enrich­
ment result in severe degradation of the fish fauna (Table 1) (Yoder et al. 1999). 
This model has not been verified for other regions of the country, where studies 
have focused on various aspects of urbanization. Here we consider three types of 
urban land use studies with regards to fish: gradients of increasing urbanization 
within a single catchment, comparing an urban and reference catchment, and large, 
multi-catchment urban gradient studies. 

Along urban gradients within single catchments, fish diversity and abundances 
decline, and the relative abundance of tolerant taxa increases with increasing ur­
banization (Table 1) (Onorato et al. 2000, Boet et al. 1999, Gafny et al. 2000). 
Invasive species were also observed to increase in more mbanized reaches of the 
Seine River, France, and this effect extended more than 100 km below Paris (Boet 
et al. 1999). Summer stmms in that river were associated with large fish kills as 
a result of dissolved oxygen deficits, an effect also observed for winter floods in 
Yargon Stream, the largest urban stream in Israel (Gafny et al. 2000). Comparisons 
with historical collections, an approach used commonly with fish studies, revealed 
that several sensitive species were extirpated from the Upper Cahaba River system 
in Alabama between 1954 and 1995, a period coinciding with the rapid growth 
of Birmingham, Alabama (Onorato et al. 2000). Extirpation of fish species is not 
uncommon in mban river systems (Ragan & Dietmann 1976, Weaver & Garman 
1994, Wolter et al. 2000). 

Comparative catchment studies also find dramatic declines in fish diversity and 
abundances in urban catchments compared with forested references (Scott et al. 
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1986, Weaver & Garman 1994, Lenat & Crawford 1994). Kelsey Creek, a well­
studied urban stream in Washington, is unusual in that it has sustained salmonid 
populations, especially cutthroat trout (Oncorhynchus clarki), even though coho 
salmon (Oncorhyncus kisutch) and many nonsalmonid species have disappeared 
(Scott et al. 1986). Salmonids in the urban stream actually grow more rapidly 
and to larger sizes, increasing fish production up to three times that in the forested 
reference site, presumably a result ofwrumer temperatures and greater invertebrate 
biomass in the urban stream. However, the population size structure is different in 
the two streams, with yeru· 0 and 1 cutthroat underrepresented in the urban stream 
(Scott et al. 1986). 

Lru·ge multi-site studies of fish responses to urban gradients also find dramatic 
decreases in diversity or fish multimetric indices [index of biotic integtity (IBI)] 
with increasing ISC or other urban land use indicators (Table 1) (Klein 1979, 
Steedman 1988, Wang et al. 1997, Frick et al. 1998, Yoder et al. 1999). Similar to 
effects observed for invertebrates, these studies also find precipitous declines in 
fish mettics between 0 and 15% ISC or urban land use, beyond which fish commu­
nities remain degraded (Klein 1979, Yoder et al. 1999). The effect of urbanization 
on fish appears at lower percent land area disturbed than effects associated with 
agriculture. In Wisconsin and Michigan few fish community effects were observed 
in aglicultural catchments up to 50% agliculturalland use in the catchment (Roth 
et al. 1996, Wang et al. 1997), and mixed agliculture and urban catchments had 
significantly lower IBI scores than strictly agricultural catchments (Wang et al. 
2000). This suggests that although total w·ban land use occupies a smaller ru·ea 
globally, it is having disproportionately large effects on biota when compared with 
agriculture. However, it is crucial to recognize that all urban growth does not have 
the same effects. Extensive fish surveys in Ohio suggest that residential develop­
ment, especially large-lot residential development, has less of an effect on stream 
fishes than high-density residential or commercial/industtial development (Yoder 
et al. 1999). They hypothesize that Iipatian protection and less channel habitat 
degradation are responsible for protecting the fauna in these streams, even up to 
15% urban land use. Similru· benefits of Iiparian forests to fish in urban streams 
were observed in the Pacific Northwest (Homer et al. 1997). 

Few studies have explored specific mechanisms causing changes in fish assem­
blages with urbanization. Sediment is presumably having effects on fish in urban 
streams similru· to those observed in other systems although toxin-mediated im­
pacts may be greater (Wood & Armitage 1997). Road construction results in an 
increase in the relative abundance of water-column feeders as opposed to benthic 
feeders, likely a response to a decrease in benthic invertebrate densities (Taylor 
& Roff 1986). Benthic feeders quickly reapperu·ed as sedimentation rates de­
clined after construction. Flow modification associated with urbanization also 
affects stream fish. In the Seine, modification of flow for flood protection and 
water availability has affected pike (Esox lucius) by reducing the number of 
flows providing suitable spawning habitat. With urbanization, the liver contains 
enough suitable spawning habitat in only 1 out of 5 yeru·s as opposed to 1 out of 
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every 2 years historically (Boet et al. 1999). Last, WWTP effluent clearly affects 
fishes. Reductions in WWTP effluent have been associated with the recovery of the 
fish community in a River Trent tributary near Birmingham, England (Harkness 
1982). After nearly 250 years of degradation, effluent reductions, improved treat­
ment, and construction of run-of-the river purification have resulted in an increase 
in fish diversity and abundances. 

A few studies have actually examined ecological factors regulating stream fish 
populations and communities in urban streams. Recruitment of anadromous fish 
in the Hudson River Basin in New York was limited by suitable spawning habitat 
as a result of urbanization (Limburg & Schmidt 1990). Numbers of alewife (Alosa 
pseudoharengus) eggs and larvae in tributary streams decreased sharply between 
0 and 15% urban land use. Beyond 15%, no eggs or larvae were found. The Kelsey 
Creek study discussed above showed impacts on salmonid population structure 
associated with urbanization, suggesting that urban streams may serve as popula­
tion sinks for cutthroat, and that fish populations in those streams are dependent on 
recruitment from source populations with normal population age structures (Scott 
et al. 1986). Few data on the diet of fish in urban streams have been published, 
although a shift in diet was observed for fish along an urban gradient in Virginia 
(Weaver & Garman 1994). 

Introduced fish species are also a common feature of urban streams. As a result 
of channelization, other river transportation modifications, and voluntary fisheries 
efforts in the Seine around Paris, 19 exotic species have been introduced, while 
7 of 27 native species have been extirpated (Boet et al. 1999). The red shiner 
(Cyprinella lutrensis), a Mississippi drainage species commonly used as a bait 
fish, has invaded urban tributaries of the Chattahoochee River in Atlanta, Georgia 
where it has displaced native species and now comprises up to 90% of the fish 
community (DeVivo 1995). 

As observed above for invertebrates, real gaps exist in our understanding of 
fish ecology in urban streams. The effects of urbanization on fishes have focused 
primarily on patterns of species presence, absence, or relative abundance. We found 
no published information on behavioral ecology, community interactions, or the 
biomass and production of nonsalmonid fishes in urban streams. 

Ecosystem Processes 

Ecosystem processes such as primary productivity, leaf decomposition, or nutrient 
cycling have been overlooked in urban streams, although they have been exten­
sively studied in other types of stream ecosystems (Allan 1995). A few studies have 
considered organic matter in streams. WWTP effluent and CSO discharges can dra­
matically increase dissolved and particulate organic carbon concentrations, espe­
cially during storms (McConnell1980). However, much less is known about base­
flow concentrations of particulate and dissolved carbon in urban streams-natural 
or anthropogenic. The carbon inputs associated with sewage are generally more 
labile than natural transported organic matter and they affect dissolved oxygen 
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in streams. Oxygen deficits associated with high biological oxygen demand dur­
ing and after storms are common (McConnelll980, Faulkner et al. 2000, Ometo 
et al. 2000). In addition, nonrespiratory oxygen demands associated with chemi­
cal oxidation reactions are also elevated in urban streams and can be much higher 
than biological oxygen demand in stonnwater runoff (Bryan 1972). These inputs 
explain in part why more than 40% of 104 urban streams studied in the United 
States showed a high probability of greater than average oxygen deficits, with 
dissolved oxygen concentrations below 2 mglliter and daily fluctuations up to 
7 mg/liter not uncommon (Keefer et al. 1979). In a comparison of 2 forested and 
4 urban catchments, average organic matter standing stocks were significantly 
lower in urban streams near Atlanta, Georgia (Paul1999). This was attributed to 
greater scouring of the highly mobile sandy substrates in urban channels as a result 
of more severe flows. 

Organic matter quality has been characterized in a few urban streams. In Kelsey 
Creek, particulate organic matter (POM) carbohydrate concentrations were higher 
than in POM in a nearby forested reference stream, suggesting that urbanization 
affects the nature of transported organic matter as well (Sloane-Richey et al. 1981 ). 
In addition to differences in organic matter quantity and quality, urban streams also 
differ in organic matter retention. Coarse and fine particles released to measure 
organic matter transport in Atlanta, Georgia streams traveled much farther before 
leaving the water column in urban streams than in forested streams (Paul1999). 
Combined with the data from benthic organic matter (BOM) storage, these data 
indicate that these urban streams retain less organic matter, a fact that could limit 
secondary production in these urban streams (Paul1999). 

Ecosystem metabolism has also been measured in a few urban streams. In a 
comparison of three rivers in Michigan the urban river had higher gross primary 
production and community respiration than the forested river (Ballet al. 1973). In 
addition, the gross primary productivity to community respiration (P/R) ratio in 
the urban river without municipal effluent was greater than the forested stream and 
greater than 1.0, indicating that autotrophy dominated organic matter metabolism. 
However, in a downstream reach of the urban river receiving effluent, respiration 
was higher and the P/R ratio less than the forested river and far less than 1.0, indi­
cating that heterotrophic metabolism predominated. Similar results were observed 
for urban streams in Atlanta, where gross primary production and community res­
piration were higher in urban streams than forested streams, and urban streams had 
more negative net ecosystem metabolism (gross primary production-community 
respiration), indicating greater heterotrophy (Paul1999). However, because carbon 
storage was far less in the urban streams, carbon turnover was faster, supporting 
the hypothesis that respiration in urban streams was driven by more labile sources 
of carbon, such as sewage effluent. 

Decomposition of organic matter has been measured in a few urban streams. 
Willow leaves decayed much faster in two suburban New Zealand streams than 
ever reported for any other stream; this occurred regardless of whether shredding 
insects were present or absent (Collier & Wmterboum 1986). The same results were 
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observed for chalk maple (Acer barbatum) decay in urban streams in Atlanta, where 
rates were far faster in urban streams than rates observed for any woody leaf species 
in any stream (Paul1999). Fungal colonization ofleaves was only slightly lower in 
the urban streams, but there were no shredding insects associated with packs. These 
results suggested that higher stonnflow was responsible for greater fragmentation 
of leaves in the urban streams, resulting in faster decay rates (Paul1999). 

Removal of added nutrients and contaminants is an ecological service provided 
by streams and relied upon by society. Although nutrient uptake in flowing waters 
has been extensively studied in forested ecosystems (Meyer et al. 1988, Stream 
Solute Workshop 1990, Marti & Sabater 1996), urban settings have been largely 
ignored. Studies in enriched reaches of river below the effluent from wastewater 
treatment plants have provided opportunities to examine patterns of denitrification 
in rivers (e.g., Hi111979) and seasonal patterns of phosphorus removal and reten­
tion in a eutrophic river (e.g., Meals et al. 1999). Recently, ecologists have used the 
nutrients added by a wastewater treatment plant to measure nutrient uptake length, 
which is the average distance downstream traveled by a nutrient molecule before it 
is removed from the water column (Marti et al. 2001, Pollock & Meyer 2001). Up­
take lengths in these rivers are much longer than in nonurban rivers of similar size, 
suggesting that not only is nutrient loading elevated in urban streams, but also nutli­
ent removal efficiency is greatly reduced. The net result of these alterations in urban 
streams is increased nutrient loading to downstl·eam lakes, reservoirs, and estuaries. 

OPPORTUNITIES AND IMPERATIVES FOR 
AN ECOLOGY OF URBAN STREAMS 

Urban stl·eams are common features of the modem landscape that have received 
inadequate ecological attention. That is unfortunate because they offer a fe1tile test­
ing ground for ecological concepts. For example, hydrologic regime is a master 
variable in streams (Minshall1988), influencing channel form, biological assem­
blages, and ecosystem processes. As discussed in this review, impervious surfaces 
result in characteristically altered and often extreme hydrologic conditions that pro­
. vide an endpoint on a disturbance gradient and that offer oppmtunities to quantify 
the relationships between channel form, biological communities, and ecosystem 
processes (Meyer et al. 1988). Does a continuous gradient of impervious surface 
cover result in a similar gradient of ecological pattern and process or are there 
thresholds? Answering that question is of both theoretical and practical interest. 
Developing a mechanistic understanding of the linkages between urbanization and 
stream ecosystem degradation is elusive but essential if ecologists hope to under­
stand the nature of ecological response to disturbance and if they want to contl·ibute 
to the development of scenarios that can guide planning decisions. 

Many urban centers developed around rivers, which were the lifeblood of com­
merce. These commercial uses of rivers ignored and degraded the ecological ser­
vices rivers provide, a phenomenon continuing today as urban sprawl accelerates. 
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Despite widespread degradation, urban livers and streams offer local communities 
an easily accessible piece of nature. Most people live in urban areas, and many 
children first encounter nature playing in urban streams. Hence, urban streams 
offer opportunities for ecological outreach and education that ecologists are only 
beginning to explore. The meteoric lise in numbers of local catchment associa­
tions and adopt-a-stream monitoling groups is testimony to an audience eager for 
ecological insights. 

Urban streams also offer ecologists an opportunity to test concepts of system 
organization through restoration projects. The field of urban stream restoration is 
dominated by physical scientists and engineers and rarely extends beyond stmmwa­
ter management and bank stabilization with a goal of reestablishing a channel ge­
omorphology in dynamic equiliblium with the landscape (e.g., Riley 1998). Little 
attention is given to restoration of a native stream biota or the ecological services 
streams provide. Urban stream restoration offers challenges not only in integrating 
physical, chemical, and biological processes to rehabilitate impaired ecosystems, 
but also requires an attention to esthetics and human attitudes toward the landscape. 
This offers an opportunity for the integration of ecological and social sciences with 
landscape design, which if successful will provide an avenue for ecologists to par­
ticipate in the creation of the sustainable metropolitan centers of the future. 

Cities have been a part of human history for millenia, and projections suggest 
most humans will live in cities in the future. Hence, urban areas lie at the intersec­
tion of human and ecological systems. If we are to succeed in that often-stated goal 
of incorporating humans as components of ecosystems, cities and their streams 
can no longer be ignored . 
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